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1. Introduction

In complex interval arithmetic three different

types of intervals are introduced: rectangles, cire

les and circular sectorsl:%. The arithmetic opera-
tions for all three types of intervals should de-
Tiver the closest inclusion of the set of all pos-
sible values, i.e.

AEIB= O(AoB)=[Cl{aob|ag€ A, b€ B}

for any two intervals A,B and o € <+,-,%,/},
is the rounding from the powerset of € into the
set of complex intervals®. For circular and circu-
Tar sector arithmetic multiplication and division
are optimal, whereas addition and subtraction are
not. For rectangular arithmetic addition, subtrac-
tion and multiplication are optimal. Although se-
veral different approaches have been made e.g.1,8
to improve rectangular division none of these is
~  optimal.
In this paper we introduce an algorithm to compute
complex rectangular interval division optimally,
In part 2 we derive how the maximum and the minj-
mum of the real and imaginary part can be calcula-
ted. In part 3 we show that the computation can be
carried out with maximum accuracy which means that
at most one floating point number Ties between the
computed bounds and the exact bounds!l, In nearly
all cases the computed interval is the closest in-
clusion of the exact solution in the floating
point system. Part 4 contains some numerical examp-
Tes computed in PASCAL-SC7.

2. Theoretical Determination of the Extrema

For two complex rectangular intervals
A = [u,u] + i[v,v] and C = [c,cl + i[d,d]

we want to compute the optimal rectangular inter-
val inclusion of the set of all quctients

fegi := utvi _ uc+vd jve-ud
o+l cZid? c2+d2
utvi € A, cdie €, (c?+ d? > 0) .

This means that we have to compute the maximum and
the minimum of the two functions
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f = f(u,v,c,d) = and
Zid?

g = g{u,v,c,d) = vc-ud
Fid?

with respect to all u€ [u,ul, v € [v,V],
c e le,cl, de [d,d].

We only discuss this for the maximum of f, since
all other cases can be treated analogously.

Since f is Tinear in u and v the maximum is taken
for u or wand v or v where ¢ and d are fixed. This
reduces the number of independent variables and we
only need to consider

1
f(c,d) := max f(u,v,c,d) = 5 * q
c2+d
u € [u,ul
Ve [v,V]
rﬁt+Vd , if ¢>0,d>0,
uetvd , if ¢>0,d<0,
uctvd , if c<0,d>0,
Uctvd , if ¢<0,d<0,
with g = <{E}C+Vd,1'f c <0 :E,9>O,
() chvd,if c<0<c,d<0,
UcH{}d,if ¢>0,d<0<d,
HC+{z}d,if €<0,d<0<d,

In the last four cases u resp. v cannot be chosen
a priori since ¢ resp. d changes sign. In these
cases we have to compute the maximum for u = U as
well as u=U resp. v=v as well as v=v,

The real part

f(c,d) = uc+vd

¢ +d
of the analytic function % (A fixed, C independent

variable) is a harmonic function and therefore
takes its extrema on the boundary of the rectangle
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Figure 1

For each of the four edges we have to compute the
maximum of f(c,d). This can be reduced to

ax +by
max f(x) with f(x) = -
X€lx,X] X+ yg

A1l four edges as well as the computation of the
imaginary part can be treated by choosing a,b,x
and y, suitably. (Note that for the imaginary part
g(u,v,c,d) = f(v,-u,c,d). The first two derivat-
ives of f are

1 (x) = _'TTJ?—7'(3(X2+Y§) - 2x(ax+by ))

(x4y()
1 2. .2
= - - 2b
z;g:;z;g (alyg—x") YoX)
£(x) = —&2712)7 (-2(axsby,) (x%4yl)
o]

2
- ax(a(ye-x%) - 2byx)) .

To compute the stationary points, we have to con-
sider three cases
(i) a=0,
(ii) a ¥ 0 and Yo =0
(ii1) a+0 and y, £ 0.

Zbyox

= (%) = -y
(x2+yo)
(a) b=0 or y0=0 =»[f50
(8) b0 and y $0 = f'(x)=0 <= x1 = 0
= '(x)=F"(0)
b, <0, if by >0,
=23 10] ity <0 .
0

For x; = 0 there is a maximum of f, if by, > O,
and a minimum if by. < 0.

The extremal value is |f(x;) = f(0) = 5—
0
(ii): [E + 0 and Yo = 0]
= f(x) = %- , i.e. f is a hyperbola and thus
f(x) = % is a maximum of f on [x,x1,if a > 0,

is a maximum of f on [x,x],if a < 0.

(iii): [2 40 and y, % 0]

f'(x) = 0 <= a(yg-xz) - 2by x =0
by
<= x2+2-—2x - y2 =0
a 0

2.2
<=> X = - byO +/;yo + 2
2= = 7 "

Yy
<=>ixy = (-b+ / a2+b2)§9 )
Y
Xy = (-b- a2+b2)-52
Since 2,,.2
£1(x)) = —p—gy (axqtby,) = ;Z*;O—z;:b‘ ’
(x1+y5) (x7+yg)
and 2y0 /a2+b2
f“(xz) i N
(X2+.y0)
it follows:

f'(x{) <0 <= y,>0, i.e. f(xy) is a maximum ,
and
F'{xp) <0 <= Yo <0, i.e. f(xz) is a maximum .

The value of the maximum is
(-b+ v aZ+b2)y+by,

f(xq) = — -
2.2, Yo, 2
(-b+ / a%+b ) +y
;;? o
—_—
& EE.. / alyp?
v 3
S 2(af?) -2 /alut
=2 1 .3 fy, >0
* %g =S, if y, ,
bt /2%l 21
analogously

f(xp) = ?%E L if oy, < 0.

In cases (i) and (iii) we have to check, if the
point x1, resp. Xp, where f has a relative maximum
is contained in [Xx,x]. If this holds then this is
also the absolute maximum of f on this edge, since
f has at most one relative maximum and one relat-
ive minimum on R and vanishes asymptotically for
|x| > ». The algorithm of the computation of the
maximum is displayed in the following flow chart.
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(:1nmax(a,b,yo,x) :)

Linmax = —maxreafq
Y,/g—:"a\LN
/
case(ii)
L o —
[:£<:? in X Asign(b) = sign(y, N
-
inmax := 0 inmax := b/y0 inmax := a/x inmax := a/x
L [ l
case |(ii1)
t = (|b] + /a% + b%) / a
Y N
Yo > 0
I—X<B—> o YooY
X1 1= Yo/t ] X i ot Sl B RS 74
L l L |
[ ]

Gy in
i -
inmax := 25

0

To obtain the final value of the maximum we have to
compare the result of this computation with f(x)
and f(x).

3. Numerical computation with maximum accuracy

Let the problem be given in a floating point system
with n digits. Then we want the final result to be
correct to n digits. For convenience we»use a deci-
mal system for the estimations.

In case (i) and (ii) the computation of the maximum
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is a single division, which is carried out with ma-
ximum accuracy and directed rounding.

In case (iii) let x1 be the point where f has its
relagixe maximum. Then we compute X1 and the maxi-
mum f(x1) in a floating point system with £ > n
mantissa digits. We now determine £ such that the
results are accurate to at least n digits.

During the computation of xl intermediate overflow
or underflow can easily be avoided by an error free
multiplication with a proper constant. Ng now give
an estimation for the rounding error of X1. We only




discuss the more complicated case x1 =y /t. Floa-
ting point operations are denoted in circles and
the rounded values are marked with ~.

s
xl - x¥| _ Yo/t - Vo@Dt
xI yd7t

Sl e

= et t
e t ~y0/t

=y
With w := /é2+b2 and W := vé(a2+b2) an approxima-

tion for w we have

( b|+wr/a+‘; gab @W}_(m‘

([b]4w) - (
ThT+w

W-w b +W
+w’ * 57t ’ b+

"y

) wW-w
5,074 (1t "VF”)

IA

+ 510

5107415750

IS

W-W
W

S

N
W-w

+5 —_—
W

-2 (1+5,,-2) (1+

10 10 )-

With an appropriate approximation W for w we ob-

tain
x1-X1
“71— < 2l
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For the rg]at1ve error ¢ of the computed maximum
a@ (2 X1) we have

. ,a/(le ZXJ' la/(2X1)-a@ (2@ X1)
- a/ (ZxT1) a/(2x1
P Ul ‘a/(zh)-a/(zgh)
= 2t a/(2X1)
a/(2Q X1)-a@@®x1)| |2X1 x1
a/2<:)9<1 ’ 0% x1
< 32t

If x1 € [x,x] the maximum of f is taken at x or X.
We then have to compute f(x) and f(x). This compu-
tation can be done with twd optimal dot products
yielding £ mantissa digits and one final division.
The error of this computation is less than 3210-£19

0f course x1 € [x;i] does rot necessarily imply
X1 € [x,X] and vice versa. In such cases f(x) resp.
f(X) satisfies the above estimations.

The final result is obtained by correction of the
computed value with the relative error and directed
rounding to n digits, provided the computation has
been carried out with £ > n+2 digits.

Remarks: 1) In the worst case the algorithm re-
quires the computation of 32 stationary points and
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evaluation of up to 32 function values of f(x).

2) It is possible to compute the closest inclusion
of the exact solution without exception. But this
would mean that we have to check the result, which
requires the exact computation of a sum of products
of 3 or 4 floating point numbers,

4. Examples and Applications

We compare
(1) A U+iV _ UC+vD VC ub
B THD 2 2 2 ?
(i) B-= A é-where B is computed optimally and

8
A « X is the usual multiplication,

(iii)our method.

1) A=1+4i,B=1¢+1i[0,1]

(i) A /B =1[0.5,2] + i[0,1]

(i1) A /B = [0.5,1.5] + i[0,1]

(ii1) A / B = [1,1.207106781191 + i[0,1]

2) A=1{1,2] +i[1,2] B =[1,2] + i[1,2]

(i) A /B =1[0.25,4] + i[-1.5,1.5]

(ii) A/ B =1[0.4,2] + i[-0.8,0.8]

(iii) A / B = [0.5,2] + 0.6180339887450 i[-1,1]

3) A=10%0410% ,8-34+3i

(i) A / B=10.3333333333333,0.3333333333334] - 10°0
+0 -

(i1) A / B=10.3333333333332,0.3333333333334] - 10°0
+ 1-10%8,10189; 30

(iii) A / B=10.3333333333333,0.3333333333334] -
+0 1

4) Execution of the interval Newton method

Zo,q 1= M(Z,) - f(m(Z,)) /7 F(Z,)

for the function f(z) = z 2 2242 starting with the
interval Z, = [0,1.5] + i[0.17,1.21, which contains
exactly one zero z* = 141 of f,y1e1ds the following
results.

Using method (ii) to compute fnm(Zk)) / f'(Z () we

obtain |
k Zy

1 [-9.5E-02, 2.7E+00] + i[ 2.3E-01, 3.0E+00]

2 [-2.2E+00, 2.8E+00] + i[-2.5E400, 2.5E+00]

Obviously the third iteration is not defined since

0e¢ f'(Zk).

Our method (iii), however, yields convergence to-
wards the exact selution (even in a finite number
of steps):

k i
1 [ 2.4€-01, 2.3E+00]
sall 5.5£-01, 2.6E+00]
2 1.7e-01, 1.7E+00]
+i[ 2.2E-01, 1.5E+00]
30 7.0E-01, 1.5E+00]
+i[ 7.9€-01, 1.6E+00]




8.9£-01, 1.1E+00]

if 9.2E-01, 1.1E+00]

5. [ 9.993E-01, 1.001E+00]
+i 9.993E-01, 1.001E+00]

6 I 9.9999993E-01, 1.0000001E+00]
+i[ 9.9999993E-01, 1.0000001E+00]

7 [9.999999999989E-01, 1.0000000000001E+00]
+1[9.999999999994£-01, 1.000000000001E+00]
8 [1.000000000000E+00, 1.000000000000E+001]
+1[1.000000000000E+00, 1.000000000000E+00]

Note that the first intervals in this example do
not show all digits, since they are not interes-
ting for the result.
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