Abstract

‘We describe a new parallel algorithm for com-
puting the generalized singular value decomposition
of two n X n matrices, one of which is nonsingular.
Our procedure requires O(n) time and one triangu-
lar array of O (n?) processors.

Introduction

In this paper we describe a linear-time algo-
rithm for computing a generalized singular value
decomposition (GSVD) of a partitioned matrix

A

B} m

F =

Only the simple case where A and B are both
square (n Xn) and B is nonsingular will be con-
sidered.

The GSVD of E is a simultaneous diagonaliza-
tion of both A and B by two orthogonal matrices
U and V and a nonsingular matrix X :

UTAX=DAEdiag o:l,--',ozn] @)

and

' VTBX=DBEdiag[;31,---,Bn]. ©)
¢'GSVD is useful for solving various constrained
eneralized least squares problems ( Golub and

n 6 ). In the special case where the columns
¢ orthonormal, ie.,

ATA +BTB =1,

ion X' may be taken to be orthogo-
diagonal matrices will satisfy

} A -+ DgDE =7 H

zation (2-3) is called a CS-

e CSD is useful for analyz-
perturbation problems ( Davis
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and Kahan 3, Stewart 13, and Van Loan!6). If we
first compute a singular value decomposition (SVD)
of the matrix £:

E =UEDEVFT’

where Uy (2n X n) has orthonormal columns, Dg
(nXn) is diagonal and Vg (nXn) is orthogonal,
and if we then determine a CSD of the matrix Ug,
we shall obtain a GSVD of the given matrix £. This
approach is often recommended for computing the
GSVD ( Paige and Saunders 2, Stewart !4 and Van
Loan 17 ). Indeed, stable CSD algorithms have been
derived in Stewart 14 and Van Loan !7 for this pur-
pose. The first direct GSVD procedure is given by
Paige !’ It implicitly applies a Jacobi-SVD algo-
rithm to the matrix C=AB"), and is numerically
appealing in that only orthogonal transformations
are applied to A and B and that the matrices B!
and C are never explicitly formed.

The advent of real time signal processing has
aroused much interest in parallel GSVD algorithms
( Bromley and Speiser ¢ ). Parallel implementations
of Van Loan’s CSD algorithm are discussed in
Kaplan and Van Loan 7 and in Luk and Qiao 1.
While the former paper uses the “parallel” ordering
of Brent and Luk !, the latter one chooses an “odd-
even” ordering that is due to Stewart 5, A systolic
array implementation of Stewart’s CSD algorithm is
sketched in Brent, Luk and Van Loan 2 Paige’s
GSVD procedure is not amenable to parallel compu-
tations as it uses a cyclic-by-rows ordering. In this
paper we modify his algorithm to adopt the “odd-
even” ordering. Besides a parallel implementation,
our new algorithrn is easier to program and under-
stand. It can be implemented on a triangular pro-
cessor array of Luk ?: with O(n2) processors the
time requirement for a GSVD is only O(n). Since
this processor array also computes in linear time the
QR-decomposition %, the SVD 9 and the CSD 1, it
satisfies many of the the computational needs of real
time signal processing 4

gl T




Jacobi-SVD_Algorithms

Jacobi-like SVD procedures for square matrices
are first proposed by Kogbetliantz 8 Their imple-
mentation on systolic arrays is discussed in Brent et
al.3 and Luk % The basic tool is a 2X 2 plane rota-
tion:

coSce Sineo

Pla) = —sino:  coscx

i

as the basic problem concerns the diagonalization of
a 2X 2 matrix by the rotations J (0 ) and X (¢

d, 0
0 d,

w x .
: JOY | K@= @
3 A two-stage proceclure for finding & and ¢ is advo-
cated in Brent et al.3. First, find a rotation S(y) to

symmetrize the 2X 2 matrix:

w x P q
T
sor |50 = |0
If x=y set Yi=0, otherwise compute
w+tz
= =ctny,
s
sing = sign(p)/ v 1+p?,
cosys = p siny.
Second, diagonalize the result:
4 d, 0
1 P g N 1
] K@ | (K@ =19 4,

Suppose ¢ 70 ( else choose either ¢=0 or ¢=7/2 ).
It is well known that ¢t =tan¢ satisfies the qua-
dratic equation: '

t2+2pt—1=0, (5)
where
= ' P
p = = n2d¢.
zq ¢

The two solutions to (5) are
t =sign(p)/ [1p1+V 1+p2],
cosp =1/ v 1+22, ©)

singg =t cos¢g

and
t = —sign(p) [ 1p1+V 1492 ],
cosp =1/ V 1422, 7
singg =t cose.

The rotation J (9) is given by
JOY =K@ ST (ie,0=¢+y).
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The angle ¢ associated with (6) is the smaller of the
two possibilities; it satisfies O < Id>| <m/4. The
angle associated with (7) satisfies #/4 <l <w/2.
We refer to a rotation through the smaller angle as
an “inner rotation” and one through the larger angle
as an “outer rotation” ( see Stewart 15 ). For a given
matrix that is diagonal (x—y =0 ) an “inner rota-
tion” means ¢=0 and an “outer rotation” implies
¢=wuw/2. In the former case the matrix stays
unchanged, and in the latter the singular values are
interchanged:

0 -1
1 0

While “inner rotations” are usually chosen for a
(prwumably) faster rate of convergence, “outer rota-

* have found acceptance as an integral part of
many parallel algorithms %1015,

An SVD of an n Xn matrix A is computed by
solving an appropriate sequence of 2X2 SVD prob-
lems. The basic Jacobi transformation is

;r{j : A Q_‘IIIJ'A Kij’ (8)

w 0
0z

01 z 0

0wl

where J;; and K,; are rotations in the (i,;) plane
chosen to annihilate the (i,) and (,i) elements of
A. If we define

off(C) = Zcpzq for C =(cpq),
Py

the transformation T;; will produce a matrix B
satisfying

off(B)=0ff(A) — a? —aj.

That is, the matrix B has become more “diagonal”
than A. The value of (i,;) is determined according
to some ordering, to be selected such that all the
off-diagonal elements will be annihilated once in
any group of n(n—1)/2 rotations ( called a sweep ).
Choosing the well known cyclic-by-rows ordering,
we obtain Kogbetlis s"method &

Algorithm SVI
do until converger
fori =1,2 do
for,} ’ ; «++n do

By convergence -we.mean that the parameter off(A)
has fallen below aome@pre-sclected tolerance. In the
settings of parallel computations, it is difficult to
monitor o0ff{A) and we may decide to stop itera-
tions after a suﬂiaently large number ( say ten ) of
SWeeps. ;

A square- SVD processor array implementing
the “parallel” ordcrmgj of Brent and Luk ! is
described in Brent et al.®, and a triangular SVD pro-
cessor array for rectangular matrices is given in




Luk °. The triangular:
algorithm. First, a QR-
the given matrix'a
Jacobi-SVD me
ing of Stewart

ray implements a two-stage
omposition is computed of
fed into the array. Second, a
mased on the “odd-even” order-
plied to the resultant triangu-
lar form.- tions” must be used to ensure
convergente: ‘is the SVD algorithm in Luk?
for an-upperriangular A:

Algorithm SVD2.
do until convergence
begin
{ “outer rotations” are used }
fori =1,3,---(i odd)do
Al AK
fori =2,4,---(i even ) do
A "sz:+1 A K,
end. (]

Details on the two SVD arrays are given in the
three papers 3, Important points worth emphasiz-
ing are that only nearest neighbor connections are
required of the O(n?) processors, that broadcasting
can be avoided through a staggering of computa-
tions, and that one sweep of the associated SVD
algorithm is implementable in time O (n ).

Extensive numerical experiments have been
performed with various Jacobi-SVD methods 39,
The rate of convergence was at least quadratic, and
only eight or fewer sweeps were required for
n £200. The SVD of an n X7 matrix is thus com-
putable in effectively linear time.

A_Jacobji-GSVD Method

We describe here the novel GSVD algorithm of
Paige !l Recall that the matrices A and B are
square, and that B is nonsingular. In addition,
assume both matrices to be upper triangular ( do
two preparatory QR-decompositions if necessary ).
Orthogonal transformations U , V and Q are to be
determined such that the two resulting matrices
UT AQ and V7 BQ have parallel rows, Le.,

UTAQ =D-vTBQ, )]

where D is some diagonal matrix. Defining the non-
singular matrix X =B~'V, we get the desired

VIBX =1,

UTAX =UTAQ-QT x
=D-VTBQ-QT B-ly
=D.

On the other hand, note that
UT(AB™Y)W =D, 10)

So the transformations U and V can be obtained
via an SVD procedure applied to C =AB~.. The
gist of Paige’s method lies in its implicit application
of Algorithm SVD1 to C without explicitly form-
ing the matrices B~! and C.

The paper ! discusses in detail the effect of
Algorithm SVD1 on a triangular matrix. It describes
how an initially upper ( respectively lower ) tri-
angular matrix will gradually lose its structure and
become lower ( respectively upper ) triangular. For
an initially upper triangular matrix C, sweep #1 of
Algorithm SVD1 will make it lower triangular,
sweep #2 will return it to upper triangular form,
and so on. Let us examine how Paige takes advan-
tage of this structural transformation. Consider a
transformation in the (i,j) plane and denote by
M,; the 2X2 matrix formed by the intersection of
rows i, j and columns i, J of an n Xn matrix M.
With a judicious choice of the third orthogonal
transformation Q ( to be described ), Paige asserts
that

CU =A41j(B_l)¢j s (B_l)ij =(Bij L (11)

Property (11) is very important. It means that we
need not compute the matrices B! and C, for the
submatrices A, ; and B,; are sufficient for generating
the rotations U and V for the 2x 2 SVD:
ufc, V=38,

where S is diagonal. Then

UTAU = S-VTBU,
ie, the first ( resp. second ) row of UT A ; is paral-
lel to the first ( resp. second ) row of V7 B, ;- Thus,
if another rotation Q is chosen so that V7 B;Q is
lower (upper) triangular, then so is U7 A;0 (the
numerical aspects of this mathematical relation are
not investigated in Paige !' ). Paige claims that 4, ;
and B;; always assume the same trian%ular struc-
ture, and he chooses Q to redice both U A;;Q and
VTB,;Q to lower ( resp. upper ) triangular forms
for given matrices A, j and B;; that are upper
(resp. lower ) triangular. With

A E(a“ ),B E(bij ), C E(Clj ),

and letting U, j» Vi and Q, ; denote n Xn rotations
in the (i, j }-plane (‘admittedly our notations are not
completely satisfactory ), we present Paige’s algo-
rithm:




Algorithm GSVD)1.
do until convergence
fori =1,2, -+ n—14do
for j =i+1,i42, --- 2 do
begin
determine U,; and V, ; to annihilate
<

; andcﬂ;

A <UJA; B «VEB;
ifaﬂ =bﬁ=0

find Q, j ¥ zero out q;; and b, ;
else {a,; =b,;=0}

find Q,; tozeroout ay and b ;

A 4—AQU ;
end. ]

B «BQ,

By convergence it is meant that the rows of A and
B have become parallel according to some predeter-
mined measure.

A_Parallel Implementation

In this section we modify Algorithm GSVDI
for parallel computations by adopting the “odd-
even” ordering. An extra dividend is that the upper
triangular structures of both A and B can te
preserved. Now, if both A and B are upper tri-
angular, then so are the matrices B~! and
C =AB™L. As such, the two enjoy these special
relations:

(B_l)uﬂ = (Bz,z w7
Coon1= A B, 4.
Unlike Paige !!, here the nonsingularity of B, 541
follows trivially from the nonsingularity and the

upper triangular structure of B. We have thus

proved
Cior1 = A (Byy )Y (12)

the key condition for an implicit application of
Algorithm SVD2 to the upper triangular matrix C.
We find rotations U and V for a 2x 2 SVD:

UTCUHV =3,
where S is diagonal. Then
UTAi,z+1=S'VTBu+1:

ie, the two rows of UTA;, ., and VT B,,,, are
parallel. We can thus find one rotation Q to
(upper-)triangularize both matrices ( cf. Paige 1),
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Let us study how the aforementioned transfor-
mations affect the two nXn upper triangular
matrices A and B. We have

A “"U13+1 AQ 41
T
B«Vi,B Qrs+1s

where U, 4y, Vi34 and Q 4+1 denote appropriate
nXn rotations in the (i,i+1)-plane. Note that
both matrices U 1 1A and V7 B have only one
non-zero subdiagonial element each, in the (i +1,i)-
position. These two' exfraneous elements are annihi-
lated by the same rotdtion Q, , ,,, that restores both
A and B to triangular forms. Here is our new
GSVD algorithm for uppér tiz A and B:

Algorithm GSVD2,
do until convergence
fori =1,3, -
begin o
{Uis41and V4, are “oiter rotations” }
determine U, ; ,, and Vijsr to .
annihilate ¢, ; 4, and ¢, '

A «ULLA; B «VE, B;
find Q, , 4; to zero out @41y and byyyy;

A "“AQz,z +15
end. a

B «BQ

Algorithm GSVD2 is easily implementable on the
triangular QRD-SVD array of Luk °. We compute
initial QR-decompositions of both A and B as_they
are fed into the array. The SVD of C, 2+1 and’ the
*riangularization of both A,,,; and B, 241 are per-
fornied in parallel on the processor array in a
straightforward manner %1°. A significant fact is
that one sweep of Algorithm GSVD2 can be ‘com-
pleted in linear time.

An Example

We present an example, generated on a VAX-
11/780 at Cornell University using MATLAB with
an effective precision €=10"10, The initial
matrices were




]

o A AR

67658 —0.84935 —0.36462

0. " 057963 0.66229
A=, 0.61666  0.00997
0. 0. ~0.54019

13645 —0.73578 0.41857 0.03362

. © —0.90705_ 0.00905 —0.39844
0. 0.30468 003115 |
0. 0. —0.05234

.numbers are shown to only five decimal
due to a lack of space. To exhibit the qua-
ic rate of convergence, we show here the
ces C =AB™!, computed at the end of the
h, 1st and 2nd sweeps, respectively :

"11.15060 —0.18743 —4.36279 6.53551

0. 0.64742 1.88320 —16.46078
0. 0. 2.02395 1.01400 |
0. 0. o. 10.32035

2046505 3.01675 0.08291 —1.24184
0.00000 4.44366 0.00000 0.09526
0.00000 0.00000 0.39817 —0.31057
0.00000 0.00000 0.00000 0.42972

0.59714 0.00114 —0.00002 —0.00005
0.00000 0.28588 —0.00000 0.00001
—0.00000 —0.00000 4.39602 0.00813 [
—0.00000 —0.00000 0.00000 20.73402

After three sweeps, we got a diagonal matrix ( to
ten decimal places )

C =diag (20.73402, 4.39602,0.28588 ,0.59715),
and the two original matrices became
0.96805 0.81599 0.19584 0.00235
A —0.00000 1.24946 0.05270 —0.86169

= | 000000 0.00000 0.23512 —0.03943
—0.00000 0.00000 0.00000 0.89943

004669 0.03935 0.00945 0.00011
000000 0.28423 0.01199 —0.19602
—0.00000 —0.00000 0.82246 —0.13793 |

000000 0.00000 —0.00000 1.50622
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