Abstract

‘We describe a new parallel algorithm for com-
puting the generalized singular value decomposition
of two n X n matrices, one of which is nonsingular.
Our procedure requires O(n) time and one triangu-
lar array of O (n?) processors.

Introduction

In this paper we describe a linear-time algo-
rithm for computing a generalized singular value
decomposition (GSVD) of a partitioned matrix

A

B} m

F =

Only the simple case where A and B are both
square (n Xn) and B is nonsingular will be con-
sidered.

The GSVD of E is a simultaneous diagonaliza-
tion of both A and B by two orthogonal matrices
U and V and a nonsingular matrix X :

UTAX=DAEdiag o:l,--',ozn] @)

and

' VTBX=DBEdiag[;31,---,Bn]. ©)
¢'GSVD is useful for solving various constrained
eneralized least squares problems (Golub and

n 6). In the special case where the columns
¢ orthonormal, ie.,

ATA +BTB =1,

ion X' may be taken to be orthogo-
diagonal matrices will satisfy

} A -+ DgDE =7 H

zation (2-3) is called a CS-

e CSD is useful for analyz-
perturbation problems (Davis

CH2146-9/85/0000/0260$01.00 © 1985 |EEE

260

A PARALLEL METHOD FOR COMPUTING
THE GENERALIZED SINGULAR VALUE DECOMPOSITION

Franklin T. Luk

School of Electrical Engineering, Cornell University
Ithaca, New York 14853

and Kahan 3, Stewart 13, and Van Loan!6). If we
first compute a singular value decomposition (SVD)
of the matrix £:

E =UEDEVFT’

where Uy (2n X n) has orthonormal columns, Dg
(nXn) is diagonal and Vg (nXn) is orthogonal,
and if we then determine a CSD of the matrix Ug,
we shall obtain a GSVD of the given matrix £. This
approach is often recommended for computing the
GSVD (Paige and Saunders 2, Stewart !4 and Van
Loan 17). Indeed, stable CSD algorithms have been
derived in Stewart 14 and Van Loan !7 for this pur-
pose. The first direct GSVD procedure is given by
Paige !’ It implicitly applies a Jacobi-SVD algo-
rithm to the matrix C=AB"), and is numerically
appealing in that only orthogonal transformations
are applied to A and B and that the matrices B!
and C are never explicitly formed.

The advent of real time signal processing has
aroused much interest in parallel GSVD algorithms
(Bromley and Speiser ¢). Parallel implementations
of Van Loan’s CSD algorithm are discussed in
Kaplan and Van Loan 7 and in Luk and Qiao 1.
While the former paper uses the “parallel” ordering
of Brent and Luk !, the latter one chooses an “odd-
even” ordering that is due to Stewart 5, A systolic
array implementation of Stewart’s CSD algorithm is
sketched in Brent, Luk and Van Loan 2 Paige’s
GSVD procedure is not amenable to parallel compu-
tations as it uses a cyclic-by-rows ordering. In this
paper we modify his algorithm to adopt the “odd-
even” ordering. Besides a parallel implementation,
our new algorithrn is easier to program and under-
stand. It can be implemented on a triangular pro-
cessor array of Luk ?: with O(n2) processors the
time requirement for a GSVD is only O(n). Since
this processor array also computes in linear time the
QR-decomposition %, the SVD 9 and the CSD 1, it
satisfies many of the the computational needs of real
time signal processing 4

gl T

Jacobi-SVD_Algorithms

Jacobi-like SVD procedures for square matrices
are first proposed by Kogbetliantz 8 Their imple-
mentation on systolic arrays is discussed in Brent et
al.3 and Luk % The basic tool is a 2X 2 plane rota-
tion:

coSce Sineo

Pla) = —sino: coscx

i

as the basic problem concerns the diagonalization of
a 2X 2 matrix by the rotations J (0) and X (¢

d, 0
0 d,

w x .
: JOY | K@= @
3 A two-stage proceclure for finding & and ¢ is advo-
cated in Brent et al.3. First, find a rotation S(y) to

symmetrize the 2X 2 matrix:

w x P q
T
sor |50 = |0
If x=y set Yi=0, otherwise compute
w+tz
= =ctny,
s
sing = sign(p)/ v 1+p?,
cosys = p siny.
Second, diagonalize the result:
4 d, 0
1 P g N 1
] K@ | (K@ =19 4,

Suppose ¢ 70 (else choose either ¢=0 or ¢=7/2).
It is well known that ¢t =tan¢ satisfies the qua-
dratic equation: '

t2+2pt—1=0, (5)
where
= ' P
p = = n2d¢.
zq ¢

The two solutions to (5) are
t =sign(p)/ [1p1+V 1+p2],
cosp =1/ v 1+22, ©)

singg =t cos¢g

and
t = —sign(p) [1p1+V 1492],
cosp =1/ V 1422, 7
singg =t cose.

The rotation J (9) is given by
JOY =K@ ST (ie,0=¢+y).

261

The angle ¢ associated with (6) is the smaller of the
two possibilities; it satisfies O < Id>| <m/4. The
angle associated with (7) satisfies #/4 <l <w/2.
We refer to a rotation through the smaller angle as
an “inner rotation” and one through the larger angle
as an “outer rotation” (see Stewart 15). For a given
matrix that is diagonal (x—y =0) an “inner rota-
tion” means ¢=0 and an “outer rotation” implies
¢=wuw/2. In the former case the matrix stays
unchanged, and in the latter the singular values are
interchanged:

0 -1
1 0

While “inner rotations” are usually chosen for a
(prwumably) faster rate of convergence, “outer rota-

* have found acceptance as an integral part of
many parallel algorithms %1015,

An SVD of an n Xn matrix A is computed by
solving an appropriate sequence of 2X2 SVD prob-
lems. The basic Jacobi transformation is

;r{j : A Q_‘IIIJ'A Kij’ (8)

w 0
0z

01 z 0

0wl

where J;; and K,; are rotations in the (i,;) plane
chosen to annihilate the (i,) and (,i) elements of
A. If we define

off(C) = Zcpzq for C =(cpq),
Py

the transformation T;; will produce a matrix B
satisfying

off(B)=0ff(A) — a? —aj.

That is, the matrix B has become more “diagonal”
than A. The value of (i,;) is determined according
to some ordering, to be selected such that all the
off-diagonal elements will be annihilated once in
any group of n(n—1)/2 rotations (called a sweep).
Choosing the well known cyclic-by-rows ordering,
we obtain Kogbetlis s"method &

Algorithm SVI
do until converger
fori =1,2 do
for,} ’ ; «++n do

By convergence -we.mean that the parameter off(A)
has fallen below aome@pre-sclected tolerance. In the
settings of parallel computations, it is difficult to
monitor o0ff{A) and we may decide to stop itera-
tions after a suﬂiaently large number (say ten) of
SWeeps. ;

A square- SVD processor array implementing
the “parallel” ordcrmgj of Brent and Luk ! is
described in Brent et al.®, and a triangular SVD pro-
cessor array for rectangular matrices is given in

Luk °. The triangular:
algorithm. First, a QR-
the given matrix'a
Jacobi-SVD me
ing of Stewart

ray implements a two-stage
omposition is computed of
fed into the array. Second, a
mased on the “odd-even” order-
plied to the resultant triangu-
lar form.- tions” must be used to ensure
convergente: ‘is the SVD algorithm in Luk?
for an-upperriangular A:

Algorithm SVD2.
do until convergence
begin
{ “outer rotations” are used }
fori =1,3,---(i odd)do
Al AK
fori =2,4,---(i even) do
A "sz:+1 A K,
end. (]

Details on the two SVD arrays are given in the
three papers 3, Important points worth emphasiz-
ing are that only nearest neighbor connections are
required of the O(n?) processors, that broadcasting
can be avoided through a staggering of computa-
tions, and that one sweep of the associated SVD
algorithm is implementable in time O (n).

Extensive numerical experiments have been
performed with various Jacobi-SVD methods 39,
The rate of convergence was at least quadratic, and
only eight or fewer sweeps were required for
n £200. The SVD of an n X7 matrix is thus com-
putable in effectively linear time.

A_Jacobji-GSVD Method

We describe here the novel GSVD algorithm of
Paige !l Recall that the matrices A and B are
square, and that B is nonsingular. In addition,
assume both matrices to be upper triangular (do
two preparatory QR-decompositions if necessary).
Orthogonal transformations U , V and Q are to be
determined such that the two resulting matrices
UT AQ and V7 BQ have parallel rows, Le.,

UTAQ =D-vTBQ,)]

where D is some diagonal matrix. Defining the non-
singular matrix X =B~'V, we get the desired

VIBX =1,

UTAX =UTAQ-QT x
=D-VTBQ-QT B-ly
=D.

On the other hand, note that
UT(AB™Y)W =D, 10)

So the transformations U and V can be obtained
via an SVD procedure applied to C =AB~.. The
gist of Paige’s method lies in its implicit application
of Algorithm SVD1 to C without explicitly form-
ing the matrices B~! and C.

The paper ! discusses in detail the effect of
Algorithm SVD1 on a triangular matrix. It describes
how an initially upper (respectively lower) tri-
angular matrix will gradually lose its structure and
become lower (respectively upper) triangular. For
an initially upper triangular matrix C, sweep #1 of
Algorithm SVD1 will make it lower triangular,
sweep #2 will return it to upper triangular form,
and so on. Let us examine how Paige takes advan-
tage of this structural transformation. Consider a
transformation in the (i,j) plane and denote by
M,; the 2X2 matrix formed by the intersection of
rows i, j and columns i, J of an n Xn matrix M.
With a judicious choice of the third orthogonal
transformation Q (to be described), Paige asserts
that

CU =A41j(B_l)¢j s (B_l)ij =(Bij L (11)

Property (11) is very important. It means that we
need not compute the matrices B! and C, for the
submatrices A, ; and B,; are sufficient for generating
the rotations U and V for the 2x 2 SVD:
ufc, V=38,

where S is diagonal. Then

UTAU = S-VTBU,
ie, the first (resp. second) row of UT A ; is paral-
lel to the first (resp. second) row of V7 B, ;- Thus,
if another rotation Q is chosen so that V7 B;Q is
lower (upper) triangular, then so is U7 A;0 (the
numerical aspects of this mathematical relation are
not investigated in Paige !'). Paige claims that 4, ;
and B;; always assume the same trian%ular struc-
ture, and he chooses Q to redice both U A;;Q and
VTB,;Q to lower (resp. upper) triangular forms
for given matrices A, j and B;; that are upper
(resp. lower) triangular. With

A E(a“),B E(bij), C E(Clj),

and letting U, j» Vi and Q, ; denote n Xn rotations
in the (i, j }-plane (‘admittedly our notations are not
completely satisfactory), we present Paige’s algo-
rithm:

Algorithm GSVD)1.
do until convergence
fori =1,2, -+ n—14do
for j =i+1,i42, --- 2 do
begin
determine U,; and V, ; to annihilate
<

; andcﬂ;

A <UJA; B «VEB;
ifaﬂ =bﬁ=0

find Q, j ¥ zero out q;; and b, ;
else {a,; =b,;=0}

find Q,; tozeroout ay and b ;

A 4—AQU ;
end.]

B «BQ,

By convergence it is meant that the rows of A and
B have become parallel according to some predeter-
mined measure.

A_Parallel Implementation

In this section we modify Algorithm GSVDI
for parallel computations by adopting the “odd-
even” ordering. An extra dividend is that the upper
triangular structures of both A and B can te
preserved. Now, if both A and B are upper tri-
angular, then so are the matrices B~! and
C =AB™L. As such, the two enjoy these special
relations:

(B_l)uﬂ = (Bz,z w7
Coon1= A B, 4.
Unlike Paige !!, here the nonsingularity of B, 541
follows trivially from the nonsingularity and the

upper triangular structure of B. We have thus

proved
Cior1 = A (Byy)Y (12)

the key condition for an implicit application of
Algorithm SVD2 to the upper triangular matrix C.
We find rotations U and V for a 2x 2 SVD:

UTCUHV =3,
where S is diagonal. Then
UTAi,z+1=S'VTBu+1:

ie, the two rows of UTA;, ., and VT B,,,, are
parallel. We can thus find one rotation Q to
(upper-)triangularize both matrices (cf. Paige 1),

263

Let us study how the aforementioned transfor-
mations affect the two nXn upper triangular
matrices A and B. We have

A “"U13+1 AQ 41
T
B«Vi,B Qrs+1s

where U, 4y, Vi34 and Q 4+1 denote appropriate
nXn rotations in the (i,i+1)-plane. Note that
both matrices U 1 1A and V7 B have only one
non-zero subdiagonial element each, in the (i +1,i)-
position. These two' exfraneous elements are annihi-
lated by the same rotdtion Q, , ,,, that restores both
A and B to triangular forms. Here is our new
GSVD algorithm for uppér tiz A and B:

Algorithm GSVD2,
do until convergence
fori =1,3, -
begin o
{Uis41and V4, are “oiter rotations” }
determine U, ; ,, and Vijsr to .
annihilate ¢, ; 4, and ¢, '

A «ULLA; B «VE, B;
find Q, , 4; to zero out @41y and byyyy;

A "“AQz,z +15
end. a

B «BQ

Algorithm GSVD2 is easily implementable on the
triangular QRD-SVD array of Luk °. We compute
initial QR-decompositions of both A and B as_they
are fed into the array. The SVD of C, 2+1 and’ the
*riangularization of both A,,,; and B, 241 are per-
fornied in parallel on the processor array in a
straightforward manner %1°. A significant fact is
that one sweep of Algorithm GSVD2 can be ‘com-
pleted in linear time.

An Example

We present an example, generated on a VAX-
11/780 at Cornell University using MATLAB with
an effective precision €=10"10, The initial
matrices were

]

o A AR

67658 —0.84935 —0.36462

0. " 057963 0.66229
A=, 0.61666 0.00997
0. 0. ~0.54019

13645 —0.73578 0.41857 0.03362

. © —0.90705_ 0.00905 —0.39844
0. 0.30468 003115 |
0. 0. —0.05234

.numbers are shown to only five decimal
due to a lack of space. To exhibit the qua-
ic rate of convergence, we show here the
ces C =AB™!, computed at the end of the
h, 1st and 2nd sweeps, respectively :

"11.15060 —0.18743 —4.36279 6.53551

0. 0.64742 1.88320 —16.46078
0. 0. 2.02395 1.01400 |
0. 0. o. 10.32035

2046505 3.01675 0.08291 —1.24184
0.00000 4.44366 0.00000 0.09526
0.00000 0.00000 0.39817 —0.31057
0.00000 0.00000 0.00000 0.42972

0.59714 0.00114 —0.00002 —0.00005
0.00000 0.28588 —0.00000 0.00001
—0.00000 —0.00000 4.39602 0.00813 [
—0.00000 —0.00000 0.00000 20.73402

After three sweeps, we got a diagonal matrix (to
ten decimal places)

C =diag (20.73402, 4.39602,0.28588 ,0.59715),
and the two original matrices became
0.96805 0.81599 0.19584 0.00235
A —0.00000 1.24946 0.05270 —0.86169

= | 000000 0.00000 0.23512 —0.03943
—0.00000 0.00000 0.00000 0.89943

004669 0.03935 0.00945 0.00011
000000 0.28423 0.01199 —0.19602
—0.00000 —0.00000 0.82246 —0.13793 |

000000 0.00000 —0.00000 1.50622

Acknowledgements

The author would like to thank D. Boley and
S. Qiao for many valuable discussions.

References

[1] RP. Brent and ET. Luk, The solution of
singular-value and symmetric eigenvalue prob-
lems on multiprocessor arrays, SIAM J. Sci. Sta-
tist. Comput., 6 (1985), pp. 69-84.

[2] RP. Brent, F.T. Luk, and C. Van Loan, Compu-
tation of the generalized singular value decom-
position using mesh-connected processors, Proc.
SPIE Vol. 431, Real Time Signal Processing VI
(1983), pp. 66-71.

[3] RP. Brent, F.T. Luk, and C. Van Loan, Compu-
tation of the singular value decomposition
using mesh-connected processors, J. VLSI and
Computer Systems, 1 (1985), to appear.

(4] K. Bromley and J.M. Speiser, Signal Processing
Algorithms, Architectures, and Applications,
Tutorial 31, SPIE 27th Annual Internat. Tech.
Symp., San Diego, 1983.

[5] C. Davis and WM. Kahan, The rotation of
eigenvectors by a perturbation III, SIAM].
Numer. Anal., 7 (1970), pp. 1-46.

[6] GH. Golub and C. Van Loan, Matrix Computa-
tions, Johns Hopkins University Press, Bal-
timore, 1983.

(7] LM. Kaplan and C. Van Loan, On computing
the CS decomposition with systolic arrays,
Tech. Report TR84-647, Computer Science
Dept., Cornell Univ., 1984.

[8] EG. Kogbetliantz, Solution of linear equations
by diagonalization of coe fficients matrix, Quart.
Appl. Math,, 13 (1955), pp. 123-132.

[91 ET. Luk, A triangular processor array for
computing the singular value decomposition,
Tech. Report TR84-625, Computer Science
Dept., Cornell Univ., 1984.

(10] ET. Luk and S. Qiao, A linear time method for
computing the CS-decomposition, Tech. Report
EE-CEG-84-6, School of Electrical Engineering,
Cornell Univ., 1984.

(11] C.C. Paige, Computing the generalized singular
value decomposition, SIAM J. Sci. Statist. Com-
put., submitted for publication.

[12] C.C. Paige and M.A. Saunders, Toward a gen-
eralized singular value decomposition, SIAM J.
Numer. Anal, 18 (1981), pp. 398-405.

(131 GW. Stewart, On perturbation of pseudo-
inverses, projections, and linear least squares
problems, SIAM Review, 19 (1977), pp. 634-
662.

[14] G.W. Stewart, An algorithm for computing the
CS decomposition of a partitioned orthonormal
matrix, Numer. Math.,, 40 (1983), pp. 297-306.

[15] G.W. Stewart, A Jacobi-like algorithm for com-
puting the Schur decomposition of a non-
Hermitian matrix, SIAM J. Sci. Statist. Comput.,
6 (1985), to appear.

[16] C. Van Loan, Analysis of some matrix problems
using the CS decomposition, Tech. Report
TR84-603, Computer Science Dept., Cornell
Univ., 1984.

[17] C. Van Loan, Computing the CS and the gen-
eralized singular value decompositions, Tech.
Report TR84-614, Computer Science Dept., Cor-
nell Univ., 1984.

265

