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ABSTRACT

A Modified CORDIC Algorithm (MCA) has been
developed for the evaluation of elementary arith-
metic functions. MCA incorporates increased
parallelism over the original CORDIC algorithm,
thus, resulting in an enhanced speed of computa-
tion. This has been accomplished by decoupling
the CORDIC interation equations and transforming
the sequential nature of these equations. n-bit
fixed point data operands are assumed and the
parameter Kk relates to the level of parallelism in
the algorithm. The modified algorithm employs a
[k+11n°-bit ROM for lookup tatles that enable
elementary arithmetic functions to be evluated in
no more than [3n+2] and no less than 2 time steps.
The two bounds correspond to a pipelined and a
parallel implementation, respectively. The formu-
lation of the MCA can be manipulated to obtain
implementations with various speed/cost character-
istics. This compares £o n(3n+1)/2 time steps for
the original CORDIC al gorithm. For example, 32-
bit ALU has k=12 and n=32; so, a 13,312-bit ROM is
required to store the lookup tables, and the com-
putation requires 98 time steps for a pipelined
implementation.

I. INTRODUCTION

Circuit design criteria has changed because
of VLSI. We must now re-examine older algorithms
to see if they can be improved and matched with
architectures that meet their special data-flow
requirements in the light of the current IC
technology. With this motivation, the CORDIC
algorithm [19] has been re-visited to see if more
parallelism can be embeded in it. In this paper,
we present the Modified Cordic Algorithm (MCA).
It incorporates increased parallelism, thereby
resulting in an enhanced speed of computation. A
matching architecture for the MCA has also been
developed and is presented here.

The concept of CORDIC computing technique was
first presented in 1956 by Volder [19]). Later, in
1971 Walther [20] unified the algorithms developed
by Volder and showed that these algorithms can be
described by a single set of iterative equations.
The basis of Walther's algorithm is coordinate
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rotation in the three coordinate systems. He
showed that by rotating a vector in the linear,
the circular and the hyperbolic coordinate sSys-
tems, a wide variety of elementary arithmetic
functions can be evaluated. One attractive fea-
ture of the CORDIC algorithm is that it may be
implemented in hardware using adders and shift
registers. Here, we relax the requirement that
hardware costs be minimized in order to increase
the speed of execution of algorithms on the CORDIC

computer.
The CORDIC iteration equations in the circu-
lar coordinate system are:
— -1
Xjp1 = X + b;2 Y (1a)

-1
Yy, = Y, - b; 2 X (1b)

Z; - bitan‘12'l, (1)
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where

b; =

5 sgn Zi .

It is important to note that X and Y are coupled
in the sense that X +1 ¢an not be computed until
X‘i and Yi are known and Yi+1 can not be computed
until Yi and Xi are known. Furthermore, the eval-
uation of the bi's is sequential. Thus, as a
result, the algorithm is sequential. Also, there
is only one way to rotate a vector through a given
angle and the number of iterations is equal to the
word length, n, of the machine. The aigorithm
must complete all n iterations even if the rota-
tion through the desired angle has been performed
exactly in fewer than n iterations [5]. We ad-
dress here, the problem of transforming the
sequential CORDIC algorithm into a more parallel
algorithm. It is shown that X and Y can be
decoupled if the bi's can be predicted before the
computation of X and Y. The constraint that the
b,'s can take up values only from the set [-1,1],
has been relaxed and an algorithm to compute all
the bi's in parallel is developed. The theory for
this new algorithm is presented more fully else-
where [14,15] and is only outlined here.

In the next section we decouple the CORDIC
iteration equations. Next, an algorithm for pre-
dicting B is presented. And, finally, a Modified
CORDIC Algorithm (MCA) computational module is
described along with its timing character‘istiqs.




II. DECQUPLING X AND Y

Equation (1¢) is not a linear recursion in
the sense that Z; .1 “an not be expressed as Z = FZ
+ G. However, b; and Z; can be evaluated
independently of X:L and Yi. Once all the b.'s and
Z;'s have been evaluated, Equations (1a) and (1b)
become linear recursions and X and Y can be
expressed as

X =AX +C,

and

Y = DY + E.

From (1a) and (1b), general expressions for X; and

Y, are:

1 2
i-1 j

X=X+ zj_ b327Y 5.

3 (2)
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Yo=Y, +Zk by Kx, . (3)
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It can be shown that (2) and (3) can be expressed
as follows [14]:

i-2
X o= g -Z a; Xy; %)
j:1 .
1-2
Y= g -Z. céinj; (5)
J=1
where
i-1 3
arheng e, (®)
-1, ]
a5 = bJ.Z'J by2” Y, 1)
1=j+1
i-1 K
& =1, - Xy b2™ %, (8)
k=1
. i~ 1
djj = by? I by2" . (9)

1=j+1

Equations (4) and (5) may be concisely expressed
as

X = C~ AX, (10)

[S]
1

E - DY, (11)
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where A and D are strictly lower-triangular mat-
rices with diagonal elements and all elements
immediately below the diagonal equalling zero.

Solving Equations (10) and (11) for X and Y
yields

LX = C, (12)
MY = E, (13)
where
L=A+1I,
and
M=D4+1I

and I is an nxn identity matrix.

Equations (12) and (13) are key results and

have the following important characteristics:

1. X and Y have been completely decoupled
and can ben evaluated independently of
each other, whereas the X and Y in the
original algorithm are coupled
(Equations (1a) and (1b).

2. The form of Equations (12) and (13) is
such that they lend themselves to be
implemented on a highly concurrent
architecture, whereas the form of
Equations (1a) and (1b) dictates a se-
quential evaluation process.

However, before X and Y of Equations (12) and (13)
can be evaluated using a parallel architecture,
the matrices L and M and the vectors C and D must
be known which in turn require that all the bi's
be known. The determination of the bi's is dis-
cussed in the next section.

III. PREDICITNG B

It was shown in the last section the Equa-
tions (1a) and (1b) become linear recursions once
all the bs's are known; also, it was shown that
the bi's and Zi's can be evaluated independently
of X; and Y;. Equation (lc) can be used to
iterate Zi and bi until all the bi's are known
forming the vector B, Unfortunately, this is a
highly sequential procedure and the length of the
process is directly proportional to n, the size of
the vector B. A parallel algorithm for the
prediction of the vector B is required to overcome
this timing problem. One such algorithm is
provided below.

The basis of this algorithm is given in Table
I. The first column lists the index variable i,
which runs from zero through n-1. For the case
illustrated in Table I, n is 32. The second column
in the table lists the values of 2°%. The arctan
of 2"’L are listed in the third column. The fourth
column contains the difference of the correspond-
ing entries in the second and third columns.
These differences are termed the OFFSETs. The
entries in the second and the third columns are
listed under the headings oy and Yy respectively.
We will refer to Yi's as the 'CORDIC angles' due
to the fact that these are the fundamental angles
used in vector rotation in the CORDIC algorithm.




Computed Using 32-bit Fixed-
Point Arithmetic

of Table I.
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Table I. 2 7, Tan "2 "and the Offsets Figure 1. Coefficient matrix for the offsets

Notice that o, and Yy are in radians whereas the
entries in Table I have been converted into de-
grees. The following observations are made from
Table I.
1. v; is always contained in o4 i.e., Gy=vy)
> 0, for all i;

2. ay,.q = /204, for all i;

3. Yig] = Yis for 1 > 12;
b oy = v, for i > 12;

5. OFFSET; = 0, tor i > 12,

. Now let us consider an angle whose
binary representation is of the form:
¢ =¢0 ¢1¢2¢3 « s s w ¢n.
The value of ¢, given in degrees, is
n
IED D
i=1
n o
=Y oy [w + oFFsEn | (14)
i=1 "

where a; is the angle contribution to ¢ by the ith
bit of ¢, i.e., ¢;. Our goal is to express ¢ as

a sum of the CORDIC angles (Y4 's).

In Table I, only twelve of the OFFSETS are
nonzero.
nonzero OFFSETs, where k is less than n.

For generality, let k be the number of
Each of

the k OFFSETs can b® expressed as a finite sum of
the CORDIC angles,

n
OE'FS.E'ri=}:j_1 \STRE! (15)

The v i's in (15) determine the sign of v and
constitute the elements of a coefficient véctor
V(1) associated with OFFSET;. Since there are k
nonzero offsets, there are k coefficient vectors,
V(1) through V(k), associated with OFFSET; through
OFFSETk, respectively. We will refer to the
matrix formed by the k Coefficient Vectors as the
Coefficient Matrix. The Coefficient Matrix is of
the dimension nxk, where n is the work length of
the machine. A detailed algorithm for generating
this Coefficient Matrix is presented elsewhere
[14]. This algorithm was used to generate the
Coefficient Matrix illustrated in Figure 1. Sub-
stituting Equation (15) in (14),

n n
¢=Zj-1¢i [Yi + Zj_1Vti J]- (16)

Since only k of the OFFSETs are nonzero, we may
express Equation (16) as follows [141].

n
023 by, (1)
i=1

where

k
bi=¢i4’z
=1




In vector form, Equation (17) can be written as

$=BY, (19)
where T

B = [b1b2b3 N N
and T

Y= Iviweyy - - - ypl

And, so, we have developed a means for

concurrently generating each element in B for a
given angle ¢. Thus, we have achieved our goal
of expressing the given angle ¢ in terms of the
CORDIC angles.

The three vectors, a, y and OFFSET are al-
ways constant for a given n-bit machine. Also,
all three vectors are independent of the angle
¢ and, thus, are kncwn constants for a given
machine. It is to be noted that the vector OFFSET
does not directly enter the computation of the
vector B; hence, it need not be stored in the
machine's memory. Furthermore, the elements of
the vector appear cnly in the product terms in
the algorithm. The multiplication by 2! means
simply shifting the multiplicand i-bit places to
the right. This shifting can be implemented by a
shifter/scaler with multiple-bit shift capability,
thus, eliminating the need for storing the vector
in the machine's memory. The only vector that
actually enters into the computation of the vector
B is ; it can be stored in a read only menmory
(ROM) look up table. As stated earlier, all the
OFFSETS are constant for a given n-bit machine and
are independent of the angle ¢. It follows that
all the coefficient vectors, V(i)'s, are also
constants, which can be stored in a ROM look up

table. The total memory space, M, taken up by the
look up tables is

M= [k + 1]n, (20)
where M is taken tc be an n-bit word. For

example, a 32-bit ALU that employs the MCA algo-
rithm would require 14,312 bits for these lookup
tables since n=32 and k=12.

The most significant feature of the preceding
algorithm is that all the bits of the angle ¢ can
be operated upon in parallel. The angle contribu-
tion due to each bit of ¢ in terms of the CORDIC
angles can be computed in parallel and,
consequently, all the bi's can be evaluated con-
currently.

An example computation of the vector B for a
given angle is presented next. Consider a 32-bit
angle ¢ whose binary representation is given as
0= <41 92 + + - $3p- (21)
The ith element of the vector B is computed using
Equation (18). All the elements of the vector B
are computed in parallel. Let 6 represent the
value of the angle computed using the vector B.

Then 6 is given by
32

Z. . bievge

i=1

6 = (2
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An illustrative example, where
8 = +042.082717895507,

¢ = +042.082717895507, ERROR =
+000.000000000000, and X = 12,

Figure 2.

requirements imposed on the algorithm. If the
accuracy requirements are relaxed such that the
smaller values of the OFFSETS have negligible
effect on the accuracy of the final results, then
fewer than twelve OFFSETS are significant. There-
fore, fewer coefficient vectors would contribute
to the vector B, thus reducing the computational
complexity and, consequently, reducing the cost of
the hardware required to implement the algorithm.
An illustrative example of computation of the
vector B and the angle 6 for k=12, using 32-bit
fixed-point arithmetic, is presented in Figure 2,
The bits of the given angle ¢ are listed in the
first column of Figure 2. The second column lists
the CORDIC angles. The twelve most significant
bits of ¢ are listed in the top row. Listed
beneath each of these twel ve bits, are the corres-
ponding coefficient vectors. The last column
lists the resulting vector B. The value of ¢ ande
in degrees and the error are also listed in Figure
2, where

(23)

ERROR = ¢ -0,

IV. THE MCA COMPUTING MODULE

This section deals with the implementation of
the Modified CORDIC Algorithm. The mathematical
nodel of the MCA can be manipulated in a variety
of ways to obtain representations that would yield
hardware implementations with various speed/cost

aracteristics. At one end of the speed/cost
tradeoff spectrum is a pipelined implementation
offering the advantage of low cost realization,
whereas at the other end is the high-speed
parallel implementation. Implementations with
moderate speed/cost characteristics can also be




N

obtained thrcugh manipulation of the mathematical
formulation of the MCA [14].

A PIPELINED IMPLEMENTATION

As such, the formulation of the MCA can be
used to obtain a pipelined hardware implementa-
tion. One such implementation is presented here
and involves realization of the vectors B, X, Y
and Z. The hardware design for the realization of
each of these vectors is presented below.

IMPLEMENTATION OF B

Recall that the vector B is given by the
following:

T
B=[bybyby...n0TF,

where

k
bl =¢i +ZJ

¢ 5V45- (28)
=i

Examigation of the formulation of the MCA reveals
that the elements of the vector B appear in the
computations either as bi or 27 'b1. Therefore,
instead of employing & more expensive general
purpose i-bit shifter to generate 27 '-b. sequen-
tially, it would be cheaper and faster to generate
2~ by sequentiailly, it would be chieaper and faster
to generate 27 simul taneously with bi in the
same hardware. he har‘dwar‘g( structure for the
generation of bi along with bi is shown in Figure
3, where

* _ =i
by = 27%b;. (25)

The circles on the cross-points represent a logi-
cal AND function.

IMPLEMENTATION OF X

In order to find a hardware realization for
X, we are faced with designing a hardware strue-
ture that would implement the linear system of
equations expressed by Equation (12). We must
have the vector C and the matrix L before we can
realize Equation (12). The element.;s of the vector
c, €3, are given by Equation (6), A pipelined
hardware realization cof the E 's 1s given in
Figure 4, which employs a two—oper.md adder and an
Inner'—Product-Step Processor (IPSP). The elements
of the matrix A, a;;, are given by Equation (7).
A pipelined implemen ation employing two-operand
adders and inner-product-step processors for the
computation of the matrix L is given in Figure 5.
Feedback loops are incorporated to accumulate the
successive values. It is to be noted that the
elements of the matrix L are not computed row-wise
or column-wise but are computed with a particular
skew., The advantage of this will become clear
shortly.

Now we are ready to realize the linear system
of Equations (12). Mead and Conway [13] have
proposed a VLSI architecture employing inner-
product step processors for the solution of the
linear system of equations of the type given in
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Equation (12). This structure is shown in Figur‘e
6.

IMPLEMENTATION OF Y

A comparison of Equations (8), (9) and (13)
with Equations (6), (7) and (12) shows immediately
that the computation of Y can be carried out in
hardware similar to that required by the computa-
tion of X.

b, 6, ¢

17273
M)
V12 ADDER/ L b]
v SCALER .
13 b
1 — 1
Y1k
Y21
v22 e e b2
V23 2 .
—_ b2
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v b
32 — b5
v33 3 *
—
Y3k
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v —.)
42
V43 4 ba
s
Yak
Ynl
n2 b
Yn3 n 2
S bn
Vnk
Figure 3. Functional realization of
Vector B.
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1
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Figure 4. A pipelined realization of Ei'
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Figure 5. A pipelined realization of the matrix L.

IMPLEMENTATION OF Z

The pipelined realization of z is straight-
forward. This is the only instance in which the
e}ements of the vector B appear as bi rather than
bi‘ This angle accumulation may be carried out in
one inner-product step processor as shown in
Figure 7.

The mathematical modeling of the MCA present-
ed here is done for the circular coordinate system
only. The extension of the algorithm to linear
and hyperbolic coordinate systems is presented
elsewhere [14]. The resulting CORDIC module is
shown in Figure 8. The initial values of X, Y and
Z serve as input to the block that generates the
matrices L and M and the vectors C and E, which in
turn are processed by two linear arrays of proces-
sors of Figure 6. The final values of X, Y and Z
are shown as outputs of the module. A key result
to be noted here is that since X and Y have been
decoupled, it is not necessary to compute Y while
computing X or X while cmputing Y. And, since the

computation of X and Y require a similar hardware
f structure, in low cost applications it may be
XomE - ey e 41 desirble not to duplicate this hardware but rather
to compute either X or Y at a time depending upon
the type of function desired at the output of the
module. The input-output function block diagram

Figure 6. Realization of the linear system LX = C. of the MCA module is shown in Figure 9.
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Figure 9. Block diagram of the input
output functions of the two
CORDIC modes.
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Table II. Timing of the Pipelined CORDIC Module

OBiE
B | CORDIC prpErINED)
8 100 26
16 392 50
32 1552 98
Table ITII. Total Number of Time Steps

Required to Compute a Function
Using the Two Algorithms

V. SYSTEM TIMING

The system timing of the pipelined implemen-
tation of the module based on the MCA is discussed
in this section. 4 comparison of the timing char-
acteristics of the pipelined MCA module and the
implementation of the original CORDIC algorithm
are also presented in this section.

Table II depicts the timing of the pipelined
MCA module. The first column lists the time
steps, while the corresponding activities in va-
rious sections of the module are listed in eight
different columns. The eight sections are in-
dicated at the top of each column according to the
function performed therein. For example, the
columns under the headings of B, L and M list the
activities performed in the sections that compute
the vector B, the matrix L and the matrix M
respectively. The crosses in the boxes indicate
that the corresponding section is active during
that time step. It is clear from the table that,
for an n-bit machine, 3n+2 time steps are required
to obtain the final result. The table also shows
that the latency of the pipe is n. After the pipe
is filled, successive results emerge from the pipe
every alternate time step. Thus, the total number
of time stps, NT’ required by the MCA module to
compute a function is

NT = 3n + 2. 25)

The timing characteristics of the implementa-
tion of the original CORDIC algorithm will be
analyzed next. The number of additional steps
required in an n-bit machine is n°. The number of
time steps, N, needed for i-bit shifting of the
operands required at the ith step is

n

z

i=1

N = (n-1) = n(n+1)/2.

Thus, the total number of time steps, NT, required
for the computation of a function is

n
Np = n? +§: (n-1) = n(3n + 1)/2. (26)
i=1

The total number of time steps required by the two
algorithms for values of n=8, 16 and 32 are listed
It should be emphasized here that
Table III are presented for compar-

in Table III.
the entries in




AREA OF THE
CORDIC MODULE

L2
8 ~~r2.9%10 A

52
16 ~nr2.2x10 X

8 2
32 ~—r1.6x10 A

Table IV. Area of the Pipelined CORDIC Module

for Different Word Lengths

ing the total number cf time steps required by the
two algorithms to evaluate a given function, and
that the two time step sizes associated with
CORDIC and MCA, respectively, are not necessarily
equal. This is to be expected due to the increased
hardware complexity of the MCA.

A Stick Diagram was used to estimate the
total siliccn area taken up by the MCA module and
is expressed as

Total Silicon Area = n2A2 [48n + 4k + 40]. (27)

This expression is used to compute the area
of the MCA module in terms of the minimum feature
width, » , forn =28, 16, 32 ang}a e pres ted in
Table IV. Chip areas of 10 to 10 are
possible [13].

VI. CONCLUSIONS

The CORDIC algorithm has been modified, and a
new algorithm devised that incorporates increased
parallelism and, consequently, possesses superior
timing characteristics. The modified algorithm,
known aés the Modified Cordic Algorithm, employs a
[k+1]n“-bit ROM for lookup tables that enable
elementary arithmetic functions to be evaluated in
no more than [3n+2] and no less than 2 time steps.
The two bounds correspond to a pipelined and a
parallel implementation, respectively. The formu-
lation of the MCA can be mathematically manipu-
lated to obtain hardware implementations with
various speed/cost characteristiecs.

Furthermore, the algorithm has been matched
with an architecture to achieve optimum
performance based upon both pre-established hard-
ware complexity and computational error require-
ments [12]. The result is an algorithm and archi-
tecture match that is quite attractive for a
variety of applications. How favorably does MCA
compare to other algorithms such as Chen's [ 6] and
Newton's [16,17] etc., with respect to cost, speed
and accuracy, 1s a question that can be answered
only after the algorithm in question is matched
with an architecture that meets the particular
data flow requirements of the algorithm. The
foundation for comparing the Modified Cordic
Algorithm with other similar matches has been
established.
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