2 S

REGULAR, AREA-TIME EFFICIENT CARRY-LOOKAHEAD
ADDERS

Tin-Faok Ngai ® - Mary Jane frwin **

* Electrical Engineering, Stanford University, CA
** Computer Science, Penn State University, PA

Abstract

For fast Dbinary addition, a carry-
lookahead (CLA) design is the obvious choice
[OnAt83, BaJM83]. However, the direct imple-
mentation of a CLA adder in VLSI faces some
undesirable limitations. Either the design
lacks regularity, thus increasing the design
and implementation costs, or the interconnec-
tion wires are too long, thus causing arca-time
inefficiency and limits on the size of addition.
Brent and Kung solved the regularity problem
b%r reformulating the carry chain computation
[BrKuB2]. They showed that an n-bit addition
can be performed in time O(logn), using area
O(n log n) with maximum interconnection wire
length 0O(n). In this paper, we give an zlterna-
tive log n stage design which is nearly optimum
with respect to reguiarity. area-time eff.ciency,
and maximum interconnection wire length.

Introduction

Qur design follows Mead and Conway’'s A
design rules [MeCo80]. We assume two layers
of interconnect (either metal, silicide or
polysilicon), The only circuits used in the
design are NMOS complex gates [MaJD83] and
transmission gates {pass transistors). All
interconnection wires are specified to be of
length less than Lg,, which is assumed to be a
constant for a particular fabrication technol-
ogy. The time delay for driving a signal along a
wire is assumed to be proportional to the
length of the wire. Thus, constant propagation
delay can be achieved by having the channel
width of the driving transistor proportional to
the length of the wire [BiPP81, Ngai84].
Finally, the computation is perforrne:f’ in a
planar region.

First we introduce our carry-lookahead
adder which is based upon_traditional block
carry-lockahead techniques [WaF182]. Then we
derive the NMOS design using a negative logic
scheme. For the initial design, the external
inputs and outputs are assumed to be avail-
able where they are required or generated.
Finally, we will lift this assumption and con-
sider the practical input/output problem in
depth.

CH2146-9/85/0000/0009%01.00 © 1985 IEEE

The Carry-lookahead Scheme

Let ap_jap_p - -ag and b, b, by be two
n-bit binary numbers with a sum of s,_, - so.
The carry-lookahead scheme computes the s;’s
by

Civ1 = FitDiCy

5 = a;®b®ey for i=0,1,...n—1
where
gi=a;b; (carry generate)
Py=0,+b; (carry propagate)

+ denotes logical or
zy denotes z and y

@® denotes ezxclusive or

It is easy to show that

m-1| m
Ciomst = Giem + 0 H Pivj|Gin + _ﬁopnj

1=0 |j=l+1

Cy -

For large m, the above carry computation
is difficult to implement due to the practical
limitations on fan-in and fan-out. In order to
reduce the complexity, it is common practice
to group carries into blocks [WaF182]. The
block carry scheme is

C'iv1 = v + POy

Cm = C"
m=-1 m
Critm+1 = Irism + 120 I:[Prisj|Oriet +
= =l+1
m
lIprssles for Osmsr-2
=0 |

where
=2 rz1
g = Gree-n * 2| L] Privsorin
1=0|f=l+1
(block carry generate),

-1
py = jl—[p,.‘,,j (block carry propagate)
=0

7 is the blocking factor
The same technique can be applied iteratively
to compute the block carries. This scheme is

illustrated in Figure 1 for a 27-bit CLA adder
using a blocking factor of three in three levels.

Figure 1. A 27-bit CLA Adder

Because we are using NMOS technology as
our model, all complex gates use cornplemen-
tary logic. Thus, it is desirable to modify the
above scheme to reflect the use of a negative
logic system. Assume that at the k-th level of
the iteration, the block carry computation is

cf =gt + plct

We can reformulate this computation into
negative logic as

cfy, = ‘{Gf + R'(‘Cf)} .
where
Gt = ~(g+ph)
PF=-(gh)

~% denotes the complement of x (not z)
Then for next level of iteration, we have
bt = gh*t 4 phrickn
ok = (o)

m=l m
Gﬁ“m + IZO H Prki-l-j

=l+1
[

r—2
g = Gl + IEO

k -
Critm+r = - Ghu +

for Osm<r -2

where

r-1
H Pfﬂj ‘%u

[

I=l+1
[r~l r—1]

= l H[Em’%ﬁ +Pﬁ~u”
i=0|j=

" n- el N
pEt! = I_fpfuj =- E‘.; Grivg
§=0 J=0

With this reformulation, all block carries,
block carry generates and block carr pro-
pagates can be directly implemented with com

10

plex gates.

Adder Design

We found that a blocking factor of three
for the first two levels of the iteration and four
for all higher levels resulted in a more area
efficient &LSI NMOS design as will be demon-
strated in the next section. With this scheme
there are four types of basic units to be
designed (only three of which are depicted in
Figure 1). These are the primitive unit (P), the
S-input block carry unit (BC3), the 4-input
block carry unit é C4), and the block carry
generation unit (BG). NMOS layouts of three of
these units are shown in F° igure 2.

Primitive unit (P) This basic unit includes
four subunits: input/output, block propagate
and block generate, carry generation and sunr
mation. € postpone the discussion of the
input/output subunit. Here we assume that,
the input/output subunit is of low com lexity
and uses constant area. In the bloc pro-
pagate and block generate subunit, block pro-
pagate p! and block generate g! are formed
directly from the operand bits aza,2; and
bebybg. (We restrict our attention to the least
significant unit for notational simplicity
without loss of generality.)

]

7' = - [GePD) 49,49)2+91+90+p0)
l |
= ~[a2b2+<a2+ba>[alb1+<a1+bl><ao+bo)]]

P! = ~(gatg,+go) = ~(agbg+a b +agb,)

The carry generation subunit computes all the
carry bits internal to the primitive unit from
the block carry ¢¢ which is input to the unit.

o = ~{c{)
¢y = ~(Go+Pocd)
Ce = ~(G+P,Go+ P Pocd)

S 4 E
g A 2 7
- U MR - I

¥ W P77 77070070000 0 77 R 77 777777 77 777 7 Ba? 22 7 27 A2 2 7727 27 27 7777 7 g

< 425 AR 7= S
2 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.ﬂ\\\\\\\\\\\\\\\\\\\\w\\\\\\\\wwﬂw\\\\\\\\\\\\\\\\\\\\
¥ o b
z -
_lm :
A o
Wﬁ >
7 RN
b vm
U 7570
b (@]
Z
% m
~~~~~~ % O
’ &
“ =
7
7
“ .
Y Q
s % a
w / @
7 4 m
%
up
07

A
N

NANNANNNN

Figure 2a. The Primitive Unit Layout

7|
2
%1
“ R
Ml v 53
i - o
m M%»Nwm \\\\\\\\\\\\\\\\\\\mV\\\\\\\\\\\\\\\\\\\\\\\ —
7 i3 I -
N M&M& (L L LAy 2 2 2 7 7y
2 1 _
24z 1 3
% %87/
7
¥ o
7 %87
2 Ehe >
g Y ik [}
i ki
Pz et —
Ashere
N\\ IRER m
1 o] Q
72/ Read 7 m
7.
.oooﬂm.\
éw o
§% “ Ke
% A L7 T
E57 o
a
o
5
ap
.‘1
=~

L Y22 L7777 7777777
SIS A

LY 1
i -

E
L S AL
=

V22

g
B |

LA LSS L 7 LAl

=

ST

AN 5\

ikl

P72 A

et 7 7 g 72777 777

. + AR ;|

B2 2 Ty 22 02 P2 2 o,
I 132 |

877y 2 77 T T eI 22 77 P77 77 A 777 §

i [ - ,

Ve

tempt




where
Go = ~(go+Po) = ~(ao+bg)
Gy = ~{g1+p;) = ~(a,+b,)
Py = -gq= -(agby)
Py =-g, = -(a;by)

The summation subunit computes the sum bits
from the internal carries and the operand bits.

§ = a®b®e; fori=0,1,2

The corresponding NMOS complex gate layout
for the primitive unit is shown in Figure 2a.

Block carry units (BC3 and BC4) These two
basic units form the block carry generates and
block carry propagates from either three
(BC3) or four FBC4) inputs which will serve as
inputs to the next higher level and also com-
pute the block carries which will serve as
inputs to the subsequent lower level. Imple-
mentation of the block carry generates and
propagates using complex gates is straightfor-
ward. For example in BC4

gkt = -1 gk +p§{g§ +p§[y’f +pi(gk +pk )]jl

P = ~(gk + g5 + g% +gf)

The block carries are computed only when the
block carry generated by the next higher level
becomes available.

c§ = ~(ck*t)

ck = ~(g§ +phck+t)

c§ = (G +Pyck*?)

c§ = ~(Gp+Ppck*!)
where

Gy = gk +plg}

P, = plp§

Gz = g5 +p5(gk +phok) 1

P, =plpipk 1

T in BC4 unit only

Figures 2b shows the corresponding NMOS
complex gate layout for the BC3 unit.

Block carry generation wunit (BG) This
basic unit forms block carries at the highest
level of iteration. If k is the total number of
iteration levels, then

cf =

~Co if Kis odd
cg if Kis even

and
cf = gf+plel
cf = gf+pf(gf+pleck) +
of = (of+plgl)+ (i XY (oK +plck) +

1 as needed

Figure 2c shows the corresponding NMOS com- -
plex gate layout for the BG unit.

Area and Time Measures

Figure 3 is an NMOS layout for a 27-bit
adder using the scheme derived above. This
layout has been fit in area 0(n) by usinF a
recursive technique for embedding tree-like
structures in the plane [Ull84]. As can be seen
in the floorplan schematic in Figure 4a, a 27-
bit adder can be packed most densely by using
a blocking factor of three at each of the levels,
For larger adders, a blocking factor of three
for the first two levels and four thereafter
leads to the most efficient layout as seen in
Figures 4b and 4c. The flexibility that comes
from being able to vary the blocking factor at
various levels can be used to make optimum
use of space. Note that all interconnections
between the basic units involve only nearest
neighbors with a maximum wire ength of
o(Vn).

Brent and Kung's adder (BrKu82] can also
be embedded in O(n) area with a maximum
wire length of 0(\/n ), but the lack of flexibility
in the blocking factor (only two) results in a
much less densely packed fayout with consid-
erably more area dedicated to interconnect,

Obviously, any logn stage adder can add
two n-bit numbers in time O(log n). Another
motivation in using negative logic was to speed
up the addition even more. At each level, we
need to form the carry generate and carry
propagate terms and to form the block carries
out after receiving the block carry in. While a
positive logic approach would require four
NMOS gate delays to accomplish these opera-
tions, the theoretical lower bound for the
negative logic approach should be two gate
delays. SPI%E simulations have indicated that
three gate delays may be a more realistic
measure for our complex gates. Table 1 gives
a comparison of the computation time for a
serial scheme, Brent and Kung's scheme, and
our scheme for various n. T is the average
delay of a simple NAND/NOR gate measured at.
the inversion voltage level. gI‘he delay of an
exclusive or gate is assumed to be 2T,

Table 1. Comparison in T

n Serial B&K N&I
8 18 15

9 20 8
16 34 19
27 56 12
64 130 27
108 218 16
256 514 35
432 866 20

For large n, our design uses time 27 x logn as

compared to 27 x 2logn for Brent and Kung's
design.

Input-Output Consideration

In the previous section, our design was
based on the assumption that external inputs
and outputs are locally available at the primi-
tive units. When more realistic input and out-




ud?

unit

guznit

3

PENN

D!

punit

be3e

STATE UMIVERSITY

punit e Z
' n
zin

9 o)

L

cl

cin

30 T

! =9
1 2
108 1
Punit
in

Figure 3. Layout of a 27-bit CLA Adder

n i 1

ni 1

n i 1"




Figure 4a. A 27-bit CLA Floorplan

PIP|P|P
I
P HeczleczH P
B3
P — | BG
Plp

Figure 4b. A 108-bit CLA Floorplan

HEEEAREEE
_g“‘.pp_u'f_
P H" TP
Plp plp
AaDEWGE
P e
Pl plP P
AEREEEEEE
*BC3

«» |

1
[
]
"

*Bc4
2BG if last recursion

Figure 4c. A Recursive CLA Floorplan

ut constraints are considered, we face the
ollowing well known dilemma - one can pack n
processing elements densely in an area of 0(n)
with the smallest linear dimension (such as in
a circle or in a regular polygon) but if all
inputs and outputs are on.ll)y available on the
boundary of the area, how can the o(n) 1/0
wires be routed across the boundary of length

0(Vn)! In our CLA design, there are two obvi-
ous possible solutions.

The first solution is to relax the area
efficiency requirement; let all 1/0 wires be
routed across the boundary as shown in Figure
S5a. The area is then of Q(n?). As n increases,
the portion of the area used for interconnec-
tion increases significantly. Obviously for very
large n, this solution uses the most area for
input/output wires and the most time for
input and output along the 1/0 wires. Area
and time complexities become 0(n?) and 0(n),
respectively. ~ Although such asymptotic
behavior is undesirable, this solution may be
appealing for not too large n’s. It is estimated
that for n in the thousands, the total area is
only several times of that of the previous “gen-
eric” adder and the total time ?including the
input/output time) is less than twice of that of
the generic adder. Furthermore, although the
length of the 170 wires is of 0(n), the maximum
size of addition allowed is still large due to the
factnthat the proportional constant with n is
small.

The other solution relaxes the time
efficiency requirement by assuming that inputs
and outputs are time multiplexed. In this case
the number of 1/0 wires can be reduced to
match the length of the boundary. However,
now input and output will take time Q(Vn).
Besides the data lines, common address lines,
clock and control lines must be provided as
shown in Figure 5b. In each primitive unit, the
input-output subunit has registers and the
decodin% circuit. With the appropriate address
on the bus, data may be loaded into or read
out of the registers. Asymptotically, this solu-
tion uses area proportional to nlog?n. But
practically for an n as large as 105, the addi-
tion 1/0 wire area is still no more than that of
the generic adder. This solution will require
¢Vn clocks for each input (output) with the
minimum clock period aﬁ)owed proportional to
Vn . The total 1/0 time is then proportional to
n which is much longer than the addition tirne.
Therefore, this solution would not be desirable
for just additions. By expanding the func-
tionality of the primitive unit, such as per-
forming an accumulation function, the design
may be appealing. For example, multiplication
can then be done in time proportional to
nlogn. This outweights the 1/0 time and
results a multiplier of time O(n logn). This is
only desirable in the cases where processing
time is much longer than the input/output
time. Furthermore, the input-output wire
reduction also conforms to the limited 1/0 pin
restriction for VLSI chips.

The input-output difficulties discussed
above are due to the planar restriction on VLS]I
processing. Recently, a considerable amount




I
I

-u_ [_- - _-—-
[ |
= —-
T [+
T T
I 1 IRERR
(a) 108 bit structure
{ ] [ $
*-——F . Sy
g ——
— F s

(b) recursive scheme

Figure 5a. Boundary 170

-

E}L
L3t
1616

A

A Akl

LI

d

108-bit structure

Figure 5b. Shared Bus 170

15

of research effort has been put into developing
3-D VLSI processing and 3-D microassembly
techniques [GrNE84[. Our generic adder would
be ideal for these new emerging technologies.

Conclusion

We have shown that using the conventional
iterative CLA scheme, nearly optimal CLA
adders can be obtained. The layout of the
adder is highly regular. Neglecting input-
output restriction, the addition of two n-bit
numbers can be performed in time O(logn),
using area O(n) with maximum interconnection
wire length 0(Vn). When input-output is con-
sidered, two different alternative designs are
evaluated. Even for Eractically large n's, it is
shown that reasonably good area and time
efficiencies can be achieved.

Acknowledgements

This work is supported in part by the Arm
Research Office under Contract DAAG29-83-K-
0126. Thanks go to Shishpal Rawat for work
on the CIF layout plots.

References

[OnAt83] S.Ong and D.E.Atkins, “A Comparison
of ALU Structures for VLSI Technology,”
Proceedings of the Sizth mposium on
Computer Arithmetic, Aarhus, Denmark, June
1983.

[BrKuB82] R.P.Brent and H.T.Kurllg, "A Regular
Layout for Parallel Adders” IEFE Transac-
tions on Computers, Vol. C-31, March 1982.

[BaJMBSl] M.A.Bayoumi, G.AJullien and

W.C.Miller, "An Area-Time Efficient NMOS
Addeg.” INTEGRATION, The VLSI Journal, Vol.
1, 1983.

[MeCo80] C.A.Mead and L.A.Conway, Mtroduc-
tion to VLSI Systems, Addison-Wesley, 1980.

[MaJD83] J.Mavor, M.AJack and P.B.Denyer,
Introduction to MOS LSI Design, Addison-
Wesley, 1983.

[WaF182] S.Waser and M.J.Flynn, Mmtroduction
to Arithmetic for D‘::vqital Systems Designers,
Holt, Rinehart and Winston, 1982.

[Néai84] T.F.Ngai, "On the Capacitive Model of
omputation in VLSI: Its Limitation and
Applicability” in preparation.

[BiPP81] G.Bilardi, M.Pracchi and
F.P.Preparata, "A Critique and an Appraisal
of VLSI Models of Computation” VLS %/stems
and Computations, (edited by H.T Kung,
et.al.), Computer Science Press, 1981.

[Ull84] J.Ullman, Computational Aspects of
VLSI, Computer Science Press, 1984.

[GrNE84] J.Grinberg, G.R.Nudd and
R.D.Etahcells, “A Cellular VLSI Architecture”,
IEEFE Computer, January 1984,




