HIGH-SPEED COMPUTATION OF UNARY FUNCTIONS

M. Ohhashi* and R.E. Schneider* *

+ ‘Toshiba Corporation, Kawasaki, 210 Japan
+ 4+ Lockheed Electronics Co., Plainficld, NJ 07061

ABSTRACT

This paper presents an architecture for fast evaluation of unary
functions such as reciprocal, square root and reciprocal square root,
The theory behind the architecture has been presented in [1]. The
paper shows the results of extensive simulation that have allowed us
to implement the architecture with minimum chip count and
maximum accuracy. The accuracy is about 8 % error rate in the LSB
of the chosen representation (IEEE 32-bit floating point format).
This architecture allows the computation of unary functions in lcss
than 200 nsec.

1.INTRODUCTION

In [1], a general algorithm is presented for calculating unary
operations based on a required accuracy. This general algorithm
however generates more hardware than necessary for the functions
considered here, i.e. reciprocal, square root and reciprocal square
root. It also does not discuss how the size of the memory output has
been determined. Morcover, some of the hardware described is not
commercially available, i.e. a 36 by 36 multiplier is required in [1]}.
‘The computer simulation discussed in this paper allows the
examination of [1] base configuration by comparing the value
calculated by the configuration with the value obtained by the
computer function. By excrcising the simulation, several different
configurations have been tricd. We will show a block diagram of the
hardware to impleiment the series approximation that resulted in
minimum error.

In the IEEE format, a single-precision floating point number is
expressed in 32 bits comprised of three fields; a sign bit s, an 8-bit
cxponent e (biased by 127), and a normalized 24-bit fraction with the
most significant fraction bit suppressed (which is always a 1 for a
normalized number). The 24 bit number resides in the range of 1 to 2
- 23, Thus the 23-bit mantissa is needed in the fractional part fto
complete the 32 bit floating point word. A floating point number v
would be expressed as

v=-15x2¢1Tx1f

The calculated functions have to be resolved to the same accuracy
of a 24 bit mantissa including the hidden most significant bit.

The research was supported in pan by Def Advanced R h Projects Agency
(DOD), monitored by the Air Force Avionics Laboratory under Contract F33615-81-
K-1539, and Naval Electronic Systems Command under Contract N00039-85-C-0134,
and in part by the Office of Naval Research under Contract N00014-80-C-0236, NR
(043-659, This work has been done at Department of Computer Science of Carnegie-
Mellon University, Pittsburgh, PA.

CH2146-9/85/0000/0082$01.00 © 1985 IEEE

82

2.THEORY

A Taylor series expresses a function by an infinite sum of an
exponential series weighted by n® derivatives of that function.
Expressed mathematically,

fiz) = ZL ;v x {(xy/nt

where z = x + y and f™(x) is the nth derivative of f{x).

A finite sum of the Taylor scries would result in the approximation
of the function f{z). "The aumber of terms in the serics approximation
is dictated by the required accuracy. In this work, the solution must
be as close as possible to the exact valuc in the range of the 24 bit
mantissa. Only the mantissa necds to be dealt with in the simulation.
The cxponent treatment results in its negation for reciprocal function
or halving the exponent for the square root function, and can be
handled separately. In the actual hardware implicmentation, some
treatment of the mantissa based on the exponent will occur, This will
be discussed later on in this paper.

A general conceptual diagram of the hardware is shown in Fig. 1.
The argument z is separated into the two smaller quantities of x and
y. The value of x is used as an address to ROMs that contain a table
look-up of the derivatives used in the Taylor expansion. The value y
is used both as a quantity and as an address to ROM, The contents of
the ROMs are then multiplied and suinmed to approximate the
desired function.

-

X ROM 1

f'(x) ><

A ROM 2
' (x)

ROM 0
f(x)

|+

f(z)

oSl

ROM 3
y y?

ROM 4 +
Residual

Figure I: General conceptual diagram of Hardware

The simulation allows the miodification of parameters, such as
argument width. By this means, we can find the minimal widths of
the Taylor terms that will yield results of acceptable accuracy to 24
bits for reciprocal, square root and reciprocal square root. The range
of the argument z of the function is

l<z<2-28

The number of terms needed for a certain accuracy is determined
by the convergence of the Taylor terms. Note that y = z - x. The
smaller y is, the faster the series will converge, since the derivatives
are well behaved. Since z is a 24 bit number and x is a (b -+ 1) bit

number, y would be a (23 - b) bit number. The resulting bounds
would be:

l<x (i1 /20

D<y<2®

The tradeoff of making the representation of y smaller rcsults in
that x be more accurate, that is more bits in its representation.
Referring to the conceptual diagram of the hardware shown in Fig. 1,
x will be used as an address to ROMs containing the derivatives of
the functions. The more bits used for x, the larger the nemory
requircment. In general, it is the bit size of x that characterizes the
accuracy of the result.

Generally, the exponent and the mantissa should be handled
separately. This is true for the computer simulation, however this
strategy has to be changed in the hardware implementation. As an
example, when the square root of v is to be taken, the exponent needs
to be halved. A problem occurs when the exponent is odd, which
results in a fractional exponent. A fractional exponent cannot be
represented. A solution is to pre-process the mantissa and scale it by
two and compensate the scaling in the exponent, that is diminish it by
1.

3.SIMULATION RESULTS
The simulation reflects the hardware configuration of Taylcr series
approximation as shown in Fig.1. The truncated Taylor expansion is

W= fx)+ :ROMO +
y x D) + :y X ROM1 +
v x (Ox)/2 + ;ROM3 x ROM2 +
v x)76 + y* x 9(x)/24 :ROM4

z=x+y

The right side shows the corresponding hardware configuration. The
program calculates each value of the Taylor series expansion up to
the 5th Taylor term. Each term can be selected to be used or not used
to see its effective contribution. This approach can directly check the
hardware configuration.

The simulation program is written in the C language under dUnix
(4.1 BSD) on a VAX-11/780 machine. All calculations are performed
in double floating point format (64 bit) of VAX-11/780 to avoid the
data accuracy loss. These quantities are then truncated to a 32-bit
mantissa accuracy. Note that in Fig.1 the additions are done with 32
bits. Also in the error routine, the comparison will be betweer 32 bit
mantissas. This double floating point format inside the VAX 11/780
is always carefully considered for bit manipulation.

The union structure in the C language provides a way to overlay
different kinds of data in a single arca of storage. With union the
value 7 can be utilized cither as a floating point quantity or as two 32
bir integer quantities. Usine union allows the floating point number’s

83

mantissa to be converted into an integer and perform bit operations
on it and then return the quantity back to floating point.

The input variable z has a range from 1 to 2278 A better
description of z is to show its hex representation:

800000, < z < FFFFFF

The fixed point is located after the MSB bit in this case. For any
input variable, an equivalent normalized IEEE 32 bit floating point
number can be assumed. Each variable can be regarded as a number
which has an effective exponent part 0 and a mantissa having the
same range as z.

In the program, truncation routines are used for every input and
output variables of cach Taylor term calculation. The routine can
truncate any floating point number to the desired width which is
equivalent to the accuracy level. The routine accomplishes truncation
by bit manipulation and not by mathematical operations so no
rounding occurs and accuracy of the floating point value can be
preserved. Truncation allows the simulation to correspond to the
appropriate bit sizes of the hardware.

In the simulation, the VAX is assumed to calculate an accurate
result of the considered function to a 64 bit floating point quantity.
The difference between the VAX value and the Taylor series is
examined in two stages. The first stage is to calculate the absolute
error. This error is then quantized in steps of 232 and a count of each
quantized level of error is made. This count relates the number of bit
errors. The second stage is to make a bit by bit comparison of the 24
bit mantissa, and determine whether the two quantities are identical.
From this error analysis, a configuration can be detcrmined; the
appropriate sizes of the table look-up ROM:s can be revealed.

Exhaustive simulations, stepping z from 800000, to FFFFFF, in
steps of 00000116, have been done on the three unary functions. Note
that the reciprocal function has the worst convergence rate for the
Taylor scries approximation. The approximated 32 bit fraction data
of intermediate step has only small absolute error.

When the 32 bit mantissa data is reduced into the 24 bit mantissa of
IEEE format, a bit etror occurs in the LSB of the 24 bit mantissa
when compared with the 24 bit correct value. For these fraction size
reductions, several roundoff procedures are availablel, Checking
these procedures with the simulation indicates the truncation
approach is best because the truncation approach requires no
additional hardware and it was clarified that normal rounding could
not reduce the LSB error rate. As shown in Table 1, 10 bit input for
ROMO0, ROM1 and ROM2 for each function causes acceptable LSB

error rate in the range of 22 % to 4.6 % and 9 bit input for these
ROMs has an crror rate in the range 0f4.0 % to 8.3 %.

Generally, if individuat errors between the correct value and the
approximation valuc are more evenly distributed over the full range,
it is statistically better for the approximation. Thercfore in the
simulation for the LSB error, positive and negative error occurrences
are counted.(when the correct value is larger than approximated
value, we define an error as positive) For the function of reciprocal
square root and square root, truncation to ROM2 output which is
consistent with reducing value of f(z)(x) causes the slightly better
symmetric error characteristics. For example, when ROM?2 output is
reduced from 8 bit to 7 bit accuracy in square root and reciprocal
square root (that means LSB is always 0 for the latter case
).positive/negative etror rate becomes from 1.0 / 7.3 (%/%) to 2.8 / 49
(%/%) for reciprocal square root and from 4.1 7 0.3 (%/%) t0 2.9 / 1.1
(%/%) for square root.

Itis worth noting from these results that ROM 4, which is used for
the 4th and 5th Taylor terms, is not effective for increasing the 24 bit
data accuracy range in these functions.

4.IMPLEMENTATION

The simulation determined what memory size was requirec. to
achieve the solution to 24 bit fraction range with acceptable accuracy.
This was incorporated into a configuration that would yield the
complete floating point result. This configuration would computc all
three unary functions, i.e., squarc root, reciprocat and reciprocal
square root. This was achieved by using larger memory that would
contain the derivatives of the corresponding functions. The memory
can be considered partitioned into three areas; cach arca dealing with
a particular function,

Some treatment must be done to each function such that the result
is in IEEE floating point format and also to preserve the exponent, as
already mentioned in section 2.

Consider the reciprocal function, f{z) = 1/z then

l<z<?2
S<fz) 41

The result is not in IEEE format. The result has to be scaled by 2
and compensated for in the exponent. Such treatment must be
considered for cach function. Furthermore, in the functions dealing
with square root the result must be scaled by square root of 2 when
the exponent is odd. Such post treatment is accomplished by
enlarging the memory and using a control signal called parity. Parity
is a control line that reflects the parity of the exponcnt and also the
status of the v being a special case.

"The special cases of 7ero and infinity arc calculated by the exponent
ROM since cach have the same mantissa,

vVF+I =0
V+eo =
V<O = NaN
1/(20) =*co
1/(2c0) =10
/VF+0) =
V(V+w)=0

(V<0) =NaN
Nan (Not-a-Number)

Any operations on NaN and denormalized numbers will yield
NaN.

A block diagram of the final architecture is shown in Fig2. The
number in the circle shows the DIP counts. In total, 44 DIPs are
necessary, Each ROM contains data related to 4 functions, square
root, reciprocal and reciprocal square root plus one spare location for
future development. The ROMs associated with the Taylor terins
have additional areas depending on the parity of the exponent.

The propagation delay through the circuit is less than 180 nsec.
typical, 300 nsec maximum, utilizing 35 nsec ROMs, 50 nsuc.
multipliers, and 45 nsec 32 bit adders. There is also some added
delay because of the set up time of the multipliers.

5.CONCLUSION

This paper presents the results of experiments on a Taylor series
approach presented in {1). The results achieved through the extensive
simulation, describe a practical high specd circuit that utilizes off-the-
shelf TLL compatible components that can perform the square root,
reciprocal and reciprocal square root on an IEEE 32-bit floating point
number. There is a maximum 8% error rate of the LSB between the
circuit value and the value of the function implemented on a VAX
11/780, accurate out to 24-bit mantissa, throughout the entire range
of the IEEE floating point number. The calculation of these
functions can be achieved in less than 180 nsec. (typical).

Presently this circuit as described here is being implemented into a
programmable systolic array cell designed at Carnegie Mellon
University. A simplified version that utilizes the function reciprocal
square root is being built at Lockheed Elcctronics Company, Inc.,
New Jersey. It will be used in a systolic array cell configured in a
processor to exccute a Givens rotation,

6.ACKNOWLEDGEMENT

We would like to cxtend our gratitude to the joint cffort of Prof,
H.T.Kung of Carncgic-Mellon University and Gerry Mersten and
John SantaPictro of Lockheed Electronics Company who made the
work on this project possible. In addition, we would like to thank
Marco Annaratone of Carnegic-Mellon University for his guidance
and technical support.

7.REFERENCES

1 P. Michael Farmwald, “High Bandwidth Evaluation of

Elementary Functions”, Proceedings 5th Symposium on
Computer Arithmetic, 1981, pp. 139-142.

2, Cavanagh, J.J.F., Digital Computer Arithmetic, McGraw-Hill

Book Co., ComputerScience Series.

Table I: Mantissa .38 error ratc vs. ROM sizc for 3 functions

. THPUT BIT OCCURRENCE of MANTISSA LSB ERROR
ROM size OUTPUT BIT : .
— for 3 functions (in %)
1/ z 1/\/ z v 2
ROMO | ROM1| ROM2 | ROM3 | ROM4 positive positive positive
total negative total negative total negative
9 9 9 8 2.8 2.9
- 7.7 4.0
32 16 7 8 /s 4.9 1.1
9 9 9 8 2.8 1.0 4.1
h 7.8 8.3 4.4
32 16 8 8 5.0 7.3 0.3
2.2 0.8 0.2
10} 10 1 10 8 — 4,6 4.1 2.2
32 16 8 6 2.4 3.3 2.0

23 9 12 | ROM 0 32
7 A 32bit
|~ ek x 32
Ly Y j/—ADDER
‘ ROM MPY
] R L])
(parity. (3) 4K x 16 @
function) 3, /
™3 12 ROM 2 8
S 32bit] 24 2
4K x 8 16 7
(:2) MPY “1ADDER f(v)

B EZE :E
23y 2 (51) 256x8 @ @)

exponent 8, __ 1ilexp ROM 8
7 7 7
‘ 2K 8
23 bit ‘JF » 8|
L COMPARE}-

LOGIC (:3)

Figure 2: Blockdiagram of Unary Arithmetic Unit

85

