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ABSTRACT
' In‘this paper an approach to residue .ar%th‘ An important application of ROAMs is in
metic is presented using Read-Only-Assoc1at1Ye- direct implementation of functions by table lookup
pemories (ROAMs), such as PLAS. These memories processsing [7]. This technique is particularly
have considerable advantages for table ]ookup suitable in residue arithmetic tables as the
arithmmetic processing over the conventional ROMs latter are more compact than ordinary arithmetic
in terms of their storage and time efficiency. In tables. Moreover, residue arithmetic has the well
residue arithmetic, the ROAM storage required known advantage over ordinary arithmetic: each
largely depends on the residue recurrencies in digit of the result is derived by processing only
arithmetic tables modulo M. After reviewing recent the corresponding digits of the operands, hence,
results on the computation of recurrencies, a eliminating the time consuming carry generation
scheme is proposed for implementing residue arith- [8-9]. Thus, the residue number system (RNS) can
metic based on ROAMs.  The efficiency of the be very attractive when a large number of addi-
scheme is established by comparison to conven- tions or multiplications is required such as in
tional ROM-based table lookup techniques. Appli- digital signal processing.,
... cations to residue-to-binary number system conver-
Sion are also discussed, In this paper we investigate the direct
) implementation of D-operand RNS using ROAMs. The
proposed scheme is detailed in Fig. 1 where each
1. INTRODUCTION of the output bits corresponds to a distinct ROAM
) L module, i.e., the output bits are treated indepen-
It is known that assoclative memory process- dently due to the matching property of ROAMs.
Ing. is superior to conventional memory processing Each ROAM module stores only the truth-table row
in such applications as searching, data retrieval, patterns corresponding to the Jl-valued output
memory mapping and the like  [1~3].  However, bits. Associative processing here consists of
widespread applications of assocliative memories in comparing input patterns to prestored information
computer systems has been hindered by their cost. words in the ROAM modules with the appropriate
Advances in technology may not alleviate this output bits specifying detected matchings. It was
problem unless their production volume is signifi- shown in [8-9] that the tota] ROAM storage area
cantly increased. required for addition or multiplication modulo M
. \ ‘ " . depends on (a) the residue recurrencies (multi-
. In addition to the above ‘macrolevel” appli- Plicities) in the corrresponding tables mod M, and
cations, associative processing can also be (b) on the weights (number of 1's) of the code
employed at the "microlevel”,i.e., in embedded words  representing the residues mod M. This
computer system functions implemented in VLSI prompted a linear programming coding approach to
chips. In our approach, we envision the optimize the storage [7].
"microlevel” associative memories as non-volatile
in the same sense as ROMs. The fundamental charac- In the following, we first review recent
teristic of both types of associative memories, results concerning the evaluation of recurrencies
macro and micro, remains the same: access by con- in D-input addition and multiplication mod M. we
tent rather than by location. Associative pProcess- then consider the implementation of RNS by the
Ing at the microlevel can be realized by array proposed scheme. Finally, we discuss the impor tant
locic such as pLas [4-5], however, other technolo- application of RNS to binary conversion using
gles may be more efficient in the future [6]. ROAMS,
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2. COMPUTATION OF RESIDUE RECURRENCIES: A REVIEW
2.1 Addition and Multiplication Mod M; M prime

It is known that residue functions such as
addition and multiplication mod M may be depicted
by multivalued truth tables, the so-called lookup
tables [7]}, with the left-hand columns listing D-
tuples of residues and the right-hand column being
the corresponding residue function value. The
recurrency f(k,D) of residue k with respect to a
D-operand residue function is defined to be the
number of appearances of k in the output column of
the function lookup table. Due to the well known
cyclic~shift property of residue addition tables ’
it has been shown in [9] that the recurrencies in
D-operand addition mod M are each equal to MD-1.

With the exception of zero residue values,
multiplication table rows, mod M, are also pro-
duced by cyclic shifts, as long as M is prime. It
has been shown also in [9] that the recurrencies
of non-zero residues in D-operand multiplication
mod M, M prime, are each equal to (M-1)P-I1. The
recurrency of zero is M (M-1) D,

2.2 Two-Operand Multiplication Mod M, M Non-Prime

It was shown in [8] that the non-zero residue
recurrencies in 2-operand multiplication mod M are
not equal when M is not a prime. These recurren-
cies are ultimately related to the factors of M,
or M-factors, i.e. any number Q<=M that divides M.
There is a recursive relationship among the M-
factors in that some are factors of other M-
factors, for example 2 is a factor of 4 which is a
factor of 8, etc. These recursive relationships
may be conveniently depicted by the M-factor graph
(Fig. 4 of [8]). Briefly, the nodes of the M-
factor graph correspend, one-by-one, to the M-
factors and are preduced, level-by-level, via
division by the prime factors of M. Details are
in [8].

Each node (factor) Q of the M-factor graph
defines a predecesscr, {*Q;Q}, and successor,
{+Q;Q}, subgraph of Q, respectively. Clearly,
these subgraphs consist of all predecessor and
succesor nodes of Q, respectively.

Each M-factor of Q also defines a periodic
set or period, R(Q), via multiplication mod M by
each residue in the residue set S={0¢,1,...,M-1}.
It has been shown that the periodic interval T(Q),
i.e. the cardinality of R(Q) is T(Q)=M/Q. The
periods mod M correspond, one-by-one, to the nodes
of the above graph preserving the precedence rela-
tionships. This means that if Ri is predecessor
of Rj then R(Qi)C R(Qj), and vice versa.

An element x of a period R(Q) is called
essential if x is not in any other period prede-
cessor to R(Q). By definition, the set of all
essential elements of R(Q) comprise the semi-
period, r(Q), of R(Q). The number of elements in
r(Q) is called the semiperiodic interval t(Q). We
now summarize the most important results in [8].
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1) The semiperiods mod M are pairwise des-
joint.

2) the union of all semiperiods over the
predecessor subgraph of Q comprises the period
P(Q).

3) The semiperiod r(Q) and the semiperiodic

interval t(Q) may be computed by the following two
recursive formulas, respectively

R - Jra@b
- [ D)

r(Q)

t(Q) = T(Q)

where Qi runs over {1Q}, the set of all predeces-
sors of Q, and T(Q)=M/Q.

4) Multiplication mod M of any essential ele-
ment of a semiperiod r(Q) by every element of the
residue set S={¢,...,M-1} generates the periocd
P(Q) with frequency Q.

5) Every element of a semiperiod r(Q) mod M
has the same recurrency £(Q,2) which can be
evaluated by the following formula

£(Q,2) = } Qi t(0i)
where Qi runs over {4Q;Q}, the successor subgraph
of Q.

It is clear from the preceding review that
the semiperiods mod M constitute recurrency
equivalence classes for the elements of the resi-
due set S. In other words, the elements of a
semiperiod mod M have each the same recurrency
£(Q,2) in 2-operand multiplication mod M.

Computation results concerning the evaluation
of recurrencies for a number of moduli values are
tabulated in [8].

2.3 D-operand Multiplication Mod M, D>2

The computation of D-operarnd recurrencies,
D>2, for multiplication mod M is based on the con-
struction of D-operand lookup tables. There are
two types of such tables for every D>2: (a) the
compact type, and (b) the expanded type, lookup
table. The compact type, D>2, can be derived from
the 2-operand multiplication table, recursively,

by means of an isomorphic transformation. 1In this
way, the rows of the 2-operamd table are
transformed into the generalized rows of the

table. The row

3;4,..., D-operand campact-type
eiements of the compact (D-operand) are themselves

rows of the (D-1)-operand campact type table,

Apparently, the D-operand compact type multiplica-
tion tables mod M, D>2, are each isomorphic to the
corresponding 2-operand table. The D-operand
expanded table can be constructed iteratively fram
the corresponding D-operand compact table. The
details of these transformations and constructions
are in [9]. An example is illustrated in Fig. 2
for D=3, M-=4.




The D-operand multiplication recurrency mod M
of residue k, f(k,D), can now be defined as the
number of appearances of k in the entire D-operand
2xpanded table. On the basis of the previously
mentioned isomorphism, it is possible to general-
ize the 2-operand M-factor graph approach, given
in section 2.2, to the multi-operand case. The
main result is in the following formula which com-
putes recursively the D-operand recurrencies mod M

£0,0) = } oi t(0i) £(Qi,n-1)
where Qi runs over { 0;0}, the successor graph of
Q.

The computation of D--operand recurrencies can
be simplified by developing a matrix notation for
the basic formula above. To do this, let
Q2,01,...,Qn denote the nodes of the M-factor
graph with Q=M and On=1. We define the (mxm)
semiperiodic matrix @ mod M as follows: for
i=¢,...,m and j=g,...,m

if Qi..{40,0}

@ otherwise

o
R RXG)
17

We also let ¢(p) denote a (mx1)

column vector such
that

9.(D) = £(0i,D)

i i=@,...,m

The D-operand recurrencies may now be computed by
the following linear recursion

¢(D) = 1 * ¢(D-1)

“w—hich accepts the following solution

(H)D-l * /”

where ﬂ designates the (mx1) column vector with
all-unity components.

(D) =

In conclusion, once the 1 matrix mod M is

constructed, the computation of the D-operand
recurrencies reduces to ordinary matrix multipli-
cation mod M.

3. MULTIOPERAND RNS ARITHMETIC

The preceding designs of multioperand addi-
tion and multiplication tables mod M can be
applied to associative table lookup processing of
the same operations in a residue number system
(RNS) which employs a finite set of prime moduli
M1,M2,M3,... . 1In D-operand residue addition (or
maltiplication), the i-th digit of the sum {or
product) equals the sum {or product) of the D, i-
th location, operands. This residue operation may
be implemented by the multioperand structure of
Fig. 3 where each device, as in Fig. 1, consists
of ROAM modules that operate in parallel. Note
the number of such modules in each device, i.e.
the number of output bits of the i-th device,
depends of the encoding scheme of the residue set
S={6,1,...,M—l} [71.
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The complexity of the proposed RNS scheme
should be defined as the totally required ROAM
storage in the structure of Fig. 3. Note complex-
ity values concerning addition and multiplication
tables mod M have been tabulated in [6~7] for a
number of M values and D=2. Due to the inherent
parallelism of the residue operations, the com-
plexity measure defined is simply equal to the
sumation of the corresponding ROAM storages taken
over all moduli in the system.

An important consideration regarding the
choice of the moduli set in the context of our
scheme is established rext. Let M be the product
of n relative prime moduli, namely M =
M1*M2*.,.*Mn. Let L(Mi,D) denote the complexity
of a residue operation mod Mi in terms of the ROAM
scheme. Then the following relation is valid for
the RNS complexity L(M,D) with respect to both
residue addition and multiplication

L(M,D) > L(ML,D) + ... + L(Mn,D)

This relation can be easily verified on the basis
of the results tabulated in [7-8]; the proof is
beyond the scope of this paper . The important
conclusion, due to this relation is that a frag-
Mentation of the moduli set reduces dramatically
the required ROBM storage of our proposed scheme.
In other words, it is much more efficient to use
many small moduli rather than few large moduli
within the same, approximately, dynamic range.

We shall now support quantitatively the main
claim of this paper made in the introduction, i.e.
the ROAM table lookup processing is more efficient
than the one by conventional memories, at least as
far as residue arithmetic is concerned. To do
this, we shall first estimate the required storage
for each memory type, namely ROAM and ROM (or
RAM), then we shall compare these estimates. The
computation of E(ROAM) and E(ROM), i.e. the ROAM
and ROM estimates, respectively, is omitted here

as being somewhat involved. The results are as
follows

E(Row) < § g1y 2l
1

n
ERoM) = Ty 2™
1

where uy - [logaMi]. o show that F
E(ROAM) it is sufficlent to prove that (Fom >
D-1)u, -1
2( i W? .

the latter is true due to the definition of W,
We vave actually shown
E(ROAM) < E(ROM) /2.

X
an  even stronger case:

We have thus established
important result: the proposed RrROAM based scheme
for multioperand Rng arithmetic in a given moduli
set is at least twice more storage efficint than

table lookup techniques based on conventional
memories.
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4, RNS TO BINARY CONVERSION

As an application, we suggest a conceptual
design of a RNS to binary converter based on our
multioperand scheme. The underlying theory is the
well-known Chinese Remainder Theorem [16]. Adapt-
ing the notation of this reference, let Ml,...,Mn
be an RNS with M = M1*,..*Mn. For an integer P,
let P1,...,Pn be its representation in the given
RNS where Pi = P mod Mi, i=1,...,n. Also, let Mi'
denote the multiplicative inverse mod Mi of MMi,
i.e. Mi'(M/Mi) mod Mi = 1, i=1,...,n. The conver-
sion formula may now be expressed as follows:

(PL Ml + ... + Pn Mn) mod M = P mod M

where the n constants Mi = Mi'(M/Mi), that depend

upon the given RNS, consti i
copr?versmn.g ’ titute the basis of the

To apply our technique, we note that the
above formula resembles an RNS "sum-of-product”
expression. This suggests an implementation using
n, 2-operand, parallel multipliers, mod M, fol-
lowed by one, n-operand, adder mod M. However,
each 2-operand multiplier has one constant operand
Mi and another operand Pi such that @<=Pi<Mi
where, in general, Mi<<M. To exploit this particu-
lar situation, we propose a PLA-based implementa-
tion of each multiplier with array dimensions:
l_logz'Mi-] address bits, [log,M] outputs and (Mi-1)
pPIA “words (P-terms) i=1,...,n. No Mi-type input
operands are required by the multipliers. More
specifically, there are Mi-1 words embedded in
each multiplier of the type (k,kMi) k=1,2,...,Mi-1
where k and kMi represent the search and informa-
tion fields of each PLA word, respectively. This
is a clercut case of associative table lookup pro-
cessing.

The above proposal leads to the RNS-to-binary
converter structure of Fig. 4 which implements
example 2-9 of [11]. 1In this example, the RNS is
(M1,M2,M3,M4)=(13,11,7,9), M=9009, p=277,
(P1,pP2,P3,P4)=(4,2,4,4). There are 4x14 1/0 bits
in each PLA multiplier amd a total of (13-1)+(1l~-
1+(7-1)+(9-1)= 36 PLA words. The 4-operand
ROAM-based adder which has 56x14 1/0 bits may be
implemented by the multioperand adder configura-
tion of Fig. 1. This requires a total of 14 ROAM
modules with 56x1 I/0 bits per module. The regis-
ters in Fig. 4 are inserted to produce a pipeline
version of this structure for recurrent RNS to
binary conversions.

As a final note we consider the complexity of
the above design. The multiplier complexity is
rather small and, hence, these devices can be
readily implemented in available technologies.
However, the complexity of the multioperand adder
is rather significant and its implementation can
only be accomplished in VLSI technology. Each
ROAM module could probably be implemented by many
PLAs and the entire adder could be integrated in a
single chip using appropriate VLSI CAD tools.

185

5. CONCLUSION

Recently, a different approach to residue
arithmetic has been investigated via associative,
table lookup, techniques [6-7]. The emphasis of
this paper is on the application of these results

to the RNS design by means of a ROAM based
structure which is amenable to VLSI implementa-
tion.

Specifically, we first reviewed the work on
the computation of recurrencies in multioperand
addition and multiplication tables mod M. The
complexity of residue operations by the proposed
approach is directly related to these recurrencies
as well as to the encoding scheme for the residue
set. Then we applied this analysis to the imple-
mentation of a general RNS, by the proposed
scheme, taking into account practical considera-
tions. Concerning the choice of moduli, we showed
that a fragmentation of the moduli set reduces
substantially the required storage of the ROAM-
based scheme. We also demonstrated the superior-
ity of our RNS scheme, in terms of storage effi-
ciency (at least 100% greater), versus conven-
tional ROM lookup techniques., Finally, we dis-
cussed an important application: an RNS to binary
converter based on the proposed multioperand ROAM
scheme.,

In conclusion, we have demonstrated the via-
bility of the proposed scheme in performing table
lookup processing for RNS arithmetic using Read-
Only associative memories, that can now be imple-
mented in VLSI technology [12]. Further, this
approach is essentially technology-independent.
In fact, future technologies such as electrooptics
and the like may be more efficient to implement
ROAM modules in terms of time and storage con-
siderations [13].
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Figure 2: Multiplication tables mod 4

(a) 2-operand table, (b) 3-operand compact-type, (c) 3-operand expanded table
note bi = k, k=0,1,2,3; bi is the k-th row of table (a), bi is the k-th row
of table (b). Superscripts are omitted in table (c) for simplicity.

] LA X, Y

; 1, W, X3 Y3 Iy Wy
| VAVAVAVESVAVA VAV VAVAVAY
DEVICE 1 DEVICE 2 DEVICE 3
: modulus M, madulus M, modulus My

' OUTPUT RESIDUES OF RESULT

Fiqure 3 A Read-Only associative-memory processor for D-operand residue arithmetic.
In this example the relative prime moduli are M] '"2’"3 and the operands are
X,¥,Z,W (D=4), X]=X mod M].....Hasu mod M3.
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