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ABSTRACT

We discuss here a new class of arithmetic codes,
called A(N + C) codes where A and C are constant
positive integers, N is information to be coded.
A(N + C) codes are a special case of AN + B arith-
metic codes which were first studied by Brown. AN
codes are linear and cannot be used to detect uni-
directional multiple errors. A(N + C) codes are
non-linear and are useful for detecting and/or
correcting symmetric errors, arithmetic errors and
unidirectional errors. Furthermore, A(N + C) codes
can be constructed to provide constant-weight, self-
complementing and cyclic-code properties. It is
apparent that the codes with these properties have,
in some sense, broader capabilities of error de-
tection and error correction.

1. INTRODUCTION

The class of arithmetic codes known as AN codes
[3,4,9-14] have been extensively studied. Brown
[3] has discussed a special class of AN + B codes
which are self-complementing, i.e. for every code
word X, its complement X' is also a code word. By
a suitable selection, B to be equal to AC we obtain
A(N + C) class of codes which has capability to
detect/correct symmetric errors, asymmetric errors,
arithmetic errors, and unidirectional errors. For
that reason these codes may find a broader range of
application. For background, definitions on error
types, welght, distance metrics and for notation
used in the paper, the reader may refer to [2,9,10].

2. CONSTRUCTION OF A(N + C) CODES

In this section we discuss the class of arithmetic
codes, namely, A(N + C) cocdes, which have the fol-
lowing properties; constant-weight, self-comple-
menting and cyclic-code.

The arithmetic codes we consider are of the form
A(N + C) where A,N and C are all integers. A is
called the generator, N is a number to be coded and
C is a constant. The arithmetic codes have the
property that A(N1 + C) + A(N2 + C) = A(N3 + C) +
AC for N3 = N1 + N2. The sum obtained is a multi-
ple of A, and therefore can be used to check for
errors.
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Before going tc the construction method for A(N + C)
codes, we begin with the concepts of constant-weight
codes, self-complementing codes and cyclic-codes.
All code representations discussed here are binary
(i.e. radix r = 2) and the code (or block) length is
n.

A constant weight code is sometimes called an m/n
code. It is a code with each codeword containing
exactly m 1's (i.e., Hamming weight m). The con-
stant weight codes have an advantage in that they
detect: any number of unidirectional errors (see
references [1,21).

A seli-complementing code [3,10] is a code with the
property that the complement of a codeword is also

a codeword. These codes have the advantage of sim-
pler implementation logic for complementation and
subtract operation. For example, the binary 3N code
for 0 < N < 5 has codewords 0000, 0011, 0110, 1001,
1100 and 1111 and is clearly self-complementing.

A cyclic code [7,9,10,13) is a code with the pro-
perty that any cyclic shift of a codeword is also a
codeword. Besides having a nice mathematical struc-
ture, the algebraic cyclic codes are easy to encode
and decode using linear feedback shift registers
[13]. The example of 3N code given before also
serves as an example of a cyclic code. The neces-
sary end sufficient condition for AN code to be
cyclic is that A divides 2n-1.

The exponent of r modulo B, for relatively prime

r and B, is the least positive integer i, such that
ri 2 I(mod B). We denote this by e,(B). Since the
radix r is 2, we can drop the subscript for simpli-
city and write e(B) to denote the exponent of 2
modulc B.

First, we start with A of the form

e(p)
2 -1

A = P (1)
for an appropriate prime p. Then we try to derive
conditions for the code to have self-complementing,
constant-weight and cyclic-code properties.

2.1 Self-Complementing Code

If X is an n~bit number (or word) its complement
X' is defined to be 2B-1-X. Also for a base b of
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the system, the complement of N here is defined as
b-1-N. 1In this notation the base b is different
from radix which is 2. As an example, we have bi-
nary coded decimal number system where base is 10
and the radix is 2. For two codewords A(N; + C)

and A(N, + C) to be complements we have the
following
Ny = b-1-N;

and A(N; +C) + AN, + C) = 2.1,
The above yields for C the condition
A(b-1) + 2C¢ = 2 -1

20-1-2 (b-1) (2)

or C = A

The equation(2) holds iff A is odd and b is even.
For the special case when a = (2e(p)-l)/p and

n = e(p), the above condition for c simplifies

C = (p-b+l)/2 (3)

2.2 Cyclic and Constant-Weight Properties

Example.

Before we can consider the other properties of

A(N + C) codes, it is important to note that the
codewords are n-tuples, i.e. these are selected
multiples of A and N has the maximum possible range
0 <N < (2"-1)/A. Since our interest is in C # 0
with self-complementary broperty, the range is in-
deed smaller. The number of multiples of A which
are n-tuples (i.e. less than 27) are exactly p + 1.
Also since we need only b codewords among them, we
select the range for N, 0 <N < b-1. Therefore the
codewords are AC, A(14C), and A(b-14C). Let us
illustrate this by means of the following.

From (3) we obtain C=(p-b+1)/2 for the code to be
self-complementing. For b=10, C=1 and for b=8, C=2
and so on. For b=10 we obtain 93(N+1) code, which
is listed in Table 1 below.

Table 1
Code Words of 93(N + 1) Code

Decimal (N) 93(N + 1) Code
0 0001011101
0010111010
OlOOOlOlll
0101110100
0111010001
1000101110
1010001011
1011101000
1101000101

1
2
3
4
5
©
7
8
9

Let us consider 93 (N + 1) code, and its error de-
tection and correction capabilities.

1110100010

Let p=11; then e(p)=10 and A=(210-1)/11=93.

For arithmetic errors, we first find the minimum
arithmetis distance. The minimum arithmetic dis-
tance of the code is 4. From theory [10] we know
the code can detect up to 3 arithmetic errors or it
can both detect up to 2 arithmetic errors and cor-
rect 1 arithmetic error.

For unidirectional errors, we first find the minimum
value of N(X,y) and N(Y,X). The minimum value of
N(X,Y) and N(Y,X) is 2. From thecry [6-9] ,the code
can detect all unidirectional errcrs and correct 1
(symmetric or arithmetic) error,

This and some other A(N + C) codes for bases which
are powers of two and ten can be found in Table 2
below.

Table 2
code
prime length generator constant base
el e(p) A C b
11 10 93 2 8
1 10
17 3 15 5 8
4 10
1 16
37 36 1857283155 15 8
14 10
11 16
3 32
41 2C 25575 17 8
16 10
13 16
5 32
67 66 1101298153654301589 30 8
29 10
26 16
18 32
2 64
113 28 2375535 53 8
52 10
49 16
41 32
25 64
7 100
137 68 2154364271382137415 65 8
64 10
61 16
53 32
37 64
19 100
5 128
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3. REMARKS AND CONCLUSION

The examples presented above illustrate that A(N+C)
codes can be constructed to provide self-complemen-
ting, constant-weight and cyclic-code properties.
The cyclic code property is an interesting property
but is not important for arithmetic application.

The Table 2 is generated by a computer search of

all primes up to 137. The theory of A(N + C) has
not been established as yet, but a few conjectures
can be made by observation of the Table 2 as follows.

Conjecture 1. BAn A(N + C) code with A = (Ze(P)—l)/p
is a constant weight code iff e(p) is even and

C > 1. For this case, the code weight is exactly
one half of the code length e(p).

Conjecture 2. An A(N + C) code with A = (29(p)—l)/p
is a constant weight and cyclic iff the base b =
p-1 and ¢ = 1. The proofs do not appear to be dif-
ficult but we have not made a solid attempt as yet
to prove them.

As far as the authors are aware these are the only
class of codes known which provide arithmetic error
correction and multiple unidirectional error de-
tection. These codes are in that sense arithmetic
analog of the single-error-correcting, all-uni-
directional-error-detecting (SEC-AUED) codes pre-
sented by Bose and Rao [2].

REFERENCES

{11 Bose, B. and Pradhan, D. X., "Optimal Unidi-
rectional Error Detecting/Correcting Codes,"
IEEE Trans. Comput., Vol. C-31, June 1982.

[2] Bose, B. and Rao, T. R. N., "Theory of Unidi-
rectional Error Correcting/Detecting Codes,"
IEEE Trans. Comput., Vol. C-31, June 1982,

[3] Brown, D. T., "Error Detecting and Correcting
Binary Codes for Arithmetic Operations," IRE
Trans. Electron. Comput. EC-9, September 1960.

295

[4]

(5]

{71

[8]

[10]

[11]

[12]

[14]

Chen, R, T., Hong, S. J. and Preparata, F. P.,
"Some Results in the Theory of Arithmetic
Codes," Inform. Control, Vol. 19, 1971.

Constantin, S. D. and Rao, T. R. N., "On the
Theory of Binary Asymmetric Codes," Inform.
Contr., Vol. 40, January 1979.

Hamming, R. W., "Error Detecting and Correcting
Codes,” Bell Syst. Tech. J., Vol. 29, April
1950.

Lin, S. and Costello, D. J., Jr., Error Centrol

Coding: Fundamentals and Applications, Pren-
tice Hall 1983.

Mandelbaum, D., "Arithmetic Codes with Large
Distance," IEEE Trans. Information Theory,
April 1967.

Peterson, W. W. and Weldon, E. J., Error Cor-
recting Codes, MIT Press, 1972.

Rao, T. R. N., Error Coding for Arithmetic
Processcors, Academic Press, 1974.

Shiozaki, A., "Single Asymmetric Error-cor-
recting Cyclic AN Codes," Inform. Contr.,
Vol. 40, January 1979.

Stone, H. S., Discrete Mathematical Structures
and their Applications, Science Research Asso-
ciates, 1973.

Wakerly, J. F., Error Detecting Codes, Self-
Checking Circuits and Applications, North-
Holland, 1978.

Wakerly, J. F., "Detection of Unidirectional
Multiple Errors Using Low-cost Arithmetic
Codes," IEEE Trans. Comput., Vol. C-24,
February 1975.




