Higher Order Computer Arithmetic

Siegfried M. Rump

SUMMARY

The floating-point arithmetic on computers is
designed to approximate the corresponding operations
over the real numbers as close as possible. In this
Paper it is shown by means of counterexamples that
this need not to be true for existing machines. For
achieving good numerical results a floating-point
arithmetic approximating the real operations as close
as possible is probably best. For achieving verifica-
tions on computers, at least a precisely defined com-
puter arithmetic is indispensable.

In this paper we first introduce the Kulisch/Miranker
theory, which represents a sound basis for computer
arithmetic. Each operation is precisely defined and,
moreover, is of maximum accuracy. That means, the
computed result is the floating-point number of the
working precision closest to the infinite precise
result. The theory alse covers directed roundings
allowing computations with intervals. These proper-
ties hold true for the floating-point numbers of sin-
gle and double precision as well as for the vectors,
matrices and complex extensions over those.

In the second part of the paper we demonstrate the
theoretical basis for what we call 'Higher Order Com-
puter Arithmetic'. This is an inclusion theory allow-
ing the development of algorithms to compute bounds
for the solution of various problems in numerical
analysis. These bounds are automatically verified to
be correct and they are of high accuracy. Very often
they are of maximum accuracy, that means the left and
right bounds of all components of the solution are
adjacent in the floating-point screen. Moreover
existence and uniqueness of a solution within the
computed bounds is automatically verified by the
algorithm. If this verification is not possible, a
respective message is given. We develop the theory
and give algorithms for the solution of systems of
linear and nonlinear equations. As demonstrated by
examples even for extremely ill-conditioned problems
existence and uniqueness of the solution is verified
within bounds of least significant bit accuracy.

1. INTRODUCTION

A thorough approach to a standardization of computer
arithmetic was given by Kulisch ([Ku69], [Ku71]). a
summary of the theory is given in the book of Kulisch
: "Grundlagen des numerischen Rechnens" ([Ku76]). In
this book Kulisch gives a complete list of the spaces
occurring in numerical computation :

CH2146-9/85/0000/0302$01.00 © 1985 IEEE

R) D D S
VR o) VD > Vs
MR o} MD 5] Ms
PR D IR] ID > Is
PVR O IVR > IVD > Ivs
PMR 5 IMR > IMD > IMS
C 2 CD > cs
vc) VCD > vCs
MC > MCD 3 MCs
PC D Ic o] ICD > ICs
PVC > Ive > IVCD > Ives
PMC > IMC > IMCD > IMCS
Figure 1. Spaces in numerical competition

The theory was then extended by the succeeding book of
Kulisch/Miranker ([Ku/Mi8g0]). In the table above R is
the set of real numbers, VR are the n-tupels or vec-
tors over the real numbers and MR are the n?-tupels,
i.e. n X n - square matrices over the real numbers.
Moreover, C are the complex numbers with vectors VC
and matrices MC over those. The corresponding inter-
val spaces are denoted by IR, IVR, IMR, IC, IVC, IMC.
They are subsets of the corresponding power sets with
a canonical imbedding.

For various reasons the operations in these spaces
are not exactly executable on computers. Therefore,
computing with real numbers has to be approximated by
computing in some finite precision, where computation
should be simple and rapidly executable. There are a
number of such finite precision number systems
described in the literature, e.g. logarithmic systems
[MaMa731}, [SwAl175], rational systems [KoMa83], long
integer arithmetic [Fa76]. On a computer usually
floating-point systems with mantissa and exponent are
used. Research in this area is done in the IEEE group
(e.g. 4 articles in COMPUTER, Vol. 14, 1981),
described in the Kulisch/Miranker theory ([Ku71],
[Ku76] and [KuMi81], the work by Matula, Kornerup and
others.

We refer to the the set of single precision floating-
point numbers on some computer by S. If the accuracy
is not sufficient, the user has the possibility to
compute in the larger subset D (double precision) of
R, where RDI) >sg. Over the set S we can define vec-
tors (n-tupels) and matrices (nz-tupels), complex
numbers (pairs), vectors and matrices over these
pairs as well as the corresponding interval spaces.
All these sets are listed in the fourth column of the
table above. Finally, the corresponding spaces over
the set D are listed in the third column of figure 1.

Possible operations are the inner operations, i.e.
operations in one of the listed spaces and the outer
operations, i.e. operations between elements of two
spaces like multiplication of a real matrix by a sca-
lar or the sum of a real interval vector and complex
vector. Counting all possible inner and outer oper-
ations yields a surprising number of several hundred.

e A

In the past the definitions of these operations where
due to the computer manufacturer. Moreover, not the
whole set of operations were predefined but only the
four basic instructions addition, subtraction, mul-
tiplication and division for single and double preci-
sion floating-point numbers. All the other (several
hundred) operations had to be designed and imple-
mented by the user. His only tool to do this were the
four basic operations. Following Kulisch/Miranker we
call this the vertical method according to the fol-
lowing figure.

R -> S
v v
MR MS
Figure 2. Vertical method

Suppose we want to define the multiplication of two
matrices. Then for two m X n - square matrices
A,B€ MSC MR we have by the mathematical definitinsn

n

(A x B) = > A X B
ij -—— ik kj

(1)

for the ij-th component of the product. When imple-
menting this mathematical definition (1) on a comput-
er all additions and multiplications are perforred in
S. In each operation a rounding error is introduced so
that the computed result and the true result may dif-
fer significantly. We come to “his point later. The
matrix multiplication in MS is defined on the comput-
er by the operations in S, fcllowing the vertical path
in figure 2. However, the definition of the oper-
ations in S, i.e. the basic arithmetic operations, is
due to the computer manufacturer. And those, this is
the experience, do not implement these operations
according to mathematical axioms or mathematical the-
ory but more or less by a rule of thumb. For instance
one of the leading manufacturers sold several hundred
machines doing the following.

The two numbers 134217728.0 and 134217727.0 are
exactly representable on that computer. When sub-
tracting both, the result is 2.0 on that computer.

134217718.0
-~ 134217727.0

The relative error of that operation is 1 instead of
10°%, what it should be. What happens on the comput-
er? The two numbers are in binary representation
1.00 ... 0 x 227 and 0.11 1 x 227, On the com-
puter the two operands are normalized and the expo-
nent is adjusted. This yields

0.100 O | O x 228
0.011 ... 1 | 1 x 228
0.000 0| 1 x 22¢®
|
However, on the computer the last bit is omitted

because of the limited length of the internal accu-~
mulator. In other words the accumulator is exactly as
long as the mantissa of floating-point numbers. So
the result is a 1 one position further to the ieft,
which is a 2 in the binary system.

This is one error found by customers, in fact there
are at least 10® such errors on that specific machine.
Errors 1like these are well known (cf. [Fo70],
[KaPa77]). There is no guarantee or estimation for
the maximum error of a single operation given by the

303

manufactures. Of course, errors like that make a tho-
rough mathematical analysis of algorithms impossi-
ble. To obtain an overview on the research work on
computer arithmetic the reader is referred to the
literature ([Ste74}, [Co731, [Ma70l).

We proceed by introducing the definition of computer
arithmetic as given in [Ku76] and (KuMi8l]. We want to
define the four basic operations in S which shall
approximate as good as possible the respecting oper-
ations in R. The best, of course, would be an isomor-
phism.

However, R is infinite and S is finite, which makes an
isomorphism impossible. But even a mapping with the
simpler property of being a homomorphism from R to §
is nct possible under very weak assumptions. So we go
the opposite way and state which properties at least
should hold and see, whether they can be satisfied on
computers. When applying one of the four basic oper-
ations * to two floating-point numbers a,b € S, the
result a * b is, in general, an element of R and not
of S.

Therefore we first define a
called a rounding. Then we
* : § x § -> R induced by the
rounding =

mapping = R -> S,
have the operation
real operation, the
R -> S and the following diagram:

The result of an operation [*:l : S x S -> S shall then
be defined by the basic property

(RG)

a,be s al¥lb := =&(a * b)

(cf. [KuMi8l)), so that the diagram above commutes.
The operations in S are therefore defined by the cor-
responding operation in R followed by the rounding n.
This rounding should satisfy the following proper-
ties:

(R1) projection a€s : ra = a
{R2) monotonicity a,bé&R as<b->mnasgmnmb
(R4) symmetry a€R H(~a) = ~ Ha

One of the basic results of the Kulisch/Miranker the-
ory is, that the four basic operations satisfying
(RG), (R1), (R2) and (R4) can be realized on computers.
Morecver, all operations for the third and fourth
column in figure 1 can be effectively implemented on
computers satisfying (RG),(R1l),(R2) and (R4). 1In
case of interval spaces the operations are inclusion
monotone, i.e.

(R3) isotoneness a€R : a £ ma ,

where m : R -» IS.

To satisfy especially (RG) in case of vector and
matrix spaces an implementation of the precise scalar
product is necessary. That means for any two vectors
v,W € VS the scalar product v x w with three round-
ings (downwards, upwards and to nearest) has to be
implemented with maximum accuracy. This is possible
using Bohlender's algorithm (cf. {Bo77]}).

e
o R

2. LINEAR SYSTEMS

Even with a computer arithmetic with results of maxi-
mum accuracy it is possible to produce arbitrary
false answers. As a simple example we assume a decimal
computer with a two-digit mantissa and consider

(2) 9 v 14 -2 « 62

Then 9 ¢ 14 = 126 rounded to two figures results in
13 » 10* =130, and 2 » 62 = 124 in 12 « 10! = 120.
Therefore on this computer the result is
130 - 120 = 10 instead of 2. On almost any existing
computer the result of

losn + 1010 - lolin

will be zero instead of 10!’. Therefore the associa~
tivity of the floating-point operations is not satis-
fied.

So the implementation of an optimal arithmetic does
not suffice to yield only correct results but algo-
rithms deriving error bounds are necessary to achieve
true and verifiable results. Of course, an arithmetic
satisfying mathematical properties is necessary to
approach this goal. In this sense we use the optimal-
ly accurate arithmetic as a higher order computer
arithmetic. We will continue to demonstrate these
algorithms. Let us first give another example.

It is a well known technique first to apply an algo-
rithm to a posed problem and then to slightly altered
input data to achieve infcrmation about the condition
of the problem. Consider

(3) 100 000 x + 99 999 y
99 999 x + 99 998 y

L]
o

The following table shows the solution of (3) for dif-
ferent right hand sides (a,b).

a b X y
200000 200000 200000 -200000
199990 199990 199990 -199990
200010 200010 200010 ~200010

A small change in the data (the right hand side a and
b) causes a small change of exactly the same magnitude
in the solution x and Y. However, the following table

a b X y
199990 200010 2199970 -2199990
200010 199990 -1799970 1799990

shows a catastrophic effect on the solution X and y
for the same magnitude of perturbation in the data. If
an algorithm tests automatically the cases of the
first table, it would yield the answer that the given
problem (3) is very well-conditioned, where, in fact,
it is extremely ill-conditioned.

An approach to get rid of that dilemma is to replace
every operation by its corresponding interval opera-
tion. An interval is a set of the form

a,b€T: [a,b] := {xeU | a<x < b},

where T is any of the linear spaces S, VS, MS, Cs, vCs,
MCS or the corresponding spaces over D, and U is the

304

corresponding structure over R. An interval over T is
a convex, closed and bounded subset of the power set
over U. We use the notation IT for the set of inter-
vals over T. The operations in IT are defined by

A,B€IT A<*>B :=(}{CeIT | a A, b B: a*becCy ,

where * & {+,-,¢,/}. We use the symbol <*> according
to the Kulisch/Miranker theory. The operations are
well defined (with exceptions for /) and effectively
implementable for all interval spaces in figure 1.

However, the usage of interval arithmetic may yield
an overestimation of the true result. For instance,
the result for (2) on a 2-digit computer would be

9 <e> 14 <-> 2 <e> B2 =

[120,130] - [120,130] = [-10,10].

This is a true result and displays the ill condition
of the problem.

The straightforward replacing of every operation by
its corresponding interval operation is called naive
interval arithmetic. It turned out that the use of
naive interval arithmetic in general yields overesti-
mates of the inclusion of the true result which were
sometimes very large. In some cases an algorithm
could not finish because a division by an interval
containing zero had to be executed. This could happen
in cases where ordinary floating-point arithmetic
delivered reasonable and accurate approximations.

In the mean time interval mathematics became an inde-
pendent mathematical~discipline, and the times of
using only naive interval arithmetic are long ago
(cf. [Mo66], [AlHe74], [A179]).

Next we will demonstrate , how interval arithmetic
can be used in another way vielding correct answers
with an automatic verification of the correctness and
with sharp bounds for the solution. The method will
first be developed for the case of linear equations.

Consider the fixed point Theorem of Brouwer:

Theorem 1. Let £: VR -> VR be a continuous functioen
and O * X € PVR be a closed, bounded and convex subset
of VR. If £(X) € X, then there is a fixed point x € X
of f£: f(x) = x.

Let a linear system
(4) Ax=0Db

be given for a matrix A €& MR and a vector b € VR. Let
Q be an approximate inverse of A, then Qb is an
approximate solution of (4). A well known technique
to improve this approximation is the residual iter-
ation:

(5) x = gb; x = x + Q(b - Ax)
o n+1 n n

Next we will apply a technique to that formula to ver-
ify existence and uniqueness of (4) in a certain
domain.

Theorem 2. Let the linear system (4) be given, a real
matrix Q and a closed, bounded, convex and nonempty
subset X of the real numbers. If

(6) X + 0(b - AX) c X,
z

then the matrices A and Q are not singular and the
uniquely determined solution of (4) is an elemert of
X.

Remark. The operations in (6) are the power set oper-
ations and X g Y denotes X € Y and X n 9Y = &.

Procof. By Theorem 1 there is a fixed point « of
f(x) = x + 9(b - Ax) in X . Therefore

(7) X = X + Q9(b - AX) and b -~ Ax € Ker 3,

Let y ¢ Ker A. Then for any real number p follows
f{x+py) = x + py + Q(b - Ax - pAy) = x + py,

i.e. x + pyis a fixed point of f. If there would be a
0 =2 y€& Ker A this contradicts (6), because there
would be a real q with x + gye 9X. Therefore a is
regular. Suppose yg Ker Q and y # 0. Then A"'y = 0
and there is a real gwithx + gA 'y ¢ 9X. On the oth-
er hand

f(x+ga™'y) = x + qA™'y + Q(b-Ax-qy) = x + qA'ly.

This contradicts (6) and therefore Q is non-singular.
Now (7) implies b - AXx = O and the theorem is proved.

To apply theorem 2 on computers we use interval oper-
ations in IMR and IVR according to the
Kulisch/Miranker theory. However, by the rules of
interval arithmetic [AlHe74] we obtain

d(X + Q(b -~ AX)) = d(X) + d(Q(b - AX)) > d(X:

Therefore (6) can never be satisfied when using
interval operations. Another formulation of (6)
allows the application of theorem 2 on computers.
This is demonstrated by the following theorem.
Theorem 3. With the assumptions of theorem 2 and

(8) Qb + (I - QA)sX c X
2

instead of (6) all assertions of theorem 2 remain val-
id.

Several significant improvements of that theorem are
described in [Ru83] and [Ru84].

For the actual implementation on computers we use the
operations in IMS and 1IVS as defined in the
Kulisch/Miranker theory.

In the following, we give a brief description of an
algorithm for solving systems of linear equations.
The complete algorithm and several further improve-
ments are given in ([Ru83,84]). One essential
improvement is the € -~inflation of potential inclu-
sions to accelerate the convergence (cf. step 2 of the
succeeding algorithm). It is defined by

Y& :=Ye[1-§,14+¢(]

In practice a suitable value for § is 0.1 .

305

1. Use your favorite floating-point algorithm

to compute an approximate inverse Q of A.

e & Ob-aw); ¥ = 2Z;

repeat k := k+1; X :=Y ° E;

Y = 20001 - Qa1 X

YfiXork>10;

2. w = Qeb; k := 0; 2

until

3. 1if Y 5 X then {It has been verified, that
there exists one and only one
X € w<+>Y with A x = b}

else {No verification]

|
|
!
t
J

In step 1 any floating-point arithmetic is applica~
ble, preferably one satisfying (R1l), (R2), (R4) and
(RG). Of course, the convergence of the algorithm
depends on the approximate inverse Q and the spectral
radius of I-QA. In step 2 interval arithmetic for
higher linear spaces according to the
Kulisch/Miranker theory is to be applied.

In practice it turns out, that the algorithm above
terminates almost always with k = 1. The presented
automatic verification is mathematically correct, is
not based on plausibility arguments and could replace
efforts on the part of the user to make an approxi-
mation plausible.

As a numerical example to demonstrate the computa-
tional results of the implemented algorithm (cf.
[RuB3]) take a linear system with Hilbert matrix of
order 21 and right hand side (1,1,....,1). On a com-
puter with 14 hexadecimals in the mantissa (approxi-
mately 16 decimals) we achieved inclusions of the
solution with maximum accuracy in every component,
i.e. the left and right bonds of all including inter-
vals were adjacent in the floating point screen. The
new algorithms, moreover, verify the correctness of
the result as well as existence and uniqueness of the
solution within the computed bounds.

3. NONLINEAR SYSTEMS

The ideas of the preceding chapter have been extended
to systems of nonlinear equations. Consider a func-
tion £:VR -> VR with continuous first derivative.
We desire to find small bounds for regions of a zero
of f. The existence and uniqueness of a zero within
those bounds should be automatically verified by the
computer. For this purpose consider the following
theorem.

Theorem 4. Let f: VR -> VR be a function with con-
tinuous first derivative and let Q€ MR, w ¢ VR.
Denote the Jacobian matrix of f by £f'€ MR and for
X € IVR define

(9) £'(X) :={ YEIMR | £'(x)eY for all x &X }

If thern for some X ¢ IVR

(10) w - Qef(w) + [I - Qo' (WU X)Ie(X - w) € X,
z

i

G ronide Bes s

i
L
g

then there exists one and only one x € X with
f(x) = 0. Moreover the matrix Q and every matrix
contained in I - Q s €£'(w¥ X) is not singular.

I € MR denotes the identity matrix, u denotes the
convex union. :

The proof of that theorem is given in [Ru83]. Accord-
ing to the proof f'(w J X) as defined by (9) cannot be
replaced by { £'(X) | x € w¢ X }. This can also be
demonstrated by counterexamples. Moreover,
f'(w @ X) cannot be replaced by £' (X).

The application of theorem 4 on computers is made pos-
sible by evaluating the left hand side of (10) using
interval . arithmetic (according to the
Kulisch/Miranker theory) in higher linear spaces.
For example, the multiplication

* : MR x IMR -> IMR
is to be used for computing
Q- £ (wy X)

instead of entering a loop

n

S := Qvf'(WwyX) with S :=> ¢ ¢ £f'(wyu X)
ij --- ik kj
k=1

where R x IR -> IR and +
the summation.

IR x IR ~> IR in

Another important improvement is not to compute an
inclusion of a zero itself of the function f but an
inclusion of the difference of a zero and an approxi-
mation. Consider the following theorem.

Theorem 5. Let f: VR -> VR be a function with con-
tinuous first derivative and let Q€ MR, we VR.
Let the Jacobian f'e MR of f be defined by (9). If
then for some X ¢ IVR

(11) =Q<f'(w) + {I - Q » £'(Ow (W+K))} » Xc X ,
F

then there exists one and only one
f(x) = 0. Moreover, the matrix Q
contained in

X € w + X with
and every matrix
I - Q-+ £'(0L (w+X)) is not singular.

A relative error in the interval vector X plays a less
important role in the final inclusion w + X. There-
fore the final inclusion is sharper than in theorem 4.
The computational effort is approximately the same.

‘The preceding theorems have been extended to the com-
plex number space and to real and complex interval
spaces. For example, let a linear system

(12) Ax =8 with A€IMR and Beg IVR

be given. The inclusion of the solution of (12) is the
set

(13) {yeR| ay = b for some acA, beB }

The definition applies similarly to nonlinear sys-
tems. An inclusion of this set of solutions can be
obtained by replqc;ng the respecting matrices, vec-
tors by the respecting interval matrices, interval

306

vectors and the operations by the corresponding
interval operations. Therefore, problems where the
data is afflicted with errors can be handled. In this
case the solution of the problem for any of the infi-
nitely many combinations of input data is included,
whereas the computing time is of the same order as a
standard floating-point algorithm (the latter, of
course, without verification of the result).

Practical experience shows, that the obtained bounds
are usually as sharp as possible. In case of point
data, almost always maximum accuracy is achieved,
i.e. the left and right bounds of all components of
the inclusion differ only by one in the last place of
the mantissa.

The matrix Q in theorem 4 is an approximate inverse
of f'(w), w is an approximation to a zero of Ff.
Note, that no further knowledge about the non-singu-
larity of @ or the approximation w is required on
the part of the user.

In the following, we give a brief description of an
algorithm for solving systems of nonlinear equations.

1. Use your favorite floating-point algorithm

to compute an approximate zeroc w of £.

2. Use your favorite floating-point algorithm

to compute an approximate inverse Q of £'(w).

3. k :=0; 2 := —Q'%w); Y := 2Z;

repeat k := k+l; X := (Yy[0]) °£;

@(w@X); Y = 2O - 2D X

Y e X or k > 10;
*

D

[}

until

4. if Y € X then {It has been vbérified, that
¥ there exists one and only one
x € wY with £(x) = 0]

else {No verification}

In steps 1 and 2 any floating-point arithmetic is
applicable, preferably one satisfying (R1), (R2),
(R4) and (R6). In steps 3 and 4 interval arithmetic
for higher linear spaces according to the
Kulisch/Miranker theory has to be applied.

Computational results are presented in [Ru83]. The
algorithms have been implemented on the UNIVAC 1108
at the University of Karlsruhe, on a Z80 - based min-
icomputer with 64 kByte memory and on a UNIVAC 1108.
It has been applied to nonlinear systems with up to
150 unknowns. The results were almost always of maxi-
mum accuracy.

The methods and theorems have been extended to over-
and underdetermined linear systems, linear systems
with band matrices, sparse linear systems, matrix
inversion, algebraic eigenvalue problems, real and
complex zeros of polynomials, linear, quadratic and
convex programming problems as well as to the evalu-
ation of arithmetic expressions. For all these class-
es of problems algorithms have been developed and
implemented. The achieved results were almost always
of maximum accuracy.

There are extensions of these algorithms to complex
number spaces, to interval spaces as well as to com-
plex interval spaces.

4. CONCLUSION

In the preceding chapters the theoretical backgrcund
and corresponding algorithms have been given for
solving linear and nonlinear systems of equations.
Corresponding algorithms for solving linear systems
(dense, band, overdetermined, underdetermined and
sparse), inversion of matrices, linear prograrming
problems and evaluation of arithmetic expressions
compute an inclusion of the solution with autoratic
verification of correctness, existence and unique-
ness; all this is in a self-contained manner. The oth-
er algorithms for non-linear systems, algebraic
eigenvalue problems, zeros of real and complex pclyn-
omials and quadratic and convex programming problems
assume an approximation of the solution for use in
computing an inclusion of the solution with automatic
verification of correctness, existence and unigue-
ness. This approximation can be obtained by a stand-
ard floating-point algorithm. Therefore the latter
procedures estimates the error of an approximate sol-
ution. In other words they verify the correctness of
an error margin (in addition to the verification of
existence and uniqueness). These "verification-al-
gorithms" could replace additional tests such as
altering input data, recomputing in higher precision
etc. Without the new algorithms these tests have to
be developed and utilized for each individual prohlem
by the programmer.

The new algorithms pérform the verification autonat-
ically without any effort on the part of the user,
without any knowledge about the condition of the
problem and most importantly, without deep mathemat-
ical background or an extensive investigation. This,
of course, is also true for the algorithms which com-
pute an inclusion of the solution directly without
initial approximation. This automatic error control
is a key property of all the algorithms presented
here. In this sense we use the Rulisch/Miranker
arithmetic with maximally accurate single operations
as a higher order computer arithmetic, solving basic
problems of numerical analysis.

REFERENCES

[AbBr75] Abbott, J.P., Brent, R.P.: Fast Local Csn-
vergence with Single and Multistep Metho>ds
for Nonlinear Equations, Austr. Math. Soc.
19 (series B), 173 - 199 (1975).

[A179] Alefeld, G.: Intervallanalytische Methoden

bei nicht-linearen Gleichungen, Jahrbuch

Ueberblicke Mathematik 1379, B.I. Verlag,

2uerich.

[AlHe74] Alefeld, G., Herzberger, J.: Einfuehrung
in die Intervallrechnung, Bibl. Inst. Mann-
hein, Wien, Zuerich 1974.
[Bo77] Bohlender, G.: Floating-point computation
of functions with maximum accuracy. ILEE
Trans. Comput. C-26, No. 7, 621-632, (1977%).
[Boesl] Boehm, H.: Automatische Unwandlung eires
arithmetischen Ausdrucks in eine zZur exek-
ten Auswertung geeignete Form, Bericht ces
Inst f. Angew. Math., Universitaet Karls-
ruhe (1981).
[Co73]) Cody, J.: Static and Dynamic Numerical
Characteristics of Floating-Point Arithre-
tic, IEEE Transactions on Computers, Vcgl.
C-22, 598-601, (1973).

[CoWeb6] Collatz, L., Wetterling, W.: Optimierungs-
aufgaben, Heidelberger Taschenbuecher,
Band 15, Springer Verlag, Berlin, Heidel-
berg, New York (1966).

307

[Fa76]

[Fo70]

[KaPa77]

[KoMa& 3]

[Ku69]

[Xu71]

[Ku76]

[KuMi81]

[Ma70]

[Ma75]

[MK80]

[MaMa73]

[Mo66]

{Ni66]

[Ru83]

[Ru84]

[Ste74]

Fateman, R.J.:
Point" Arithmetic System, Proceedings of
the 1976 ACM Symposium on Symbolic and Alge-~
braic Computation, Yorktown Heights, New
York, 209-213, (1976).

The MACSYMA "Big-Floating-

Forsythe, G.E.: Pitfalls in computation,
or why a math book isn't enough, Tech. Rep.
No. (C€sSl147, Computer Science department,
Stanford University, Stanford, California,
1-43.

Kahan, W., Parlett, B.N.: Can You Count on
Your Pocket Calculator, Memorandum No.
UCB/ERL M77,/21, April 1977, Electronics
Research Laboratory, University of Califor-
nia, Berkeley 94720.

Kornerup, P., Matula, D.W.: Finite Preci-
sion Rational Arithmetic, IEEE Transactions
on Computers, Vol. C-32, No. 4, April
(1983).

Kulisch, U.: Grundzuege der Intervall-
rechnung, Ueberblicke Mathematik 2, Her-
ausgegeben von D. Laugwitz, graphisches
Institut Mannheim, §. 51-98 (1969).

Kulisch, U.: An axiomatic Approach to
Rounded Computations, Numerische Mathematik
19, 1-17 (1971).

Kulisch, U.:

Grundlagen des numerischen

Rechnens, Reihe Informatik, 19, Mann-
heim/Wien/Zuerich: Bibliographisches
Institut (1976).

Kulisch, U., Miranker, W. L.: Computer

Arithmetic in Theory and Practice. Academic
Press, New York (1981).

Matula, D.W.: A Formalization of Floating-
Point Numeric Base Conversion, IEEE Trans-
actions on Computers, Vol. C-19, No. 8,
August (1970).

Matula, D.W.: Fixed-Slash and Floating-
Slash Arithmetic, Proc. 3rd Symposium on
Computer Arithmetic, IEEE Publ no. 75cH
1017-3C, 90~91 (1975).

Matula, D.W., Kornerup, P.: Foundations of
Finite Precision Rational Arithmetic, COM~
PUTING, Suppl. 2, Springer Verlag, 85-111,
(1980).

Marasa, J.D., Matula, D.W.: A Simulative
Study of Correlated Error Propagation in
Various Finite-Precision Arithmetics, IEEE
Transactions on Computers, Vol. C-22, No. 6,
June (1973).

Moore, R. E.: Interval Analysis. Prentice
Hall (1966).

Nickel, K.: Ueber die Notwendigkeit einer
Fehlerschranken-Arithmetik fuer Rechenau-
tomaten, Numerische Mathematik 9, 69-79.

Rump, S.M.: Solving algebraic Problems
with high Accuracy, 76 rages, in Proceedings
of the "IBM Symposium” on: A New Approach
to Scientific Computation, August 1982.
Edited by U.W. Kulisch and W.L. Miranker,
Academic Press (1983}.

Rump; S.M.: Solution of linear and nonline-
ar algebraic problems with sharp, guaran-
teed bounds, COMPUTING Supplementum 5, 23 p.
(1984). :

Sterbenz, H.: Floating-Point Computation,
Prentice Hall, 1974.

s

*
i
W

[swAl75)] Swartzlander, E.E.Jr., Alexopoulos, A.G.:

[st72}

[Va62]

The Sign/Logarithm Number System, IEEE
Transactions on Computers, Vol. C-24, No.
12, December (1975).

Stoer, J.: Einfuehrung in die numerische
Mathematik 1, Heidelberger Taschenbuecher,
Band 105, Springer-Verlag, Berlin, Heidel-
berg, New York (1972).

Varga, R.S.: Matrix Iterative Analysis,
Prentice Hall, Englewood Cliffs, New Jersey
(1962).

308

