Systolic Polynomial Evaluation and
Matrix Multiplication with

Multiple Precision

Jonathan Schaeffer
Darrell Makarenko

VLSI Research Group,
Department of Computing Science,
University of Alberta,
Edmonton, Alberta,
Canada T6G 2H1

ABSTRACT

The design and implementation of a systolic VLSI multi-precision polyno-
mial evaluator and matrix multiplier is described. The use of bit-serial ar-
ithmetic allows for a very simple cell design (two registers and an accumu-
lator) enabling a substantial number of cells to be placed on a chip. A
configuration of N? cells can evaluate N polynomials of N coefficients at N
points and perform N-width band matrix multiplication and N X N full

matrix multiplication, each in linear time.

Using current technology, 100

polynomials of 100 coefficients can be evaluated at 100 data points with 32
bit precision in an estimated one millisecond.

1. Introduction

Systolic algorithms for VLSI abound in the literature.
Most are presented from a theoretical point of view rather
than with view towards an actual implementation. Systolic
matrix multiplication algorithms, such as Kung’s {1] and
Weiser and Davis’ (2], are regular and elegant but do not
address the practical comsiderations necessary for a VLSI
implementation.  These  considerations include cell
complexity, chip area, and pin-out. In a VLS] systolic

design, maximum benefits can be achieved only if one can

place a substantial number of cells on a chip.

This paper presents the design and implementation of a
systolic VLSI polynomial evaluator and matrix multiplier. A
configuration of N? cells can evaluate N polynomials of N

coefficients at N data points and perform N-width band

CH2146-9/85/0000/0110$01.00 © 1985 IEEE

110

matrix multiplication and N X N full matrix multiplication,
each in linear time. Previous work has addressed the band
matrix multiplication problem [1,2] and the related inner-
product problem (3] without generalizing the solution to

include polynomial evaluation.

The cell used is simple in design and easy to implement
(essentially two registers and an accumulator) allowing many
cells to be placed on a single chip. The simplicity of the
design is a result of the bit-serial arithmetic and transmission
of data. For a computation such as a = § X ¢, the use of
bit-serial arithmetic allows arbitrary precision at no cost
along the a and ¢ data paths. Arbitrary precision can be
achieved along the b data path either linearly in time or

space.

There are 2 contributions made by this work. Firstly, a

systolic design for polynomial evaluation is presented. The




design uses a simple, bit-serial cell that is easily
implemented. Secondly, the same cell can be used to support

arbitrary precision matrix multiplication.

A prototype chip has been successfully fabricated. At

an  estimated clock speed of 200 nanoseconds, 100
polynomials of 100 coefficients at 100 data points can be

evaluated to a precision of 32 bits in 1.28 milliseconds.

2. Bit-serial Computations

Polynomial evaluation and matrix multiplication can be
viewed as a series of multiplications and additions. Having a
full multiplier and accumulator per cell is expensive in chip
area and would constrain the calculations to a fixed precision.
Thus an alternate means for performing the multiply and
accumulate operations was used, bit-serial arithmetic. Bit-
serial multipliers having been studied

are not new,

extensively in the literature [4,5]. Using a bit-serial
approach, a simple multiply and accumulate cell can be

designed.

A multiplier that computes the product s = a X b,
where a, b, and s are n bits in lehgth, is straight-forward to
construct. If b is latched in an n-bit register, then a can be
streamed bit-serially through the cell, each time adding the
value of that bit times b to the accumulator. If the bits of a
are entered in the order least to most significant (Isb to msb),
then the accumulator need only hold n bits. Since an
accumulation allows the Isb in the accumulator to take on its
final value, the accumulator can be shifted right each time

allowing the answer to stream bit-serially out of the
accumulator.

To allow successive values of a and s to be fed through
the cell, we require that they be the same length, that being
the maximum possible size that a, b, or s can take. After the

last bit of s for ome computation shifts out of the cell, new

values of @ and b can enter starting the next computation. A
stream of multiplier values, a, passing through the cell will
be referred to as the A data path. Similarly, the stream of
multiplicands, b, will be called the B data path and the

outputs, s, the S data path.

As all the bits of b are required for the multiplication,
they must all be present before the first bit of a arrives. This
is not quite true, as section 5 discusses means for breaking b
up’into smaller pieces. For the time being, it is assumed that
each cell has a latch large enough to accommodate all of b.
The number of bits, w, in this latch is referred to as the
cellwidth. b is sent bit-serially, starting w clock cycles in
advance of when it is needed, shifted in, and latched at the
appropriate time. The transmission of the new b value is
done concurrently with the arithmetic being performed on
the current b value.

Consider using two of these multipliers to compute

8= a; X by +.ayX b,
The product a, X b, streams bit-serially from the first
multiplier (M1) and must be added to the output a, X b, of
the second (M2). The accumulation of the product can be
pipelined if M2 is synchronized so that it begins only as soon
as the first bit of output from M1 is available. When M2
receives the Isb of a; X b, from M1, it can then compute the
Isb of @, X b, and add them, giving the Isb of 5. This is then
repeated for each of the successive bits of s. This can be
implemented by feeding the answer coming from M1 directly
into the low-order carry bit of M2's accumulator (Figure 1).
A row of cells inter-connected as described will solve

recurrences of the form

841 ™ 8 + a; X b" (Rl)

A recurrence relation very similar to R1 is

a1 ™0, + 8, X b (R2).

Essentially, both calculations are identical except for the




L
1

B,, Shift Register == B
Latch
mode ——— %
Wl Ot
Sin
+
Accumulator / Shift Register Sour

Figure 1. Cell Block Diagram

reversal of roles of s, and a;. A mode switch is implemented
which, under program control, can reverse the roles of 5,
and 4,, to allow either R1 or R2 to be computed. Looking
ahead, setting mode = matriz (R1) allows matrix
computations to be performed and setting mode = poly (R2)

allows polynomials to be evaluated.

3. Systolic Polynomial Evaluation

An arrangement of interconnected cells can be used to
evaluate a set of K polynominals. Each polyrominal has N
coeficients C', and is to be evaluated for a set of M different

X values.

JiX) = Cii X"+ € X724 - 4 Cin1 X+ C;

i = 1,M; j= 1K
A matrix of coefficients can be used to represent the
polynominals with each row in the matrix representing a
separate polynominal. The X values can be represented as a

vecetor.

Figure 2 illustrates the arrangement of cells required to

perform polynomial evaluation. Each cell has mode = poly

to perform the recurance relation R2, as described in the
previous section. For clarity, the figure depicts the data
moving in parallel along full width data paths whereas in the

actual implementation all bits travel serially.

The bits of the coefficients C and of the result stream
along the A and S data paths respectively, with P bits per
element and one bit per clock cycle. The bits of the X values
also travel sequentially along the B data path and contain w
bits per element (where w is the cellwidth as will be described
in section 5). They however, must be sent w clock cycles in
advance of their use so as to be latched by each cell when
needed. Each column of cells along the B data path all latch
simultaneously with the latching occuring P clock cycles
apart. The latching of adjacent columns is displaced by one
clock cycle. Simple counters can be placed on chip to

generate the latching signals required.

This arrangement of cells implements the well known

Horner's algorithm for polynominal evaluation.

Cin X" 14 €, X" 24 ... C. =

(-((C;p X + Cia) X X + Cia) X X +




oo ey i

b;

s

X3 Xy X; X3 X3 0 mode =
P a; 4 - ol fe— 4;
) poly
y
P
X X X X, X2 0
o L by
siv1=a; + 5, Xb;
. s
X\ X, X, X X1 0
. ”
TSN BV T
l’ ’I I,
7 . - Ch Cy Cyy
I/ ’, l’
7 ;
’ . ’
v ” ll
. - S =0 Ci Cx Cn
e . .
P . e
/’ ’l l,
L . Sl 0 0 Cy3 Cy Cy
II I’ l’
. . . -
Vi £ F

Figure 2. Polynomial Evaluation

On the first clock cycle the top right hand cell in Figure 2

evaluates €y, + X, X 0. In the next cycle the cell
diagonally below it evaluates (Cyy + X, x0)x X+ Cyp
This continues until the result f,(X,) emerges from the
bottom cell of the rightmost column. Thus the results flow
diagonally through the cells along the dashed arrows

emerging from the bottom.

It is necessary for the X values to be fed in twice in
order for all of the polynominals to be evaluated for all
values of X. The coefficients are only fed in once. Dummy
elements are used to pad the data when the number of

polynominals and the number of X values differ.

If there are K polynominals of N coefficients each with
M values of X, each of precision P, then the number of cells
needed in this arrangement is N X Maz(K,M) and the
evaluations can be

done in a time of

(2 X Maz(K,M) ~ 1)+(K X P) clock cycles.

113

4. Systolic Matrix Multiplication

If A =(a;) and B = (b;) are two N X N matrices,

then their product § = (s,;) is given by the equation

N
si= Dagb, i, j=1,N
k=1
This is really a calculation of inner products and can be
2-dimensional of cells with

performed by a array

mode = matriz (R1). For band matrix multiplication, the

interconnection format is the same as that used in [2] but
here the complexity of the individual cells is greatly reduced.
This is illustrated in Figure 3 with a band width of three. As
in polynominal evaluation, the figure shows the data paths as

full width for reasons

of clarity. They are in fact

implemented using the pipelined bit-serial manner described

in section 2.

For NXN band ’matriccs of band widths W, and W,
and precision P, the multiplication can be done using
W X W, cells in PX N clock cycles. Start-up costs were not

included in this timing, as they can be reduced by pipelining

one computation after another.




Slln SZIn

'z

+

1

'

]

¢

'

'

'

1]

v

[l

]

'

'

t

'

a D
3 [

]
1
1
!

%

'
'
)
'
t
'
1
[
!
[
'
]
1
'
'
'
1
'
v
]
'

B T g A NN I I ¥

slaut Slaw

sJIn

PN
00

s Jout

San SSin

5
)

ode = matrix

L 941

Si+1=85;+a; Xb;

P
- mm -

slaw SSout

Figure 3. Band Matrix Multiplication

Full matrix mulsiplication can also be achieved by
routing output results back into the top of the cell

arrangement. The details of this scheme are deseribed in [6].

As in polynominal evaluation, padding with dummy or
zero elements is necessary when non-square matrices are
involved. Very large matrices may need to be broken into
smaller matrices and the results mathematically reassembled

if the configuration of cells is not large enough.

6. Arbitrary Precision

In section 2 it was described how a and s were pipelined
bit-serially through an array of cells. There were no
constraints placed on the length of these bit streams.

However, the precision of b was governed by the size of the

cell latch. Since only a fixed, finite number of bits can be
stored per cell, it is necessary to break & up into smaller bit

streams to allow arbitrary precision. We store w bits of &

114

per cell and arrange for cells to abut together to

accommodate greater precision. This parameter w was

referred to in section 2 as the cellwidth.

Assume b requires P bits of precision, P > w. Then b

can be broken into

[—5] groups of w consecutive bits. The
\

low-order w bits of b can be multiplied by @ and added to s.

Systolic arrays of cells can be cascaded together to achieve
arbitrary precision as illustrated in Figure 4. There are [5]

arrays of cells; each using w bits of b. When s comes bit-
serially out of the first set of cells, the low order w bits are
part of the final answer. They can therefore be extracted at
this point and the remaining bits allowed to propagate into
the second set of cells as their initial Sia- These cells then
perform the calculations using the next significant group of
w bits of b. Actually, to allow proper accumulation of signed

numbers (see below), each set of cells should use only w—1




B
bits I to w

L]

——

B
bits w+1 to 2w

L]

Sz 0'—"

S 0 —

bits of b with bit w being set to the proper sign of b.

Arbitrary precision for b can be distributed over time
instead of space. The data can be fed through one set, of cells
repeatedly, each time varying the input bits of b, extracting
w bits of s, saving the high-order bits, and then feeding them

back into the array. However, additional extra storage is
required for holding intermediate results.

The algorithms described to this point work only for
positive integers. Two minor modifications to the cell are
required to accommodate two's complement arithmetic. The
first change is to enhanced the accumulator to contain w+2
bits. During the addition step the high-order (sign) bit of &
is added to bits w, wtl, and w+2 of the accumulator
allowing proper sign-extension. The carry out signal of the
high order bit of the accumulator can be ignored. During the
shift step the high order bit (w+2) of the accumulator

remains unchanged (sign extension).

After a multiplication involving negative numbers is
complete and the next one about to begin, there may be.

non-zero bits left in the second

accumulator. The
modification to the cell requires that when b is latched, the

accumulator be reset to zeros. The implementation details of

115

extract bits
l1tow of
Sl, Sz, and S]

extract bits
w1 to 2w of
S I Sz. and S3

Figure 4. Cascading Chips Together

both modifications are left for the next section.

8. Implementation

Figure 5 shows a block diagram of a single cell. A two-
phase clock controls the operation of the chip. During the
first phase $1, the cells perform the additions and during $2,
they shift right. The latching of the bits of B in the shift
register into the multiplicand register is signaled by the latch
pulse b—latch. A column of cells always latches at the same

time, 1 clock cycle after its left neighbor. The additional shift

register necessary to have the B-—latch signal shift from

column to column is not shown.

In laying out a systolic array of cells on a chip, pin-out
becomes the major constraint. There are 7 pins required for
overhead in our design; Vi, GND, &1, &2, b—latch,
b—latchout and mode. Multiplexing of any of the remaining
pins was not considered to avoid adversely affecting the data
rate and to minimize the extra control circuitry required.

To maximize the number of cells that can be placed on a
chip, the cells are arranged in a hexagonal grid. A hexagon
with M cells per side will contain 3SM(M—1)+1 cells. 4M—~2

pins are required for each of A, B, and S, giving a total pin




w bits

Shift Register F———m8,,,

I !

B-latch

Bln
B ~laich
Signal
A
in Latch
Sin "j%g)‘ Tbit

mode

=

Accumulator
Shift Register

Accumulator Reset Signal

carry in

Figure 5. Cell Layout

requirement of 12M—6. Thus 19 cells can be accommodated
in a 40 pin package, 61 in a 64 pin package, and 169 in a 100
pin package. As N the number of pins available increases the
number of cells on a chip can increase by O(N®). In
implementing such arrays of cells the cellwidth would be
chosen so as to utilize all of the area of the chip. This would

have no effect on the number of pins needed.

Chip-to-chip communication is the constraining factor
on the operating speed of the chip. This is typically less than
200 nanoseconds per minor clock cycle for current
technologies. If large arrays of cells are used, clock skew must

also be taken into account.

As an example, if 100 polynomials of 100 coefficients are

to be evaluated at 100 data points with 32 bits of precision
and using 40 pin chips (19 cells of 32 bit cellwidth per chip),
then 400 chips would be needed and the entire matrix
multiply would take 1.28 milliseconds
(32 X 100 X 2 X 200nanoseconds ). Using 100 pin chips the
number of chips reduces to 49. If the problem is band

matrices instead, then significantly less chips would be

116

needed (depending on the width of the band) but the time

would be the same.

As in any systolic array of chips, synchronization of the
input and output data is important. With a large number of
chips the combined bandwidth of all of the data paths may
exceed the memory bandwidth of most machines. We
envision the data being fed in and retrieved from the chip
array using a set of high speed sequencing ram chips placed
around the perimeter of the array. These ram chips would be

loaded prior to the actual calculations.

7. Conclusions

This paper has presented the design and implementation
of a polyncmial evaluator and matrix multiplier chip. Two
of the important features of the design are the simplicity of
the cell and the arbitrary precision of the calculations. Both
of these are the direct result of the bit-serial approach to
both the calculations and the transmission of data. Many of
the published systolic algorithms have been designed using

parallel data paths. Arguments given against the use of bit-




T e

i
§
i
]
23

serial transmission of data in systolic structures have been
based on the assumption that individual cell operations are
performed on full words. Once a bit-serial cell design is
chosen, bit-serial transmission of data becomes the natural
choice. This simplifies the cell logic, eliminates pin-out
problems, minimizes area loss due to routing, and maximizes

the flexibility of the design. With these major obstacles

overcome, the actual implementation is considerably

simplified. The cell design presented in this paper is easy to
build and small enough to accommodate a large number on a
single chip. It is these two attributes which are the essential

ingredients of any implementable systolic algorithm.

8. Acknowledgements

The authors would like to thank Dr. Cliff Addison for
his valuable comments and suggestions. The support of Dr.
Tony Marsland and Dr. John Tartar is also appreciated.
Special thanks to MuisHua Lim for her assistance and

patience.

9. References

(1) H.T. Kung, Lets Design Algorithms for VLSI Systems,
Proceedings of the Caltech Conference on Very Large
Scale Integration, January, 1979, Charles Seitz (ed.),
65-90.

(2) U. Weiser and A. Davis, A wavefront notation tool for
VLSI array design, CMU Conference on VLSI Systems
and Computations, October 19-21, 1981, Computer
Science Press, H.T. Kung, Bob Sproull, Guy Steel (ed.),
226-234.

(3) M.R. Buric and C.A. Mead, Bit Serial Inner Product
Processors in VLSI, Proceedings of the Second Caltech
Conference on Very Large Scale Itegration, January 19-
21, 1981, Charles Seitz (ed.), 155-164.

(4) LN. Chen and R. Willoner, An O(n) Parallel Multiplier
with Bit-Sequential Input and Output, Transactions on
Computers C-28(10), October, 1979, 721-727.

(5) R. Gnanasekaran, On a Bit-Serial Input and Bit-Serial
Output Multiplier, Transactions on Computers C-32(9),
September, 1983, 878-880.

(6) D. Makarenko and J. Schaeffer, A VLSI Multi-Precision
Matrix Multiplier and Polynomial Evaluator, TR 84-11,

Department of Computing Science, UNiversity of
Alberta, November, 1984.

17




