DESIGN OF A FAST INNER PRODUCT PROCESSOR

S. P. Smith and H. C. Torng

School of Electrical Engineering,
Cornell University,
Ithaca, New York 14853

Abstract

This paper presents the design of a fast inner product processor,
with appreciably reduced latency and cost. The inner product
processor is implemented with a tree of carry propagate or carry
save adders; this tree is obtained with the incorporation of three
innovations in the conventional multiply/add tree:

(1) The leaf-multipliers are expanded into adder subtress,
thus achieving an O(logNb) latency, where N denotes the
number of elements in a vector and b the number of bits in each
element.

(2) The partial products, to be summed in producing an inner
product, are reordered according to their "minimum align-
ments", bringing approximately a 20% saving in hardware.

(3) The reordering also truncates the carry propagation chain
in the final propagation stage by 2logb —1 positions,
significantly reducing the latency further.

A form of the Baugh and Wooley algorithm is adopted to imple-
ment two’s complement notation with changes only in peri-
pheral hardware.

1. Introduction
Very large scale integration offers the possibility of highly
dense circuitry and, hence, large systems in small packages.
Special-purpose processors for solving large numerical problems
are thus made feasible. One such numerical computation having
many applications is the inner product. The inner uct of
two vectors, ¢ = (a,ap—ay ¥ and d = (d 1 d pody X, is

N
gri = qu, = aldl + azd'2 +...4+ aNdN.
i=1

This calculation is central to digital filtering and signal process-
ing as well as matrix computations such as matrix multiplica-
tion. VLSI offers the opportunity to implement a very fast inner
product processor handling large vectors. Such a high-speed
hardware implementation ixﬁﬂ?,}x very useful, for example, in

real-time signal processing .

Matrix Multiplication Applications
Matrix multiplication is one application of the inner pro-
duct for which a number of specgl- Focessor designs
and algoritms have been proposegfﬁ'ﬂ%"'lfm . In the multi-
plication of NxN matrices, N2 inner products, each of N-
element vectors, must be computed. Each inner product consists
of N independent multipljlcatioP.i MZ'QI —1 additions to sum
thosel Fx%iucts. Systolic arrays™— ™"’ and related architec-
tures” ™" employ linear pipelining of this inner product opera-
tion, sequentially accumulating the sum of N products for each
result. Properly interweaving N inner product pipelines enables

The research reported in this Ppaper is supported in part by a grant from
RCA/Government Systems Division.

CH2146-9/85/0000/0038$01.00 © 1985 IEEE

38

the input bandwidth to be limited to O(N) vector elements per
time instant, because the data can be reused within the array.
This multiplexing of the hard ware among several inner products
then establishes good throughput in an efficient way. On the
other hand, a disadvantage of this pipelined accumulation is that
the time from the start to the finish of one inner product (the
“latency") is linear in N. For long vector length N, the delay
from the time data are available to the time its inner product is
computed is excessive for high speed matrix computation applica-
tions, such as real-time signal processing. Speed is sacrificed for
the lower I/O bandwidth permitted in sequential accumulation,
and, as long as concurrency in the accumulation is not exploited,
this latency cannot be decreased.

Previous Work

The problem at hand is to design a fast inner product pro-
cessor that will take advantage of concurrency and efficiently
act as the basic execution unit of a matrix multiplier.

Swartzlander et al. present an i%erwting design employing
the "quasi-serial multiplier” concept“’. The quasi-serial multi-
plier computes one multiplication by generating the partial pro-
duct bits for each bit position, one bit position at a time, and
sums them using a parallel counter. The inner product com-
puter uses N quasi-serial multipliers (for N-vector inner pro-
ducts) and sumg all the N sets of partial product bits in one
parallel counter“®, The latency, L, in this approach is shown to
be approximately

L =25 + fogNX2ogNb] ~ 1X/,,

where t5, is the delay of a single-bit full adder, b is the
number of bits in each vector element, and N is the number of
elements per vector. Although latency is logarithmic in N, the
bit serial approach introduces a linear factor of b, which is
undesirable for minimizing latency. Performance comparisons
were made with a binary tree consisting of bit-parallel multi-
pliers for leaves and biit-pai%llel adders for internal nodes. The
performance comparison (“°, Table 1) shows that for b=8 and
N=64 and 256 the unpipelined multiply/add binary tree has a
much shorter gatency than the unpipelined quasi-serial processor.
Blankenbaker” stated that the throughput of the pipelined
quasi-serial processor proposed would actually be much lower
than expected. In any case, although the complexity of the tree
is admittedly greater than that of the quasi-gerial processor, the
tree better achieves our objective to minimize latency.

Buric and Mead® investigated bit-serial inner product pro-
cesors for VLSI implementation, restating the
multiply/accumulate linear pipeline in the context of bit-serial
arithmetic. A multiply/add binary tree structure is then intro-
duced, consisting of bit-serial multipliers for leaves and single-
bit full adders for internal nodes. The latency is logarithmic in
N, but again includes a linear factor of b due to bit-serial pro-
cessing.

Ciminiera and Serral? presented another pipeline scheme,
consisting of a single multiplier and accumulator pair. The mul-

e

tiplication operation is partitioned into an array of two-bit by
two-bit multiplication cells. In this array, each vector element
pair is multiplied in a pipelined fashion. The inner product is
then produced by iterative accumulation of the multiplier array
output. Although pipelining increases system throughput,
latency is still linear in N.

Problem De finition

We will investigate the design of an inner product proces-
sor achieving reduced latency and cost and maintaining
throughput at acceptable levels, preferably comparable with pre-
vious designs.

More specifically, consider the following definitions:

latency, L = the time from the beginning of the computstion of
an inner product to the completion of that product;

throughput, r = the number of inner products compleved per
unit time (steady state), or the inverse of the time between suc-
cessive completions,

Our objective is to design an inner product processor for N-
element vectors (b bits per element) such that (1) L is reduced as
much as possible, at least so as not to depend linearly on N or b,
(2) the number of adders and multipliers is less in comparison
with the hardware requirements of other designs, and (3) r
matches the throughputs of previous designs in its dependence
on N and b. We will also assume no constraint exists on the
availability of operands.

2. Processor Design

Tree

One approach to inner product computation is a binary
tree. Figure 1 depicts one such tree for N=4 and b=8. Leaves
are multipliers, and internal nodes are adders. (The details of
the multiplier and adder nodes will be brought out below when
necessary.) The tree (with bit-parallel processing) has the advan-
tage of O(logN) latency, and with pipelining can achieve high
throughput.

Adder
Z
X e X X Multiplier
bl L | rtll
a d. a dl a dz a d

Figure 1. A multiply/add binary tree for N=4 and b=8.

In matrix multiplication, the tree has a number of advan-
tages over the various array schemes mentioned above. N such
tree processors operating in parallel can generate successively the
rows (or columns) of the product of two NxN matrices. High
throughput can be attained by pipelining, implemented by the
addition of registers between levels of each tree. N pipelined
trees can produce these matrix products at a throughput of one
product every N phases of the pipe. This throughput would
therefore matcki 1“5{) throughput of square array designs previ-
ously suggested "‘1 P well as the hexagonal systolic array of
Kung and Leiserson™".

39

The hardware required for this set of trees is NV 2 multi-
pliers and N 2—N adders. In comparison, an NxN square array
of mulfiplier-accumulators requies N 2 muitipliers and N?
adders” *“”. The hexagonal array = requires for denfg matrices
3N2=3N +1 multipliers and 3N?-3N +1 adders“” - more
hardware than the tree requires.

On the other hand, there are drawbacks to the tree scheme.
The circuit layout of a tree is not as regular as an orthogonal or
hexagonal array, and the interconnections between nodes may
have to vary in length and, hence, in delay. The longest of these
interconnections may significantly increase latency and, if there
is pipelining, clock cycle time. The number and complexity of
these interconnections may also demand large chip area, radi-
cally altering the above hardware comparisons. In addition,
since each tree takes 2N operands, a matrix multiplier of N pipe-
lined trees must be fed 2N 2 operands every phase of the pipe.
The square and hexagonal arrays, however, require only O(N)
I/0 bandwidth.

We will focus our investigation on modifying the tree
structure to achieve significant savings in hardware and reduc-
tions in latency.

Modi fications
Regrouping Partial Products

We will treat the multiplication of two vector elements as
a summation of partial products and expand the multiplier
leaves into subtrees of adders that sum these partial products.
Figure 2 illustrates this expansion of the tree for N=4 and b=8.
Substituting adder subtrees for multiplier leaves gives O(logb)

delay for the multiplication, since each subtree has logb levels.
The total latency for an inner product then becomes

L= (lOgN + lOgb)tadd’

where t,;, is the delay incurred at each level for addition, sig-
nal propagation, and (if pipelining is employed) register
transfers. (We will henceforth assume that N and b are integral
powers of two.)

Figure 2. The multiply/add tree for N=4 and b=8 with multi-
pliers expanded into adder subtrees. The box encloses one multi-
plier.

The key advantage in expanding the multiplier leaves is
that we now have access to the partial products before they
enter the tree. We can then rearrange the partial products, as
we will discuss below, so as to reduce overall latency as well as
hardware. In order to clearly describe these rearrangements and
the resulting advantages, we must introduce some terminology.

We define the alignment of a binary number as the
number of right-hand zeros it has, expressed in units of bits.
Thus, 101100000 has an alignment of five (or five bits), and
110100 an alignment of two (or two bits). We will say that
pumbers having the same number of right-hand zeros are of
equal alignment. In the discussion that follows, many of the
numbers under consideration have a predetermined number of

right-hand zeros introduced independently of the values of the
remaining bits in the higher order bit positions. For example, we
may deal with some unspecified four-bit number. If that
number is shifted left three bits, we know that whatever the
specific number is, it has an alignment of at least three. There-
fore, we define the number of right-hand zeros that a number is
forced to have independent of the specific data as the minimum
alignment () of the number. In our example, consequently,
the shifted number has a 4, = 3.

With these definitions, we see that we originally (Fig. 2,
expanded a multiplier leaf into a subtree of adders summing
partial products of staggered minimum alignments. We now list
all the partial products involved in an inner product and
regroup them in sets of equal minimum alignment. Figure 3
gives an example of this regrouping for N=4 and b=8. These
new collections of partial products are then supplied to the tree.
We redefine a subtree to include only enough adders to sum the
N (=4) partial products of equal minimum alignment, instead of
the b (=8) partial products of staggered alignment (generated in
one multiplication). Notice that none of the @nin right-hand
zeros for any partial product need to be included in the summa-
tions computed in the subtrees, since the sum of numbers of
equal minimum alignment has the same minimum alignment.
All the subtrees can therefore receive b-bit numbers (b=8 in our
running example), by excluding the ey, insignificant right-
hand zeros, thus maintaining all subtrees identical.

XXXX XX XX
. P XXAX XXX
ek — KL
XXXAXXX X //'xxxxxg&(
XXXXX XXX xxxﬁiixx’
XXAARERRK /// FRER
XXX XXX XX d /o RRRRRRRR
AR RXRKK XXX XXX X
ey EXRR AR
4 / xxxxxxx}(
- / XAXXXXKK
e xR
XXX XK X
XEXXRXKX / KX XXXUK X
AAXRX AR / iy
AAXXXX XX ;‘(X)&XXXX
XX XXX XX % XXRXAXX X
X)(XXXX)()(A RX X XXX X
« D SIS
< xxxx ;x / xx,xxxxxx
Qxxxxxxx
g‘(xxx%xxx
B T Ly y XXX AKX X
XXXXXXX X / X XXX X XXX
LB S
x:’;;;;;;x / REXXRRRX
RO XXXKKXKK KK XXKKXFXX
XX X XXX X
X
XXX XK XX
. XXX XX
EAXK XXX X
XXXXXXX X
ERXKX XXX
KXXXXXXX
XX XXX XX X
XX XXXX XX
+ RXXXXKKX

XX X XXX X
X X

Figure 3. Rearranging partial products into groups of equal
minimum alignment for N=4 and b=8. Each group will feed
into separate subtrees (unnecessary righthand zeros omitted)
before combining with numbers of different minimum align-
ment.

The modified tree structure for Ned and be§ is shown in
Figure 4. (Logic to generate the partial products is omitted.) The
minimum alignments associated with partial products input into
the tree increase from zero at the left-most subtree (enclosed in a
box) to seven at the right-most subtree. Once each group of par-
tial products of equal minimum alignment is summed in its
respective subtree, the remainder of the additions in the tree
must accomodate unequal minimum alignments among the sub-
tree outputs. For example, the output of the subtree for

min = O (subtree 0) is added to that for @, = 1 (subtree 1).

Since we have already shown that only the uppermost b-bits of
the partial products must be fed into the tree, the output of sub-
tree 1 does not reflect its true minimum alignment, but appears
to have @y, = 0. To compensate, we must shift the bits output
by subtree 1 left one position. This shift is sim‘p_ly accomplished
in the placement of wires and is signified by 1 associated with
the shifted data path. The outputs of subtrees 0 and 1 can then
be correctly added.

logh = 3§

Figure 4. Expanded tree for N=4 and b=8§ taking reordered par-
tial products.

Since, throughout the rest of the tree, addends are com-
bined that are nearest to each other in minimum alignment, only
the smallest shifts necessary are made. Asa result, at each level
requiring shifting all shifts identical, as shown in Figure 4. In
addition, the shifts double at each higher level, because the
difference between the minimum alignments of addends to be
combined increases by a factor of two with each successive level.

Carry-Save Adder Implementation
Another possible alteration to the tree will be the substitu-

tion of carry-save adders for carry-propagate adders. Carry pro-
pagation has hitherto occurred in every addition in our tree,
introducing carry propagation delay at every level. A tree of
carry-save adders E’CSA'S) will postpone all carry Pﬁ‘ipfﬁ%m
until the very last stage, thus reducing overall latency”*1 >V,
Since CSA’s are three-input, two-output adders, they do
not inherently produce binary trees. We can, however, maintain
a binary tree structure by applying the following mapping.
Combine pairs of adjacent carry-propagate adders having the
same parent in the original tree. Notice that such a pair can be
considered as a new type of adder node, having four inputs and
two outputs. The resulting tree of such nodes is also a bj
tree. We will now implement each adder node with two CSA’s.
The mappings from carry-propagate adders to adder nodes with
CSA's is shown in Figure 5. An adder node (or node) is thep
defined by the mapping in Figure 5 as a four-input, two-output
adder circuit composed of two CSA’s connected in sequence.

Figure 5. Mapping from carry-propagate adders(left) to adder
node consisting of two CSA’s in series.

Lastly, we define a type [tree as one in which partial pro-
ducts of staggered minimum alignment (associated with one
multiplication) are grouped together and a type I tree as one in
which partial products of equal minimum alignment are
grouped.

3. Design Evaluation

Hardware

To explain clearly how a saving in hardware arises, we
will first consider trees I and II as implemented with carry-
propagate adders. The carry-propagate versions of trees I and II,
along with the widths of all data paths, are shown in Figure 6.
Notice that data paths are narrower in the type I tree. In the
type I tree, the number of data paths we must add to the initial
b-bit width at first increases rapidly with the number of levels:
b=8 bits input to the leaves grow to 2b=16 bits, an increase of
b=8 bits in logh + 1 =4 ‘levels. Further additions o path
widths grow linearly with the number of levels 25 :=:16 bits
expand to 2b + logN = 18 bits, an increase of logN = 2 bits in
logN =2 levels. In the type II tree, on the other hand, the
extension to path widths that we must add to the initial b-bit
width increases at first linearly with the number of levels b =8
bits expand to b + logN = 10 bits, an increase of logN = 2 bits
in logN = 2 levels. Further additions to path widths then grow
exponentially with the number of levels: b + logN = 10 bits
expand to 25 + logN = 18 bits, an increase of bw=8 bits in
logb + 1 = 4 levels. The final path width is the same, but the
regrouping of partial products postpones the fast growth of
the path widths. Hence, adders handle fewer bits, reducing

hardware cost, sitaply because we reordered these partial pro-
ducts.

+< 12,2
. (B o+
& ®
CICIGICIO

(b)

Figure 6. A comparison of data path widths in trees consisting
of carry-propagate adders (N=4 and b=8). (a) The standard
multiply/add tree (I). (b) The altered tree (ID).

41

Thi 6tota1 number of carry-propagate adder bits necessary
in tree I*" is

B; = Nb(b +logh + 1)+ 2N —b ~ 1)+ logN .
The total number of carry-propagate adder bits in tree 1126 is
B = Nb(b +2) + (2b — logN + b(loghb — 3).

. B .
Values for B;, 8;;, and the hardware gain, —-L, are shown in
1
Table 1 for b = 8, 16, and 32,and N = 8§, 16, 32, 64, and 128.

Table 1: B;;/ B; for carry-propagate adder trees.
b
N
4 8 16 32 64
256 | .805 .821 855 895 .930
128 | 809 824 858 897 931
64 | 817 831 862 899 933
32| .829 841 869 904 936
16 | .850 858 881 912 940
8 | .884 886 901 925 .948
4 94 927 930 944 960

Similarly, Table 2 shows values for B;, 8;;, and the hardware

gain, —B{I—, for trees I and II implemented with adder nodes

1
according to the mapping of Figure 5. These two trees and their
path widths are shown in Figure 7. The values in Table 2 were
obtained numerically by a program that traversed the tree of
adder nodes and computed the sum of CSA output path widths.
This hardware improvement has come without any sacrifice in
speed.

#

(b

Figure 7. A comparison of data path widths in trees consisting
of adder nodes (N=4 and b=8). (a) The standard multiply/add
tree (I). (b) The altered tree (ID).

¥

\\..4»

Table 2: B;; / B; for carry-save adder trees.

b

N
4 8 16 32 64
256 | 778 | 763 | 796 | .844 | .891
128 | 778 | .764 | .797 | 845 | 892
64 | 778 | 765 | 798 | 846 | .893
32 1.778 | 767 | .800 | .848 | .894
16 | .779 | 771 | 805 | .852 897
8 . .784 | 780 | 815 | .861 | .903
41795 | .801 | .836 | 878 | .916

Regarding other hardware concerns, circuit layout becomss
no worse here than for the tree before rearranging partial pro-
ducts, and certain patterns in trees emerge that simplify design.
From Figure 7 it can be seen that both approaches present simi-
lar patterns in their tree layouts. Note that every node acts as a
ToOt t0 & tree within the entire tree structure. To avoid confil-
sion with the previous discussion concerning subtrees, we will
term these trees inner trees. Observe now that all inner trees
having roots at the same level are identical Thus, in Figure 7,
the first level has sixteen identical leaves in either approach, the
second level has eight nodes all roots of iden tical trees, the third
level four such root nodes of identical trees, and so on. So only
logNb —1 =1logN + logb — 1 unique nodes (one for each
level) need to be designed for either approach, the remaining
nodes being merely duplicates of these. These patterns should be
exploited to simplify circuit layout.

Latency

The latency of the CSA tree (types I and I) is
L =200gN + logh — 1)tcg,, Where fcsa is the delay for sig-
nal propagation from one CSA to another, including any latch-
ing delay. Now, howevg,mrstmust add the delay from a carry-
lookahead adder (CLA)'>*1>% needed to add the final sum anc!
carry terms of the last CSA. The delay of the CLA may form s
bottleneck on the system, because carry. propagation does not
occur except in the CLA. By reordering the partial products by
equal minimum alignment, however, we can truncate the chain
of carry propagation computed in the CLA and therefore reduce
overall latency.

To reduce carry propagation in the CLA, we increase as
much as possible the number ¢ [right-hand zeros in one addend,
because carry propagation will not begin until the bit position
Where both operands are non-zero. By guaranteeing that the
minimum alignment of one addend is large relative to the other
(the number of bits of the final sum remaining unchanged) we
ensure that the number of bit positions through which a carry
may propagate is reduced. By the standard multiply/add tree
(tree I), the final C and S addends (the two CLA inputs) have
minimum alignments equal to one and Zero, respectively,
yielding the maximum propagation possible. The above reorder-
ing of the partial products, however, will minimize this propaga-
tion. The largest minimum align%mr of the final C (Cipy) is
derived and found to be 21ogb®®. (The final S must have
Qmin = 0.) By rearranging partial products, therefore, we
increase @p(C rine) from one in tree I to 2logb in tree I For
b=8 and-N=4, the fina] result has 25 4 logN = 18 bits, and
2ogb =6, 50 the carry propagation chain drops 29.4 percent
from 17 bits (tree I) to 12 bits (tree I0).

In short, merely reordering data both cuts down latency by

reducing carry propagation in the CLA and achieves this
improvement with a reduction in hardware.

4.Two's Complement I'mplementation

With minor alterations, the processor described above can
accept data in two’s complement notation. We have applied the
scheme presented by Baugh and Wooley” and, in particular,
have employed an intermediate form of their algorithm
described as follows.

For simplicity, we will consider the case where N=1 and
b=4, that is, the multiaplication of two four-bit numbers. Let
= XXX = —x328 + 2,22 + x,20 + x2° (two's comple-
ment notation). Let y be similarly defined. The product, xy,
may then be written as an array of partial product bits:

Yo Y2Xo YiXo YoXo
~Y3< YoX1 YiXi Yox;
Y2 y2X2 Y1X2 YoX2
TYE3 —yax3 —yix3 —yex,

From the three columns that contain negative bits we may
derive two 3-bit negative numbers ~Y3a%¥2 —Y3xX; —ysxo and
TY2%X3 —y1X3 —YoX3 To convert these to two’s complement
notation, we complement and add one:

1 1 yyx; yax; yaxi)
1 1 ypx; ypxs yors

The 1's in the upper bit positions constitute sign extensions neces-
sary to add these two’s complement numbers into the total sum
correctly. The two's complement equivalent of the above array
of partial products is therefore given below:

— Y3¥o Y2Xo YiXo YoXo
— Y3X1 Y2X1 Yi1X1 YoX;
YaXa YaX2 Y3X2 YoX2
Ya%3

Yax, Y1%X3 Yox3
1 1 1
1 1 1

For cases with N > 1, we can look upon each row as represent-
ing N rows of partial product bits of the same form.

This last array of partial product bits is the intermediate
form of the Baugh and Wooley algorithm that we will employ.
We will generate this array and sum the bits using the tree. As
a result of this scheme, the adder node tree of Figure 7(b) for
non-negative numbers can serve without alteration to sum these
bits.

Latency will increase somewhat, because of the introduc-
tion of extra 1’s to be added. The value of these 1’s summed
together (N and b being powers of two) is

o = 2B -IHRN | 326-2+logN | pb—1+logh .

Thisconstantcanbeaddedtotheoutputort‘theCLAmgebyan
additional CLA stage. In this case, although throughput can

remain unchanged via pipelining, latency will increase by the
delay incurred in the new CLA.

Furthermore, NAND gates must be introduced into the
partial product generation logic. Whereas for only positive
numbers, N2 AND gates were employed, now 2N (b—1)
NAND and N (5—17 AND gates are required. This change is
minor, and although it affects the design process, no new delay is
added.

5. Conclusion,

Our objective has been to design a fast inner product pro-
cessor with reduced latency and reduced cost, while maintaining
throughput comparable with other reported structurrs. We
achieve the stated objective by introducing three modificstions to
the conventional multiply/add tree:

(1) The leaf-multipliers are expanded into adder subtrees and
thus achieving a resulting O(logNb) latency;

The partial products are reordered accord ing to
"minimum alignment”; this reordering brings about zpproxi-
mately a 20% saving in hardware;

(3) The partial products are also reordered to truncate the
carry propagation chain in the final carry propagation siage by
2logb - 1 positions, further reducing latency.

A simple adjustment is identified to accommodate operands
expressed in two's complement notation.

Acknowledgment

We thank Dr. D. Gandolfo and Dr. T. Martin for their
assistance and encouragement.

Re ferences

(1} G. Alia, " VLSI Systolic Arrays for Band Matrix Multiplica-
tion", Integration, Vol. 1, No's. 2 & 3, Oct. 1983, pr. 233-
250.

(2] D. Agrawal and T. Rao, "On Multiple Operand Addition of
Signed Binary Numbers", JEEE Trans. Computers, (C-217,
No. 11, Nov. 1978, pp. 1068-1070.

[3] W.C. Booth, " Approaches to Radar Signal Processing”, Com-
puter, Vol. 16, June 1983, pp. 32-42.

[4] G. Bilardi, M. Pracchi, and F. Preparata, " A Critique of Net-
work Speed in VLSI Models of Computation”, JEEE J.
Solid-State Circuits, SC-17, No. 4, Aug. 1982, pp. 696-702.

[5] John V. Blankenbaker, "Comments on Inner Product Com-
puters”, IEEE Trans. Computers, C-28, No. 12, Dec. 1979,

p- 944.

[6] Misha R. Buric and Carver A. Mead, "Bit-Serial Inner Pro-
duct Processors in VLSI", Caltech Con ference on VLS., Jan.
1981, pp. 155-164.

[7] S-A. Browning, "Computations on a Tree of Processars, Cal-
tech Con ference on VLSI, Jan. 1979. pp- 453-478.

[8] K. Bromley, JJ. Symanski, JM. Speiser, and H.J. White-
house, "Systolic Array Processor Developments”, in VLS
Systems and Computations (cited above), 1981, pp. 273-284.

[9] CR. Baugh and B.A. Wooley, " A Two's Complement Perallel
Array Multiplication Algorithm', IEEE Trans. Computers,
C-22, No. 12, Dec. 1973, pp. 1045-1047.

[10] J.JF. Cavanaugh, Digital Computer Arithmetic: Design and
Implementation, New York: McGraw-Hill Book Co., 1984.

(11] M. Chen and T. Murata, "Efficient Matrix Multiplications on
a Concurrent Data-Loading Array Processor”, Proc. 1EEE
Int. Conf. Parallel Processing, 1983, pp. 90-94.

[12] L.Ciminiera and A. Serra, " Arithmetic Array for Fast [nner
Product Evaluation”, Proc. IEEE Sth Symposium Computer
Arithmetic, 1981, pp. 207-214.

[13] L. Dadda, "Some Schemes for Parallel Multipliers®, Alta
Frequenza, Vol. 34, March 1965, pp. 349-356.

(14] D. Gordon, L Koren, and G. Silberman, "Embedding Tree
Structures in VLSI Hexagonal Arrays®, JEEE Trans. Com-
puters, C-33, No. 1, Jan. 1984, pp. 104-107.

43

134] DM. Wilcox and RJ. Nichols, "Optical Sensor Si

[15] K. Hwang, Computer Arithmetic: Principles, Architecture,
and Design, New York: John Wiley and Sons, 1979.

[16] H.T. Kung and C.E. Leiserson, " Algorithms for VLSI Proces-
sor Arrays’, Introduction to VLSI Systems, C. Mead and L.
Conway, Reading, MA: Addison-Wesley, 1980, pp- 271-291,

{17] HT. Kung, “Special-Purpose Devices for Signal and Image
Processing: An Opportunity in Very Large Scale Integration
(VLS)", SPIE Real-Time Signal Processing 111, Vol. 241,
1980, pp. 76-84.

[18] H.T. Kung, L.M. Ruane, and D. Yen, "A Two-Level Pipe-
lined Systolic Array for Convolutions", in VLSI Systems
and Computations, H.T. Kung, B. Sproul, and G. Steele, eds.,
Rockville, Maryland: Computer Science Press, 1981, pp.
119-123.

[19] HLT. Kung, "Why Systolic Architectures?”, Computer, Vol
15, No. 1, Jan. 1982, pp. 37-45.

(20] S.Y. Kung, K. Arun, R. Gal-Ezer, and D. Rao, "Wavefront
Array Processor: Language, Architecture, and Applications”,
IEEE Trans. Computers, C-31, No. 11, Nov. 1982, pp.
1054-1066.

[21] CE. Leiserson, Area-E ficient VLSI Compuation. (PhD
dissertation), Cambridge, MA: The MIT Press, 1983.

f22] I.v. McCanny and J.G. McWhirter, Bit-Level Systolic Array
Circuit for Matrix Vector M wtiplication, IEE Proceedings,
Vol. 130, Pt. G, No. 4, August 1983, pp. 125-130.

(23] C. Mead and M. Rem, *Minimum Propagation Delays in
VLSI", IEEE J. Solid-State Circuits, SC-17, No. 4, Aug.
1982, pp. 773-775.

[24] 1.G. Nash, S. Hausen, and G.R. Nudd, " VLSI Processor Arrays
for Matrix Manipulation”, in VLSI Systems and Computa-
tions, H.T. Kung, B. Sproul, and G. Steele, eds., Rockville,
Maryland: Computer Science Press, 1981, pp- 367-378.

[25] W. Ruzzo and L. Snyder, "Minimum Edge Length Planar
Embeddings of Trees", in VLSI Systems and Computations
H.T. Kung, B. Sproul, and G. Steele, eds., Rockville, Mary-
land: Computer Science Press, 1981, pp. 119-123.

(26] S.P. Smith and H.C. Torng, "Design of a Fast Inner Product
Processor", Technical Report EE-CEG-84-5, School of Electri-
cal Engineering, Cornell University, Ithaca, NY, Oct. 1984.

(27] EE. Swartzlander, Jr., "The Quasi-Serial Multiplier", JEEE
Trans. Computers, C-22, No. 4, April 1973, pp. 317-321.

(28] Earl E. Swartzlander, Jr, Barry K. Gilbert, and Irving S.
Reed, "Inner Product Computers”, IEEE Trans. Computers,
C-27, 1, Jan. 1978, pp- 21-31.

[29] 8. Singh and R. Waxman, *Multiple Operand Addition and
Multiplication”, JEEE Trans. Computers, C-22, No. 2, Feb.
1973, pp. 113-120.

[30] 3. Vanaken and G. Zick, "The X-Pipe: A Pipeline for Expres-
sion Trees", Proc. 1978 Int. Conf. Parallel Processing, pp.
238-245.

[31] CS Wallace, "A Suggestion for a Fast Multiplier®, IEEE
Trans. Electronic Computers, EC-13, Feb. 1964, pp- 14-17.

(32] S. Waser, "High-Speed Manolithic Multipliers for Real-Time
Digital Signal Processing”, Computer, Vol. 11, No. 10, Oct.
1978, pp. 19-29.

{33] S. Waser and M.J. Flynn, Zntroduction to Arithmetic fro
Digital Systems Designers, New York: Holt, Rinehart and
‘Winston, 1982,

1 Pro-

cesting Requirements for Ballistic Missile Defense » SPIE

Real-Time Signal Processing I11, Vol. 241, 1980, pp. 2-10.

