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ABSTRACT

This paper describes recent progress
implementation of high speed
systems with state-of-the-art commercial and
semi-custom VLSI circuits. Initial efforts are
producing Fast Fourier Transform (FFT) and inverse
FFT processors that operate at data rates of up to
40 MHz (complex). The current implementation
computes transforms of up to 16,384 points in
length by means of the radix 4 pipeline FFT
algorithm, The interstage reordering is performed
by delay commutators implemented with semi-custom
VLSI, while the arithmetic 1is performad by
commercial single chip 22 bit floating point adders
and multipliers. This paper explains the pipeline

in the
spectrum analysis

FFT implementation and focuses attention on the
arithmetic used to realize the design.
INTRQpUCTIQﬁ
Although the Cooley-Tukey FFT algorithm
developed in 1965 has made it possible to apply
digital techniques to many signal analysis

applications, many others (e.g., radar and sonar
beam forming, adaptive filtering, communications
spectrum analysis, etc.) require combinations of
flexibility and speed necessitating computational
performance that exceeds the present state of the
art. Current data acquisition technology demands
analysis bandwidths of 25-50 MHz for real time
operation. Currently, there are three apprecaches:
software implementation on general purpose
computers, software implementation on a general
purpose computer augmented with a Programmable
Signal Processor (PSP), and custom hardware
development. Software only and Software-PSP
implementations are adequate when the spectral
bandwidth is wunder 1 MHz. Custom processors
achieve analysis bandwidths of 1-10 MHz bur most
are optimized for a specific application and
require extensive (and expensive) redesign to
modify them to suit other applications. Thus
general purpose computers with or without PSP
augmentation are too slow while custom processors
are too expensive and lack the required
flexibility.

Current signal processing systems require many
diverse functions: transform processors, time and
frequency domain vector processors, and general
purpose computers. Work is underway to produce a
growing family of building block modules to
facilitate the development of such systems on a
semi-custom basis. The result is the ability to
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quickly develop high performance signal processing
systems for a wide variety of algorithms. The use
of predesigned and precharacterized modules reduces
cost, development time, and most importantly, risk.

A critical design decision in signal processing
concerns the arithmetic implementation. There are
three somewhat contradictory requirements: 1) high
speed to accommodate increasing signal bandwidths,
2) high precision, to minimize computational error,
and 3) wide dynamic range, to accommodate various
signal and noise levels without overflow. A wide
variety of techniques are employed in signal
processing due to the relative importance of these
requirements for specific applications. At the
highest speeds, analog techniques, such as SAW

devices, are often employed. In audio and
geophysical applications, where high accuracy is
needed but speed 1s 1less critical, minicomputers

can perform high precision operations in firmware.
In most digital signal processing applications,
both accuracy and speed are important. Many users
have compromised on 16-bit fixed-point arithmetic.
Although fast, fixed point arithmetic can lead to

overflow errors or loss of precision, unless
complex data dependent scaling 1is provided.
Recently floating point arithmetic has become

feasible, in part due to the attainment of high
levels of integration via VLSI. Most floating
point digital signal processing systems have used
32 bit formats which provide far more precision and
dynamic range (and circuit complexity) than is
justified by the data. The recent availability of
22 bit floating point single chip adders and
multipliers provides the opportunity to use a
simpler implementation that is more consistent with
signal data.

SIGNAL PROCESSING MODULES

The initial set of signal processing modules
includes a data acquisition module, building block
elements that are replicated to realize pipeline
FFT and inverse FFT modules, a frequency domain
filter module, a power spectral density
computational module, and an output interface
module {1,2}. The modules all have separate data
and control interfaces. All data interfaces
satisfy a common interface protocol so that modules
can be connected together to form architectures
that match the data flow of each specific systenm.
The separation of the data and control is analogous
to the Harvard mainframe computer architecture
which uses separate data and instruction memories
to eliminate the "von Neumann bottleneck.” In




signal processing the separation of data and
control allows the simple data interfaces to
yperate at high speed while the more flexible (and
complex) control interfaces operate at a slower
rate.

Due to its importance in most signal processing
applications, the FFT module was selected for
initial development. The FFT processor uses the
radix 4 pipeline algorithm developed a decade ago
at Lincoln Laboratory [3] as an extension of the
radix 2 pipeline FFT algorithm [4]. With the radix
4 pipeline algorithm, 4 data pass in parallel
through a pipeline network comprised of
computational elements and delay commutators as
shown on Figure l. An important feature of this
algorithm and architecture is that only two types
of elements are used: computational elements and
delay commutators. Only minor changes are required
to implement forward and inverse transforms of
lengths that are powers of 4. The changes involve
varying the number of stages connected in series,
changing the counter sequence and step size on the
computational elements, and changing the length of
the delays on the delay commutator. The computa-
tional element performs a four point discrete
Fourier transform. In this implementation 22 bit
floating point arithmetic is performed with single

chip adders, subtractors, and multipliers {5]. The
delay commutator reorders the data  between
' computational stages as required for the FFT
algorithm. Data rates of 40 MHz are achieved using

10 MHz clock rates since the radix 4 architecture
processes four data streams concurrently.

THE DELAY COMMUTATOR CIRCUIT

Careful examination of the FFT module design
revealed that much of the complexity was due to the
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estimates are 80 commercial integrated circuits for
the computational element and 180 circuits for the
delay commutator. The disparity in complexity
arises because of the commercial unavailability of
shift registers of lengths 1, 2, 3, 4, 8, 12, 16,
32, 48, 64, 128, 192, 256, 512, and 768 as needed
to implement the delays in the delay commutator.
An alternative approach is to develop a delay that
can be programmed to an arbitrary length. The most
efficient approach as shown on Figure 2 involves

delay commutator element. Initial complexity simulating a delay line by using a RAM as a
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circular buffer with write
displaced by a constant (i.e.,
simulated delay line).

and read addresses

the length of the
Given the high complexity
of the commercial implementation of the delay
commutator, alternative approaches were examined.
A B bit wide data slice of a delay commutator that

can be programmed for X = 1, 4, 16, 64, and 256
requires approximately 400 (B+1) logic gztes and
3072 B shift register stages. Since a shift

register stage is comparable in complexity to 3
random logic gates, this reduces to 400 + 9616 B
gates. Table 1 compares VLSI versions tased on
gate arrays, standard cells, and custom technology.,
For these technologies (as of 1984), maximum
achievable data bit slice widths are limited to 1,
4, and 10, respectively. For these widths 44, 11,
or 5 delay commutator circuits would be <cequired
per computational stage of the pipeline FFT. Given
the desire to minimize system complexity and to
avoid an expensive custom VLSI  development
activity, the standard cell approach was selected.
The resulting delay commutator circuit is a1 4 bit
wide slice that uses programmable length shift
registers and a 4 x 4 switch as shown on Figure 3.
Data enters through shift registers with taps and

multiplexers to set the delay at 1, 4, 16, 64, or
256 (=X) 1in the uppermost input register and
multiples of 2X and 3X in the middle and lower

TABLE 1, DELAY COMMUTATOR IMPLEMENTATION OPTIONS
GATES/CHIP | MAX B | CHIPS/STAGE DEVEEE;Q§;¥ECOST
Commercial - - 179 1
Gate Array 10K 1 44 2
Standard Cell 40K 4 11 3
Custom 100K 10 5 10

implement the commutator function
of the programmable rate counter. The final 2 bit
counter/decoder that controls the multiplexer
settings can be reset and held to disable the
commutator switch function. 1In this mode the chip
provides fixed length registers with delays which
can be used to expand the delay commutator for

under the control

transform lengths greater than 4096 points. Data
from the 4:1 multiplexers are output through
programmable length shift registers that are

similar to the input registers.

Operation of the delay commutator to reorder
data is shown on Figure 4 where the data flow for a
64 point transform is shown [6]. The input data
(with a spacing of 16) are applied to a radix 4
butterfly producing output data with a spacing of
16. The reordering necessary to produce a data
spacing of 4 is accomplished with delays of 0, 4

registers, respectively. Four 4:1 multiplexers 8, and 12; commutation at a rate of one fourth the
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data rate; and delays of 12, 8, 4, and 0. The data
(with a spacing of 4) are applied to a radix 4
butterfly. The resulting data are reordered by use
of delays of 0, 1, 2, and 3; commutation at a rate
equal to the data rate; and delays of 3, 2, 1, and
0. The final data have a spacing of 1 as required
for the final radix 4 butterfly.

This circuit was designed and implemented with
Bell Laboratory's polycell (standard cell) CMOS
technology., This technology was selected because
it is well suited to the development of VLSI with
high density shift registers and random logic. The
chip contains 12,288 shift register stages and
about 2000 gates of random logic, for a total
complexity of 108,000 transistors [7]. At a clock
rate of 10 MHz, the power dissipation is under 1/2
watt. The 340 x 376 mils chip is packaged in a 48
pin dual-in-line ceramic package. The chip is
shown on Figure 5. Each of the four bit slices is
constructed with input registers in a column,
switching logic in a second "random logic" column,
and output register in a column. The four nearly
identical slices are about four times as tall as
they are wide, producing a roughly square chip when
they are properly stacked. There 1is minor
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64 Point FFT Data Flow Through the Delay Commutator (After [6])

variation in the random logic of each bit slice to
account for sharing of the counters, decoders,
clock drivers, etc. Although a radix 2 delay
commutator chip has been developed by NEC [8], it
is limited to clock rates of 5 MHz, which results
in data rates of 10 MHz. 1In contrast, the radix 4
delay commutator operates at twice the clock rate
and simultaneously processes twice as many data
Streams which quadruples the data rate.

Development of the delay commutator chip
reduces the complexity of the 40 MHz 4096 point FFT
from 1375 commercial integrated circuits to 546
circuits (of which 66 are delay commutator chips).
This is a 60% complexity reduction achieved through
the development of a single semi-custom chip. For
larger transforms, the complexity of a 16,384 point
FFT processor 1is reduced from 1634 integrated
circuits to 670 circuits with the VLSI delay
commutator circuit. Such a reduction greatly
improves system reliability since connections
between circuits represent the dominant failure
mechanism in modern systems [9]. With 60% fewer
circuits (and a corresponding reduction in the
number of interconnections) the reliability is
greatly improved.




Figure 5.

ARTTHMETIC REALIZATION

Until recently, most real time signal
processing has been performed with fixed point
arithmetic, due to size, cost, and speed
limitations of available hardware. The increased
dynamic range and automatic normalization of
floating point are desirable but have been
prohibitively complex. Recently single chip adders
and multipliers using the 22 bit floating point
format (16 bit fraction, 6 bit exponent), have been
developed. This section describes the use of these
components to perform the arithmetic required for
the computational element of Figure 1 (a radix &

butterfly).

The 22-bit format, with a 16-bit two's
complement fraction and a 6-bit two's complement
exponent , is a reascnable compromise among

performance, speed and size. Although single chip
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32-bit floating point devices are commercially
available, for a given technology the 22-bit format
will always produce chips that are simpler and as a
result cheaper and faster, with adequate dynamic
range and precision for most applications. 32 bit
arithmetic is useful in scientific computation when
inverting matrices, evaluating eigenvectors, etc.
but these operations are usually performed at much
lower rates than those required for signal
processing where input data are often limited in
precision tc 8 bits or less.

The chief advantage of floating point 1is
increased dynamic range. As shown on Table 2, 22
bit floating point aritlmetic provides 96 dB of
precision (i.e., equivalent to 16 bit fixed point
arithmetic) over a dynamic range of 476 dB [5].
Although this dynamic range is less than that of 32
bit floating point arithmetic, it is more than
adequate for most high speed signal processing




applications. The 16-bit fixed point format has a passes to the renormalizing section, along with the

b |
dynamic range of 15 x 20 log2 = 90 dB; the 22-bit larger addend's exponent. The sum i.s normallized l.>y ;
floating point format provides (26+15) x 20log2 = shifting its fraction lef.t;ward until the sign bit |
480 dB. With proper normalization, 15-bit differs from the next bit, and the exponent i's 3
precision is available over a dynamic range of 20 x decremented by the number of bit positions of this i
6 = 384 dB. In contrast, 22-bit fixed point would shift,
offer 15-bit precision over only a 7-bit (42 dB) ’
range. Subtraction is identical to addition, except

that the fraction of the subtrahend is complemented
TABLE 2. ARITHMETIC COMPARISON before the addition is performed. In standard
two's complement fashion, the bits are inverted and
ARITHMETIC SYSTEM DYNAMIC RANGE PRECISION a "hot one" 1s introduced at the addgr’s I.,SB
carry-in position. Fixed-to-floating-point
12 Bit Fixed Point 72 dB 72 dB conversion and normalization 'of . floating po?'nt
16 Bit Fixed Point 96 dB 96 dB numbers is performed by left shifting the' fraction
22 Bit Fixed Point 132 dB 132 dB as necessary to eliminate xfedundant leading zeros
22 Bit Floating Point 476 dB 96 dB or ones while decrementing the exponent to
32 Bit Floating Point 1686 dB 144 4B compensate.
Multiplier ; ,
Adder - .

The floating point multiplier shown in Figure 7

Under user control, the 22 bit adder perforas is basically a 16-~bit two's complement fixed point
floating point addition, accunulation, and multiplier, a 6-bit adder, and a very simple
conversions between fixed and floating point normalizer. It does not require an operand 1
formats. Rounding and scaling (+2) are also conditioner, such as the adder's denormalizer. :
selectable if desired. For proper operation and Furthermore, its output conditioning requirements ]
maximum accuracy, non-zero floating-point operands are minimal: if the input operands are normalized,
must be normalized, with fractions in the range of then the product is at most one shift left or right
~1.0 < $ < -0.5 or 0.5 <S8 < 1.0. from normalization. Hence, the 16-bit half-barrel 3 ‘
shifter of the adder is replaced by a small 16-bit, b
The adder is shown on Figure 6. It performs 3-position multiplexer. The only “communication” ; :
the three component operations of floating point between fraction and exponent occurs in the final
addition: denormalization (exponent alignment), product normalization step, where the exponent must
addition, and renormalization. The first and last be incremented or decremented to compensate for any
steps are hardware intensive, involving shifting of shift in the fraction. With the normalizer
the fraction and compensatory incrementing of the defeated, the chip performs 16-bit two's
s eéxponent. In the addition mode, the adder first complement, fixed point multiplications.
selects the addend with the smaller exponent. It
denormalizes this operand by shifting it rightward If not properly accommodated, overflows and
by the difference between the exponents of the two underflows can adversely affect the accuracy of a
addends. The denormalized fraction is added to the signal processing system or the stability of a
other addend's unshifted fraction, and their sum digital filter. The floating point chips include
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user—controllable limit ecircuits, which implement
"hard limiting” when enabled. In the limit mode,
overflowing positive quantities are replaced with a
full-scale positive value while overflowing
negatives cause a full-scale negative output. The
limiter also operates on underflows, which are
quantities too small to be properly normalized.
When the limiter is enabled, such numbers are
replaced with a true floating-point zero. If the
user turns off the limiter, overflows will "wrap
around” in the normal two's complement fashion,
producing extremely wrong results. (For example,
full-scale positive plus one LSB equals full-scale
negative, due to the carry into the sign bit,)
Underflows are far less catastrophic - the output,
though unnormalized, will be nearly correct.
However, it is wusually safest to limit these
underflows to true floating point zero, since most
floating point hardware is designed to work on
normalized operands only. The TRW floating point
devices

generate flags to alert the wuser to
overflow conditions, to allow their explicit
handling off-chip. To avoid round-triggered
overflows (of positive numbers) or underflows

(negative numbers), limiting occurs after rounding.
Although the limiter exacts a slight speed, power,
and chip size penalty, it is a valuable feature in
most DSP work.

Over the years various floating-point rounding
schemes have been proposed, attacked, and defended.
The procedures described herein and used in the
adder and multiplier are simple, logical, and
relatively unbiased. The rounding scheme is based
on the standard “round toward positive infinity,"
in which both positive and negative numbers are
incremented by 1/2 LSB, then truncated. This
operation effectively gives a “round to nearest
quantum” result, but with a small positive bias for
quantities exactly halfway between two quanta.
These values are always raised to the next higher
quantum (i.e., negatives become less negative and
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Single Chip 22 Bit Floating Point Multiplier Block Diagram

positives become more positive). To eliminate this
small bias, “half-way" quantities would have to be
rounded upward half the time and rounded downward
(truncated) half the time, as suggested in the
IEEE's 32-bit floating point standard. (The IEEE
format's "sticky bit", necessary for this "unbiased
rounding,"” complicates the hardware significantly.)

The rounding procedure performed in the adder
operates as follows: During denormalization, all
bits of the smaller operand which are shifted
beyond the other operand's LSB are truncated. In
the additjon mode, this truncation introduces a
slight downward bias, which will be off-set later
by the rounding procedure, which is always upward.
The result of the addition (or subtraction) will
have a 16— or 17-bit fraction, depending on word
growth. If the result is 16 bits, then no rounding
is done, since the rounding position (17th bit) is
unoccupied. In contrast, if the result is 17 bits
long, the lowest bit is available for 1/2 LSB
rounding, while the upper 16 bits comprise the
fraction LSB through sign bit.

CONCLUSIONS

This paper shows the high payoff of synergistic
use of commercial and semi-custom integrated
circuits. Specifically, a 40 MHz pipeline FFT
processor implementing 22 bit floating point arith-
metic has been developed. The processor complexity
was decreased by 60% through the development of a
standard cell VLSI delay commutator circuit. The
arithmetic is performed with single chip adders and
multipliers that use a 22 bit floating point
format. The processor is simpler and correspond-
ingly lower in power, size, and cost than designs
using 32 bit floating point arithmetic. Similar
improvements can be achieved in a wide variety of
signal processing systems by carefully tailoring
the algorithms, processor architecture, arithmetic
precision, and technology selection.
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