Radix 16 SRT Dividers
With Overlapped Quotient Selection Stages!

A 225 Nanosecond Double Precision Divider for the S-1 Mark IIB

George S. Taylor

Computer Science Division, EECS
University of California
Berkeley, California 94720

ABSTRACT

This paper compares the three simplest SRT division
methods by using them to design a divider that produces four
quotient bits per cycle (radix 16). The three methods are
distinguished by the number of bits found per stage of quotient
selection logic:

(a) one bit per stage (radix 2) with quotient digits chosen from
the set {-1,0,1},

(b) two bits per stage (radix 4) with quotient digits {-2,-
1,0,1,2}, or

(c) two bits per stage (radix 4) with quotient digits {-3,-2,-
1,0,1,2,3}.

For each method, we compare several ways to overlap multiple
stages of quotient selection logic and we comsider both
irredundant and redundant (carry-save) representations for the
remainder.

The cost and performance of each alternative is evaluated
in terms a specific ECL gate array technology. We find that we
can build a 15% faster divider with radix four stages than with
radix two stages, for about the same amount of hardware.
Between the two radix 4 alternatives, method (¢) offers §%
more speed than method (b) at the cost of 20% more hardware.

A radix 16 divider using method (b) has been built for the
S-1 Mark IIB computer under development at Lawrence
Livermore Laboratory. This divider consists of eight ECL gate
arrays and has a 12.5 nanosecond cycle time. It performs IEEE
single and double precision floating point division in 150 and
225 nanoseconds, respectively, the shortest times reported for
any general purpose computer.

1. Introduction

How might we build new dividers as more hardware
becomes available in gate arrays and VLSI chips? One
approach is to increase the performance of dividers that use
subtraction as their iterative operation and produce a fixed
number of quotient bits per cycle. In this paper, we compare
several designs based on the three simplest SRT division
methods [Robe58] [Toch58) [Atki67]. These methods can be as
fast as more costly ones that are based on finding a
multiplicative inverse [Cray82].

! Research support by DARPA under contract N00034-K-0251.

CH2146-9/85/0000/0064$01.00 © 1985 1EEE

Subtractive normalization methods have the advantage of
producing correctly rounded quotients and exact remainders.
In contrast, finding a multiplicative inverse leads to correctly
rounded quotients and exact remainders only after time-
consuming fixup steps that have not been implemented in
practice. Methods based on prescaling the dividend and divisor
[Erce83] do not readily produce unscaled remainders, thus
making it difficult to use the same hardware for both integer
and floating point arithmetic.

Algorithm designers will avoid division if its time becomes
too long relative to multiplication. The implementation
described in section 9 is evidence that SRT division can stay
within a factor of four of multiplication using a modest amount
of hardware.

2. Factor of Four Speedup

The hardware cost for the radix 16 divison methods that
we consider below is two to three times greater than the cost of
a radix two non-restoring divider. However, the higher-radix
methods run about four times faster in the same technology.
We can attribute the factor of four speedup to three separate
improvements:

(1) radix four SRT division with an irredundant remainder is
almost twice as fast as radix two non-restoring division,

(2) two-stage overlapped quotient selection logic (going from
radix 4 to radix 16, for example) is almost twice as fast as
a single stage,

(3) division using redundant remainders is about 30% faster
than with irredundant remainders.

Factor number (3) is an estimate for designs that fit on a single
chip. Redundant remainders have a much larger impact on the
performance of multiple chip designs because they save two on-
chip to off-chip delays in every cycle.

Radix four SRT dividers have been implemented in several
machines {Atki70b] [Tan78] (Tayl83]. The primary focus of this
paper is on the other two enhancements, overlapped stages of
quotient selection logic and redundant remainders.

3. An Experiment

Our experiment was to compare various ways to build a
radix 16 divider. The cost of quotient selection (QS) logic
grows exponentially with the radix, so our approach was to
build radix 16 QS logic from multiple stages of either radix 2 or
radix 4 QS logic. Radix 2 QS logic is smaller and faster than
radix 4 logic, but this does not necessarily mean that radix 2 is
the best building block for a radix 16 divider.

To determine costs and delays in a standard way, we took
the “macrocells” of the Motorola MCA II ECL gate array
[Priog4] as fundamental building blocks. An MCA I chip
contains 220 principal cells (not counting output cells), zach of
which may be a full adder, a flip-flop or another function of
similar complexity (see Table 3). Eight to ten of these gate
arrays are necessary to build a radix 16 divider for 64-bit
operands (as required for IEEE extended precision floatiag-point
numbers [IEEE83] and for 64-bit integers).

The time to communicate between MCA II chips equals
about four internal cell delays, a factor that strongly influences
design tradeoffs. Future designs built with custom VLSI and
larger gate arrays will not have these chip-to-chip delays.
Consequently, we assume in this study that up to 1800 cells are
available on a single chip, so that we can compare division
methods without the temporary constraints imposed by
multiple-chip designs.

In the next section, we summarize SRT division methods
with two equations and a block diagram of the hardware that
implements them. Then we focus on quotient selection
hardware, since that is the limiting factor on performance.

[Tdivisor D}
*model division”
.[4
quotient .
Qs selection logic
T
'q
[}
!
divisor | -2D -] 2D ...
DMF multiple o _E_Lmux
formation
qD
partial
PRF remainder \ Vv 7
formation —
quotient ; -ﬂ—l
Lo, O (e

sign bit

Figure 1. SRT dividers use subtraction as their fundamental
iterative operation. The distinguishing feature of an SRT
divider is the logic that performs “model division” in order to
select the next quotient bits before they are used to compute the
next remainder. The model division depends on just a few
high-order bits of the remainder and the divisor.

65

SRT Division

SRT division methods produce a fixed number of quotient
bits per step. Each step consists of subtracting a multiple of
the divisor from the product of the radix and the remainder
after the previous step (equation 1a). The quotient is
accumulated in a parallel iteration (equation 1b). If the
quotient digits were irredundant, as they are in restoring
division methods, equation 1b would represent merely a shift
register. However, SRT division methods use redundant
quotient digits which must resolved into irredundant ones.

4.

Pp=1rP, — ¢D fori=1, - m (1a)
where
P; = remainder after the ¢th iteration
rP, = dividend
r = radix
¢ = {th quotient digit
D = divisor.
Q =rQi, + ¢ fori=1 -, m (1b)
where
Q¢ = accumulated quotient after the sth iteration
Qo = 0.

@m , the intermediate quotient before rounding, has the form
41 92 " Gm.

Figure 1 shows the design of a simple SRT divider.
Quotient digits are found in advance rather than after ‘“‘trial
subtraction,” as they would be in a restoring divider. Knowing
the quotient digits before the remainder iteration makes it
possible to use only onme full-precision subtractor and still
produce more than one quotient bit per cycle. The QS logic
observes a few high-order bits of the remainder and divisor in
order to choose the next quotient digit. By necessity, quotient
digits chosen this way incorporate redundancy so that later
digits can correct small errors made ip previous ones.

The four components of one division step are labeled in
Figure 1, where the notation follows [Atki74):

(1) quotient selection (QS),

(2) divisor multiple formation (DMF),
(3) partial remainder formation (PRF),
(4) quotient accumulation (QA).

Division hardware can be divided into three parts execute
in parallel: QS, DMF and PRF lumped together, and QA.
Three possible degrees of overlap between successive iterations
are illustrated in Figure 2. The cycle time is not necessarily the
maximum of tgs, tppr + tege and tg, because we can shift the
boundary between parts to take advantage of one that is faster
than the others.

To a first approximation, the cycle time is limited by tgs,
while the cost is dominated by DMF, PRF and QA. tgs is the
limiting factor because tppge + tpre can be made smaller by
holding the remainder in redundant form and toa is merely the
time to clock a shift register. The costs of DMF, PRF and QA
are proportional to the length of the operands, while the size of
the quotient selection logic is independent of the length of the
operands. The cost of the QS logic for a given radix depends
entirely on its speed.

(a) L qs [pMF] PRF

Qs [pDMF[PRF |

(b) | g5 [pMF P(;zSF T

() Lo mspm DMF | PRF

Qs q quotient selection
DMF qD divisor multiple formation
PRF rP-gD partial remainder formation

Figure 2. Three ways to overlap successive SRT division steps.
(a) shows no overlap, corresponding to the hardware in F igure 1.
(b) shows overlap dominated by PRF time, as for the hardware
with an irredundant remainder in Figure 3. (c) shows overlap
dominated by QS time, as is likely for hardware with s
redundant remainder, such as in Figure 4. Quotient
accumulation (QA) is not shown since it can run in parallel witk
the other operations regardless of the amount of overlap.

5. Considerations for a fast divider

In a previous paper [Tayl81), we showed that the radix
four divider in Figure 3 has npearly the same cycle time as any
radix two divider that also uses an irredundant remainder. The
radix four divider needs only about 25% more hardware to
achieve this two-to-one speedup, making a radix two divider
look unattractive in comparison.

Since the cycle time in Figure 3 is limited by tpag + tenr,
quotient digits {-2,-1,0,1,2} are used in order to make DMF as
fast and inexpensive as possible. While quotient digits with
more redundancy {-3,-2,-1,0,1,2,3} would make the QS logic
stmpler, they would also require DMF to produce three times
the divisor.

To improve this radix four divider, we can relax any of
three constraints.

(1) Use multiple stages of quotient selection logic and
overlap them. The primary speedup is due to the overlap,
but this approach also has the advantage of less overhead
per stage. DMF and PRF take only slightly longer to
handle multiple quotient digits per step rather than one.

(2) Make the remainder redundant so that PRF consists of
a carry-save addition rather than a carry-propagate
addition. This changes the bottleneck to quotient digit
selection. As a result, radix two methods would once
again be attractive if radix two QS logic took less than
half the time of radix four QS logic.

(3) Use more redundancy in the radix four quotient digits
now that QS is the bottleneck. (Radix two digits {-1,0,1}
already have maximal redundancy.)

dividend
!
| divisor D I rem ¢
[
-2D - 2
T T mux DMF
[
!
[
| \ V
, l] PRF
1
S

. D QS
| logic remainder
1
)
1
' ______

uotien ogic 1ast q] QA

sign bit

Figure 3. Radix four SRT divider with pipelined QS logic.
The QS logic uses the narrow adder on the left to estimate the
leading bits of the next remainder. By the time the full
precision next remainder has been computed, the next quotient
digit will also have been found. The full-precision quotient is
accumulated on the fly by looking at consecutive pairs of
quotient digits and the sign of the partial remainder.

Figure 4 shows a divider with the remainder represented
redundantly. The comparisons in section 8 will use this model
along with the one shown in Figure 3. Figure 4 has one
multiplexer to form divisor multiples, but more could be added
to handle additional quotient digits per cycle. The number of
inputs to the multiplexer varies from three to seven in our
examples.

The cost of redundant remainders can be seen by
comparing Figure 3 with Figure 4. Figure 3 contains three
full-precision registers or shift registers, while Figure 4 contains
five of them, plus a carry-save adder and another full-precision
carry-propagate adder.

With the organization in Figure 4, the QS and PRF
hardware are almost independent. The QS logic operates one
step ahead of the rest of the divider, leaving a trail of quotient
digits. Because the QS logic observes only the leading bits of
the remainder, its estimates of future remainders are slightly
inaccurate. To keep the inaccuracies from compounding, the
PRF hardware continuously refreshes the remainder bits that
QS observes. The PRF hardware generates exact remainders
because it uses a full-precision carry-save adder.

dividend

mux

[divisor D | [[Tem PU)
|
. 22D -] 2§
) rem

Fom e s mux DMF
| !
1 - add)
| \ carry-save adder / PRF
|
|
I
I
\ I
i
y D l(?g?c remainder
| sign bit
@
i
L !

o] M o

; " decrement

¥
quotient (to be rounded)

Figure 4. SRT divider with redundant remainder. The QS
logic has now become the bottleneck in place of the remainder
formation. hardware. The functional units drawn in bold are
used in every iteration. The remainder adder and the quotient
subtractor shown with dashed lines are used only after the
iteration ends. The quotient digits cannot be resolved until the
end of the division because the sign of the remainder is never
known explicitly during the iteration (contrast with Figure 3).

67

8. Basic QS Hardware

Now let us turn to the building blocks of a radix 16
divider. Our emphasis in the quotient selection logic is on
speed rather than cost, since QS will account for only 10% to
20% of the hardware. Figure 5 shows the quotient selection
hardware for (a) a radix 2 stage, (b} a radix 4 stage with
mimimal redundancy, and (c) a radix 4 stage with maximal
redundancy. In the radix 4 stages, the sign of the next quotient
digit. is determined by the adder, but the magnitude of the digit
requires a logic table. The radix 2 stage is significantly faster
because it determines the sign and the magnitude of a digit in
parallel.

(a) radix 2 {-1,0,1}

-D 0D
qD
5|5 5
csa
T a—=
3dq’ \ v / | 1 product term |
logic 1 1
sign zerofone
(b) radix 4 {-2,-1,0,1,2}
2D -D 0 D 2D
qD

T

\
Ts Ts
\ \ 2

——ﬂ 6
I 44 product terms l‘—‘“ D

1 l 2-3
zero/one/two

/ cs3

/ add

logic

sign
(¢) radix 4 {-3-2,-1,0,1,2,3}

-3D-2D -D 0 D 2D 3D

-] ’
7107 l 7
\ 4 csa
le s
\ v / add
16
24 product terms 2 D logic
1 24

sign zerofone/two/three

Figure §. Single stages of quotient selection hardware. (a)
radix 2, (b) radix 4 with minimal redundancy, and (c) radix 4
with maximal redundancy. Radix 2 takes less time than radix 4
because its adder is only four bits wide and its one product term
can be computed in parallel with the addition. Radix 4 version
(b) has more product terms, but {(c) has more inputs to the gd
multiplexer that selects a multiple of the divisor.

It is not obvious how much faster (c) is than (b) across a
range of technologies. (c)'s logic has fewer product terms (24
vs. 44) and its adder is narrower (6 bits vs. 8), but its ¢D
multiplexer has more inputs (7 vs. 5). When implemented with
MCA II macrocells, the delay of a 6-bit adder is nearly the same
as the delay of an 8-bit one, but there is a difference in the
delay for the random logic. (c)’s output terms can be computed
in two macrocell delays, while (b)'s output terms require three
delays.

7. Overlapped QS Stages

Two stages of quotient logic can be overlapped by
replicating the second stage once for each value that the first
stage might produce. Each of the second stages assumes a
particular outcome for the first stage, and the correct second
stage is chosen based on the eventual outcome of the first stage.
Figure 6 shows how this works for radix 2. The overlap is more
dramatic with radix 4 QS logic, but the costs are higher, us
well, because the first stage has more possible outcomes.

There are many ways to overlap stages of QS logic. To
write these options in a simple form, we first convert the

This notation is used in Table 1 to show four ways to
overlap four stages of radix 2 QS logic. The first two options
show QS stages without overlap. In Option B, rows of
redundaut remainder PRF hardware alternate with stages of
QS logic, forming a combinational divider array of the type
described by [Will81]. Quotient digits are used as soon as they
are formed. In Option A, on the other hand, the four quotient
digits found during one cycle are consumed by the remainder
hardware in the following cycle (logic steps 2 through 5). This
allows the remainder to be held in irredundant form, which
reduces the cost of the PRF hardware. QS runs ahead of PRF
during a cycle, but does not keep any information from one
cycle to the next.

information from Figure 5 into the following chart:

Togic radix 2 radix 4 radix 4
steps -1,..,1 -2....2 -3,...3
1 qD qD qD
2 csa csa c8a
3 4-bit add, xor | 8bit add | 6-bit add
4 4-bit add, and | 8-bit add | 6-bit add
5 8-bit add | 6-bit add
6 logic logic
7 logic logic
8 logic
c¢sa carry-save-adder
aD___quotient digit * Divisor

The logic steps refer to roughly equal amounts of time in an
implementation.

PO P1)
€52 - D
T _]
V7 iy -
[A

At

first digit {-1,0,1} second digit {-1,0,1}

Figure 8. Overlapped stages of radix 2 quotient selection logic.
The second stage has three copies, 8o that the second quotient
digit can be found assuming any value (-1, 0 or 1) for the first
quotient digit. The adder for the first digit and the middle
adder for the second digit are offset from each other by one bit
position.

Logic Option Option Option
Steps A B C
1 read read read
2]4qDqD,qD,gD qD qD,qD
3 csa csa csa
4 csa add/logic | add/logic csa
5 csa ” " add/logic
6 add/logic qD qD "
7 " csa csa mux
8 qD add/logic qD
o ddc/s la i ’l’) :;ddc)?la i
10 al ogic q ogic csa
11 O csa " add/logic
12 qD add/logic "
13 csa " mux
14 add/logic qD setup setup
15 " csa
16 qD add/logic
17 csa "
18 add/logic setup
19 "
20 setup
Time
(ns) 16.9 15.2 11.6
Cost
cells) 150 70 160
Logic Option
Steps D
1 read
2 qD,qD
3 csa
4 csa
5 add csa ...
6 " add ... csa
7 buf " add csa
8 qD mux " add
9 c8a buf mux "
10 qD " mux
11 csa buf "
12 "
13 setup setup
1ime
(ns) 11.3
Cost
{cells) 400

Table 1. Four ways to overlap four stages of radix 2 quotient
selection logic. Logic steps represent roughly equal amounts of
time. Options A and B show stages without overlap. Option B
assumes that the remainder is represented redundantly in the
PRF hardware, while Option A assumes an irredundant
remainder. Option C shows two pairs of overlapped stages.
The functions in the middle column of Option C are replicated
three times on all rows marked by the three dots in the right~
band column. Option D shows maximal overlap, with functions
replicated three times, then nine times, then twenty-seven times.

Options C and D show overlapped QS stages. The first
two columns under Option C show hardware executing in
parallel. Hardware elements in the second column are
replicated on rows marked by three dots in the third column.
While the four QS stages are overlapped in two pairs in Option
C, all of the stages are overlapped at the same time in Option
D. Hardware elements are replicated three times in columns 2
and 3, nine times in columns 4 and 5, and twenty-seven times in
columns 6 and 7. Unfortunately, the overhead costs of the wide
multiplexers in columns 4 and 6 cancels most of the advantage
in speed that option D gains from its large degree of overlap.

Table 2 shows three options for overlapping two stages of
radix 4 QS logic. The time steps are essentially the same for
either set of quotient digits: {-2,-1,0,1,2} or {-3,-2,-1,0,1,2,3}.
In Option A, two stages of QS logic are cascaded without
overlap. Option C corresponds to the idea for maximal overlap
introduced in Figure 6. Options B is an overlap that saves half
of the time between Options A and C, at a cost only a little
higher than Option A's.

Logic Digit | Option Option Option
Steps | Values A B C
1 read read read
2 qD,qD | qDqD qD,qD
3 csa c8a csa
4 add add add c8a
6 " " " add
6 " ”" 12 ”
7 fogic logic xor logic "
8 " " add ” logic
9 " ”n ” ” "
10 qD " ”"
11 csa mux mux
12 add ” 1
13 " logic setup setup
14 a7y ”
15 logic "
16 " setup setup
17 ”
18 setup
Time o
('.’5) -2,...,2 14.8 12.4 10.2
Time 1 3 3| 140 12.0 98
(ns})
Cost ;
(éells) -2,...,2 130 180 50
ost e
(cells) -3,...,.3 110 170 3’

Table 2. Three ways to overlap two stages of radix 4 quotient
selection logic. Option A has minimal overlap and assumes an
irredundant remainder. Option C has maximum overlap, with
the hardware in its middle column replicated either five times or
seven times. Option B is about halfway between the others in
speed, but much smaller in size than Option C. The hardware
in its middle column is replicated either two times or three.
Options B and C assume a redundant remainder in the PRF
hardware and also that the high-order bits of the remainder are
summed to a single operand just before the end of each cycle.

69

8. Performance and Costs

Table 4 is a summary of the speeds and costs for the
quotient selection options given in Tables 1 and 2. Table 5 lists
the cost and performance for the corresponding DMF, PRF and
QA hardware. The costs in Table 5 include all of the hardware
necessary to produce a quotient rounded according to the
requirements of the IEEE standard. Combinations of quotient
and remainder hardware to form complete division units are
shown in Table 8. Detailed breakdowns of each cost and speed
estimate were derived are given in [Tayl85].

The cost numbers are based on the costs for individual
macrocell components listed in Table 3. The times shown in
each table are maximum delays including fanout and long
paths. Extra buffering required by signals with large fanout has
also been taken into account. Divisor multiple formation is an
example of large fanout and a long path. The QS hardware is
at the most significant end of the word, so quotient digits must,
travel the entire length of the word during each cycle. and
they must control a gate for each bit of the divisor.

Column six of Table 6 shows the number of cycles for a
double precision divide. For all of the examples except the
radix two non-restoring divider listed on the last line, the cycle
count is broken down into the following parts:

load operands 1
load quotient pipeline 1
accumulate 55-bit quotient 14
rem PO + rem P1, pos quo - neg quo 1
normalize and round 1

We assume that the dividend and the divisor are loaded in
parallel in the first cycle. The next step is to load the two-stage
pipeline by finding the first quotient digits. This is followed by

component cost per bit notes

{cells)

5 -1,0, 1(}
5 q= i -3,-2, 110,2),2 3}

flip-flop

qD quo * divisor

slow
fast

1

0

1

1

csa carry-save-adder 1
carry-save-adder 2
4-bit adder 1
8-bit adder 2
64-bit adder 2.
2:1 mux 0
2-input xor 0
4-input anor 0
3 3 or-an 0
2

8

thentniney o

gate

radix 4 QS logic 1
radix 4 QS logic

total f -2,-1,0,1,2}
total -3, -2 1,0,1,2,3}

Table 3. Cost of Divider Components. Based on the
macrocells in the Motorola MCA II ECL gate array.

14 quotient accumulation cycles. After the inner loop is
finished, the redundant remainder and redundant quotient are
resolved. The two adds do not have to execute sequentially
because we only care about the remainder’s sign. The carry
propagation circuitry of the two adders can be connected so
that the total delay is only slightly more than one add time.
The last cycle is for normalization (a ome bit shift or no shift)
and rounding.

The number of cycles with an redundant remainder is 18.
If the remainder is irredundant, then the quotient cap be
accumulated on the fly, so the next to last cycle is unnecessary.
The non-restoring divider takes one cycle to load the operands,
55 cycles to gemerate quotient bits, and one cycle for
normalization and rounding.

Table 4. Speed and Cost of Radix 16 Quotient Selection
Options. All times are worst-case and include delays due to
fanout and estimated wire lengths. Times are in bold because
quotient selection delays are the limiting factor in the divider as
a whole. Option 4 B * is used in the S-1 Mark IIB
implemeatation described in section 9.

9. An Implementation in the S-1 Mark IB

Radix 4 Option B quotient selection logic is the basis for
the divider in the S-1 Mark IIB computer under development at
Lawrence Livermore Laboratory. This divider consists of eight
ECL gate arrays: one chip for quotient selection and one chip (a
10-bit slice, replicated seven times) for the remainder iteration,
quotient accumulation and rounding hardware. The cycle time
is 12.5 nanoseconds.

A multiple chip design introduces extra delays not
considered in our hypothetical study in previous sections.
These delays make it necessary to use a redundant remainder
and to confine the quotient selection unit to a single chip. The
quotient selection chip is designed so the critical path never
leaves the chip. All of the time required to propagate signals
between chips is part of the remainder iteration cycle.

radix quo redun- tIime [4] radix quo redun- time DMTF,
of each digits dant per cost of each digits dant per PRPF,
QS stage rem! four Qs rem? four QA
& option bits stage bits cost
(ns) {cells) (ns) (cells)
2A -1,0,1 no 10.9 150 2 nonrestoring -1,1 no 45.2 600
2B -1,0,1 yes 15.2 70
2C -1,0,1 yes 11.6 160 2 -1,0,1 no 15.3 1050
2Dh -1,0,1 yes 11.3 400 4 2,2 no 12.7 950
4 ~3,...,3 no 13.0 1160
4A -2,...,2 no 14.8 130
4B* -2,...,2 yes 13.4 180 2 -1,0,1 yes 9.6 1400
4C -2,...,2 yes 10.2 350 4" <2,..,2 yes 8.5 1250
4 -3,..3 yes 8.8 1500
4 A -3,...,3 no 14.0 110
- 4B -3,....3 yes 12.0 170 Table 5. Speed and Cost of Remainder Formation Options.
4C 23,3 | _yes 9.8 | 370 The first line is a radix 2 restoring divider. All of the others are

radix 16. Costs are based on 64-bit operands, as would be
necessary for IEEE extended precision floating point or for 64-
bit integer arithmetic. Costs are shown in bold because the
divisor multiple formation, partial remainder formation and
quotient accumulation functions account for most of the
hardware in a complete divider.

QS quo redun- time cycles total QS DMF, ™ total
op- digits dant per for time: cost PRF, cost
tion rem? cycle 53-bit double QA
rounded preclision cost
(ns) _ fraction {ns) (cells) (cells) (cells)
4C -3,...,3 yes 9.8 18 176 370 1500 1870
4C <2,...,2 yes 10.2 18 184 350 1250 1600
2D -1,0,1 yes 11.3 18 203 400 1400 1800
2C -1,0,1 yes 11.6 18 209 160 1400 1560
4B -3,...,3 yes 120 18 216 170 1500 1670
4B* -2,...,2 yes 124 18 223 180 1250 1430
4 A <3,...,3 no 14.0 17 238 110 1150 1260
4 A -2,...,2 no 148 17 352 130 900 1030
2B -1,0,1 yes 15.2 18 274 70 1400 1470
2A -1,0,1 no 16.9 17 287 150 1050 1200
non- -1,1 no 113 57 044 0 600 600
restoring

Table 8. Speed and cost of various dividers based on combinations from Tables 4 and 5. Times
are for double precision floating point with a 53-bit fraction. Costs are based on 64-bit operands.
The bottom row shows a radix two non-restoring divider. All of the other dividers are radix 16.

70

The Mark IIB performs integer division and remainder
_operations by first converting the operands to floating point
" format, because SRT division depends on a normalized divisor.

The conversion is exact because 64-bit integers will fit into the
sign and fraction fields of an IEEE extended precision floating
point number. The number of integer quotient bits produced is
one plus the difference between the operands’ exponents.

Table 7 shows that division times are three to five times
longer than multiplication times, depending on the precision.
The multiplication hardware consists of about three times as
many gate arrays as the divison hardware. Table 8 compares
the Mark IIB's performance with that of other machines.

10. Summary

Our study compared radix 2 and radix 4 building blocks
for the quotient selection logic of a radix 16 divider. We found
that radix 4 quotient selection stages are cost-eflective building
blocks for multiple stage dividers. At least for radix 18, it
appears to be cheaper and faster to use overlapped radix 4
stages than to use overlapped radix £ stages.

11. References

|Atki67)
D. E. Atkins, “The Theory and Implementation of SRT

Division,” Report No. 230, Dept. of Computer Science,
University of Illinois, June, 1967.
[Atki70a)

D. E. Atkins, “A Study of Methods for Selection of Quotient
Digits During Digital Division,” Ph.D. Dissertation, Report No.

single double extended
precision precision precision
(ns) (ns) (ns) _|
Add/Subtract 50 50 50
Multiply 50 50 50
Divide 150 225 275

Table 7. S-1 Mark IIB Floating Point Execution Times

Computer Double Precision Method
Floating Point
Division Time
{ns)
S-1 Mark IIB 225 radix 16 SRT
Cray-1 X-MP 275 inverse & multiply
Cray-1 362 inverse & multiply
CDC 7600 550 radix 8 restoring
ELXST 6400 1700 radix 4 SRT
VAX 8600 5360 radix 2 nonrestoring
VAX 11/780 8800 radix 2 restoring
Table 8. Register to register scalar division times. The

various floating point formats have between 48 and 56 fraction
bits. [Foss85][Ibbes2]

71

397, Dept. of Computer Science, University of IHllinois, June,
1970.

|Atki70b)
D. E. Atkins, “Design of the Arithmetic Units of Illiac III: Use
of Redundancy and Higher Radix Methods,” IEEE
Transactions on Computers, Vol. C-19, No. 8, pp. 720-723,
August, 1970.

|Atki74]
D. E. Atkins and U. Kalaycioglu, “‘Concurrency in Generalized
Radix Non-Restoring Division,”” Proceedings of the Twelfth
Allerton Conference on Circuit and Switching Theory, pp.
628-640, October, 1974.

[Cray82}
“Cray X-MP Computer Systems
Manual,” Cray Research, Inc., 1982.

[Erce83]
M. D. Ercegovac, “A Higher-Radix Division with Simple
Selection of Quotient Digits,” Proceedings of the Sizth IEEE
Symposium on Computer Arithmetic, pp. 94-98, June, 1983.

[Foss85]
T. Fossum, “Floating Point Processor for the VAX 8600,”
Digest of Papers, Thirtieth IEEE Compcon, pp. 176-180,
February, 1985.

|[EEES3]
IEEE Computer Society Microprocessor Standards Committee,
“A Proposed Standard for Binary Floating Point Arithmetic,
Draft 10.0,” January, 1983.

[Ibbe82]
R. N. Ibbett, The Architecture of
Computers, Springer-Verlag, New York, 1982.

[Prio84)
J. Prioste and A. Bass, MECL MCA II Macrocell Array Design
Manual, Motorola Semiconductor Products, Inc., 1984.

[Robe58]
J. E. Robertson, “A New Class of Digital Division Methods,”

IRE Transactions on Electronic Computers, vol. EC-7, no. 9,
pp. 218-222, September, 1958.

[Tan78]
K. Tan, “The Theory and Implementations of High-Radix
Division,” Proceedings of the Fourth IEEE Symposium on
Computer Arithmetic, pp. 154-163, October, 1978.

Mainframe Reference

High Performance

“

|Tayl81]
G. Taylor, “Compatible Hardware for Division and Square
Root,” Proceedings of the Fifth IEEE Symposium o¢n

Computer Arithmetic, pp. 127-134, May, 1981.

{Tayl83]
G. Taylor, “Arithmetic on the ELXSI 6400,” Proceedings of the
Sizth IEEE Sympossum on Computer Arithmetic, pp. 110-115,
June, 1983.

|Tayl185]
G. Taylor, “Radix 16 SRT Division Methods With Overlapped
Quotient Selection Stages,’” Technical Report, U. C. Berkeley
Computer Science Division, 1985.

[Toch58]
T. D. Tocher, “Techniques of Multiplication and Division for

Automatic Binary Computers,” Quarterly Journal Mech. Appl.
Mathematics, vol. 11, part 3, pp. 364-384, 1958.

1willg1]
J. Williams and V. C. Hamacher, “A Linear-Time Divider
Array,” Canadian Electrical Engineering Journal, Vol. 6, No.
4, pp. 14-20, 1981.

