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ABSTRACT

After 20 years, the FFT remains restricted in
its real time capabilities. To overcome this
throughput obstacle, fast residue arithmetic units
are studied based on several recent innovations in
the field of complex finite rings. A dedicated
machine is designed which makes use of these new

results and 1is compared to conventional FFT
designs. Using high speed semiconductor memory to
implement the required residue arithmetic

mappings, speed and complexity metrics of a basic
FFT unit are shown to be improved. However, the
derived architecture and arithmetic introduce a
new and challenging set of magnitude scaling
problems. They are resolved with the result being
an  integrated residue arithmetic FFT system
capable of supporting very high real time data
rates.
I. INTRODUCTION

The Discrete Fourier Transform (DFT) has for
a long time been the privileged domain of the Fast
Fourier Transform (FFT). Countless papers have
been written on this subject with almost a like
number of hardware and software products servicing
this area (e.g. TRW chip sets, ILS software
package etc.). The now venerable FFT owes its
longevity to its relatively simple mathematical
infrastructure, superb data structure, and a
comparative economy of multiplications.
Nevertheless, the FFT can often fall short of the
real-time needs of many signal processing tasks.
Since the FFT is a numeric-intensive operation, a
fast real-time application requires the use of
very fast, small wordlength  computationa)l
elements. However, to achieve needed precision
within a small wordlength environment, fast
multiword procedures must be sought. One method,
which has received a considerable amount of recent
attention is the residue rnumber system (RNS).
This arithmetic system allows one to cover i large
integer dynamic range by paralleling a system of
small wordlength data paths. However, because the
FFT maps complex into complex numbers, multiple
real and imaginary data paths (along with their
interconnection) may be required. The RNS also
presents other implementation problems that are
not found in weighted number systems, In this
work, a synergism between recent advancements in
the DFT, RNS, and the complex RNS is achieved.
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The advantages and disadvantages of this marriage
is also developed and analyzed.
IT. THE RNS

In a recent tutorial on this subject, the

origin of the RNS was traced back 1700 years in

history [Tay84]. It was also noted that residue

number system (RNS) is of particular interest to

computer scientists and engineers because of the

parallel ‘“carry-free" nature of its arithmetic
[Gar59,$za67,Tay84]. The residue representation
of an integer in the

residue class ZM(ZQ =
moduli

(0,1,...,M-1) is expressed in terms of a

set P where P = (pl’pZ"”’pL) is a set of
relatively prime integers“and M = PyPoeeep » It
is well known that X has the Jh1que k-tup]e
representation given by X » (X1 XosesasX )

where X. = Xmodp. . Alternatively, a&; integer
Xe [-M/2} M/2] can be uniquely represented as the
L-tuple (X',XZ,...,XL), where Xi= Xmodp . if
x > 0and (M < |X|) wodp, if x <0 | Ir x
exceeds its dynamic rahge Timitation, a non-

recoverable error due to register overflow will

occur. Also, since the RNS is an integer system,
division is not closed. Therefore, some
operations are ackward in the RNS. For example,
magnitude comparison in the RNS is known to be
difficult to achieve [Gar59,5za67,Tay84].
Finally, all reported overflow detection
algorithms make use of the Chinese Remainder
Theorem (CRT) and mixed-radix conversion (MRC)

algorithm [Sza67].

In the mixed-radix system, any integer Xe
{0,M-1] can be expressed uniquely as

X=X + Xopy * X3p1p2 +to.at XLpl°"pL-1 (1)
or equivalently, by the L-tuple <X., X,,..., X >

of mixed radix (MR) digits (X.e[01$.-1 ) . Sikce
the mixed radix number system s a wéighted number
system, magnitude comparision is straight-forward
but arithmetic is slow.

The celebrated Chinese Remainder Theorem, or
CRT, can synthesize X from its RNS L-tuple as
follows [Sza67]

L
X = (] mi(mglxi) mod p;) mod M (2)
i=1




where m; = M/pi and m;~! denotes the
multiplicative inverse of m; modulo p.. Unlike
the sequentially computed MRC, the ChT sum of
product terms can be computed separately and then
concurrently combined in a 1ogzL~leveM modulo M
adder tree,

The major attraction of the RNS is the, manner
in which it performs arithmetic. For ¢ denoting
the operations +, -, or *, it follows that if X ¢

Iy, Y ¢ Iy and Z ¢ Zy (ZM = residue class of
integers modulo M), then
RNS

2 =X ¢ Y =2 (2, veey L)
1 L

(3)
Zi = (Xi s Yi) mod p,
That is, each digit in the L-tuple representation
of Z can be computed concurrently without regard
to the value of the other digits. This carry-free
arithmetic 1is 1in sharp contrast to traditional
weighted number systems where the value of a digit
is predicated on the value of those of lesser
significance.

The RNS mappings suggested in equations 1
through 3 are not normally directly supported with
conventional digital hardware. However, something
better exists and it is high-speed high-density
ROM or RAM. Using such devices, in ECL, bipolar,
or HMOS, moduli sizes from 5 to 12 bits in width,
can be achieved with data rates of 33 to 100
MOPS. The data wordwidth can be adjusted simply
by adding or subtracting parallel RNS data paths.

Taylor and Huang [Tay81] detailed the
operations count requirement for the radix-2 and 4
FFT, plus several other NTT-DFTs. In the case of
the FFT, a high hardware and operations count was
reported due principally to the overflow scaling

requirement and the need to support complex
arithmetic. A similar problem occurs in
conventionally fixed point architecture where

multiple real data paths, arithmetic, and storage
must be used to support operations over a complex
field. Recently, several advancements have been
made to this area by Leung [Leu8l], Krogmeier and
Jenkins [Kro83], Soderstrand and Poe [Sod84] and
Taylor et al. [Tay85]. This work relates the
traditional complex RNS (or CRNS) system to that
built upon quadratic (or QRNS) residues. As a
resuit, it puts the question of applying complex
RNS arithmetic into new light.

I1I. GENERAL FRAMEWORK FOR COMPLEX RESIDUE NUMBER

Definition 1: Let Z[i] = {a + ibla,b e Z; i
= SQRT(-1)}. Z[i] is called a Gaussian ring whose
rules of composition are:

Addition: (a + ib) + (c + id) = (a + ¢) mod
p+i(c +d) mod p.

Multiplication: (a + ib)(c + id) = (ac - bd)
mod p + i (ad + bc) mod p.

Definition 2: Z =7 X7

. Let (a,b), (c,d)
€ %XW MthrMesof%%wo&t%n:
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Addition: (a,b) + (c,d) = ({a + c) mod p, (b
+¢) mod p).

Multiplication: (a,b) (c,d) = (ac mod p, bd
mod p).

Leung [Leu8l] and Krogmeier and Jenkins

[Kro83] have defined an isomorphism between Z [i]
and pr . It was premised on the use of prime
moduli 5? the form p; = 4n+l, It is known that if
p is a Gaugsian prime p = 4n + 1, then the
congruence x“ = -1 mod p has an integer solution
and has been called a gquadratic residue (although
this is a special case) [Her75]. Furthermore, let
p be an odd integer with a prime decomposition

e e e

P=P 1 Py 2 ves Pp P
then there exists a kelp such that
k™ = -1mod p if and only if each p. of the form
4ks1 (i.e., Gayssian primes) [Her75). Finally,
k™ = -1 mod (p°) has two solutions in Ze if -1

is a quadratic residue of p and no solutidn if -1
is a quadratic nonresidue mod p [Arm80],

Thus, if p 1is a positive odd_integer such
that there exists a k in ZM with k2 = -1 mod P,
then Z_[i] can be shown to be isomorphic to prp
under

¢ = ({at+kb) modp, (a-kb) modp)
(4)
371 = (271(x+y)) modp + i(2-1k=1(x-y)) modp

In summary, in the QRQS, quadratic residue
can be found which satisfy x¢ = -1 mod p; where Pj
is a prime of the form P;i = 4n + 1. Let j,. and

j2 denote the two quadratic residues, t dn it
is¢known that j,. and j,. are both additive and
multiplicative 1%$erses of*kach other.

The wutility of the QRNS is
Definition 2. Observe that even though QRNS
addition requires two real RNS add (like the
CRNS), multiplication also requires but two real
RNS operations (vs. real multiplies and two real
adds in the CRNS}. Since each RNS operation can
be thought of as requiring a dedicated table
Tookup each. The QRNS can be predicted to require
4 (i.e., 6-2) less tables per complex multiply.

suggested in

Soderstrand [Sod84] has offered another
extension to this body of knowledge by introducing
a so called 1ike-QRNS type system which trades
moduli choice for reduced dynamic range. The
motivation for this variation on a theme is the
limited QRNS moduli choice rule (i.e., Gaussian or
composite Gaussian primes). To create a more
robust choice of moduli, Soderstrand simply sought
roots mod p that when squared yields a negative
number. Since the RNS is modular system based on
the roots to X¢ -amodp. In this modified system
the CRNS word, x + jy is represented as

X+ Jjy -->m+ nj va 52 = -amodp (5)

However, the dynamic range is reduced by a factor
of va in this system (vs. vI =1 in the QRNS).
This is its principal disadvantage. It should be
assumed that in most applications using complex




arithmetic, that the dynamic ranye for the reals
should equal that for the imaginary. As a result,
if the modified QRNS 1is used, care must be taken
in the choice of va so as to not diminish the
effective dynamic range too strongly.
IV. IMPLEMENTING DFT'S IN THE CRNS

The design of contemporary DFT systems in the
RNS was originally studied by Tseng et al. [Tse79]
and [Tay8l] Taylor and Huang. This work remains
valid today except that different complexity and
throughput  parameters, which reflect recent
advances in RNS technology, must be used.

The traditionally more efficient radix-4 FFT
is constructed with a basic computational unit
which has 4 complex inputs and 4 complex
outputs. Using the analysis methods presented by
Taylor and Huang [Tay81], one obtains the data
shown in Table 1. Here T = A + M (adds +
multiplies) and S = number of scaling calls. The
radix-2 RNS FFT operations are also summarized in

Table 1. The architecture of a radix-4 CRNS DFT
consists of the following operations per
butterfly:
1. 12 real multiplies at level 1.
2. 6 real add/sub at level 2.
3. 8 real add/sub at level 3.
4, 8 real add/sub at level 4.
Now consider the QRNS architecture abstracted in
Figure 1. It can be noted that the requirements
are:
1) 6 real multiplies at level 1.
2) 8 real add/sub + 2 multiplies (note: Ji* =
'31) at level 2.
3) 8 real add/sub at level 3.
Referring again to Figure 1, it can be noted
that in an integrated architecture, the
subtractors S3 and $4 are combined with the

multipliers M7 and M8 respectively, to define two
identical hybrid units for implementing -J;(a-
b). That is, upon receipt of an address v, the
precomputed value of (-jv) modpi will be read from
memory. If units S3, S4, M7, and M8 are
implemented as distinct modular table Tookup
mappings, then a "split" architecture will result.
The throughput/complexity tradeoffs for the
QRNS are summarized in Table 2. What is of prin-
cipal interest is that for the integrated archi-
tecture, the table count decreases from 34 (CRNS)
to 22 (QRNS) and is now a three stage vs. a four
stage process. For a split architecture, the table
lookup count increases to 24 and the level metric
increases to four. The savings of 12 tables,
where each table generally consists of multiple
chips, represents an important reduction in system
cost plus offers a bhoard real estate savings.
Finally, the savings of one level in the butterfly
translates to a speed enhancement for the QRNS.

In (Tay81], the number of table lookup or
computed operations, per scaling <call, was
computed for a then typical moduli set. The

scaling algorithm was based on the standard MRC
formula. The table lookup operations per scaling
count, denoted A, was shown to be given by
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A= (L+2K+b+4)
K= (n+1)/8
M/2 < (2" - 1)2
M = RNS dynamic range
L = number of moduli
b = bound on largest moduli in bits (6)
Other residue to decimal conversion algorithms are
permissable as well. Most notable of these is the
Chinese Remainder Theorem (CRT) (see eq. 2).
V. SCALING IN THE QRNS

A QRNS poses several special problems due to

the fact that

1. Coupling of data prior to the formal CRT
conversion 1is required. This is due to the
need to engage in a QRNS to CRNS conversion.

2. Coupling of post CRT data is needed to
reconstruct a CRNS data base.

3. Coupling of post CRNS data is required to

construct a QRNS data base.
Formally, if (Xi’ X¥) be QRNS digits of a complex
integer X, the CRNS representation of the same
shall be denoted (XR;, XZi). The scaled version

of X, say X'+X/M, is given by

i) QRNS (Xi’ X?) (74)
i1) QRNS to CRNS  XR, = 271(X. + x¥) (7i1)
_ ,-1.-1
XL = 27537 (X - X¥)
iii) QRNS to Decimal; i = 1,2,...,L
-1
XR=( §7 m(m,"XR.) ) mod M
Tl TP (7411)
XI = ( § mi(mi XIi)pi) mod M
iv) Scaled Decimal (CRNS); i = 1,2,...,L
XR My -1
XR' = = (7 (m; " XR;) ) mod M
Q; m: P (7iv)
Note, the above -equation produces fractional

values of XR' and XI' which must be converted into
an integer word (this will be addressed later in
this section).

v) Scaled Decimal CRNS to QRNS

t _ oyp! *|,|=|_"|
Xj = XRY + JiXIY 5 Xi* = XRY - JiXI (7v)

The key to the conversion process is the scaling
by M'. A potential problem can be uncovered when
equation 7(iv) is interpreted too literally (see
Figure 2.a). For example, suppose Pp = 5, py =
13, M = 65, M' = 10, the unscaled CRT partial
products (location a,b,c,d} would be 13, 52, 45,

and 35, respectively. When paired and added, the
unscaled sum would be 13+45 = 58 and 52+35 = 87 =
22 mod 65. If the unscaled sums are then scaled

and rounded, the correct values of [58/10]R = 6
and [22/10)p = 2 will result. If the scaled CRT
partial pro%uct outputs are used directly, then
the adders would be presented with (13/10 + 45/10)
= 5.8 and (52/10 + 35/10) = 8.7. Whereas the




rounded mod p value of the first sum (namely 5.8)
will produce the correct result, the second will
not. To correct this flaw, a modulo 6.5 adder
would be needed (i.e., 5.8 mod 6.5 = 5.8 and 8.7
mod 6.5 = 2.2). However, it would require the
same number of bits of precision to do a mod 6.5
add as a mod 65 add. Therefore, nothing signifi-
cant is gained and, in fact, some interpretability
is lost. The moral of all this is that the key to
an successful RNS design is an efficient modulo M
adder. For any non-trivial QRNS realization, 2n

will exceed any practical table lookup address
space where n_ = [1092 Pmax] + Therefore, the mod
M mapping wiql have “ to - be computed instead of
being looked up. This can pose a serious design
and throughput obstacle unless this question is
successfully managed. Several viable solutions
are now offered and they are:

1. Direct Approach: To compute the sum S, use a
fast n > n_ bit adder and using combinational
logic to test if S » M. If not, Smod M = S
otherwise S mod M = S-M = S+K where K = 2M-M
with the n_th bit ignored. This will require
a second add cycle using the same hardware.
The total mod M adder delay presumably can be
made to not exceed the table Tookup delay.

2. Mod 25-2'  Method: Taylor [Tay84] has
published on the design of a mod 25-2t

adder, In Table 3, the prime number
decomposition of 2"-1 is summarized for
potentially meaningful wordlengths. These

moduli could be used to build a "like" QRNS
system after Soderstrand [Sod84].

Based on this analysis, a revised temporal
magnitude scaling budget can be derived. The
scaler proposed in [Tay81] was based on the use of
the mixed radix conversion algorithm or MRC. For
the CRNS realization, with respect to P = {13, 17,
23, 25, 27, 29, 31}, a temporal overhead of § = 21
TLC's was incurred per scaling call. Using the
CRT, 1in the manner suggested, the count found in
Table 4 will result.

Table 4
Speed Complexity
Item TLC's [Table Count [ No. of
Operands
QRNS to Decimal 1 L 2/table

(Post QRNS multi-
plies to CRT par-
tial products)

Sum of CRT Partial Binary 2/add

]ngL=L2
Products mod M Adders +
Logic
Scale * 2* 2L* 1/n
* estimated ™ bits
Reconstruct QRNS 1 L 2/table

Word

Total 4+L2 4L

The 3rd operation in Table 4 may appear to be an
undesired surprise, The data presented by a mod M
or equivalently mod M/M' adder, bhas nn bits of
significance. It may be tempting to restrict M'
to be a radix -2 value, such as M' = 294 for q =
n,/2 with n_ even. This would simplify the
scaling operaTion by allowing it to be realized as
a binary shift. Furthermore, the product of two
numbers in Zy+ would remain in Zy which is scaled
back into ZM“ Nevertheless, Ny Or ng/2 is a
value which will exceed the address space
requirements of contemporary semiconductor
memory. Therefore, something must be done to map
this long word into mod pj counterparts.

Consider the output of the CRT subsystem to
be X ¢ ZM (can also be interpreted in ZM/M‘)’
Then for admissable QRNS moduli of the form Py =
4ki+l = (2°n.1+1 data conversion can be realized
as follows [Ban72].

X. = X mod p; = Z(-l)Jaj; J =

i 0,1,...,ny (8)

For an arbitrary p;, such as in the like URNS case
[Sod84], the prog1em becomes more complex and
should be treated as a table tookup statement.
Suppose that tables of width n -bits are available
for encoding and that for X ¢ fM,

. +
X=ta2 %5 i=0,1,...,7T-= [ny/n " (9)

n
Then X mod Pj = (281-) mod p;, B; = ‘[0121 YY) mod
Pis i=0,1, ..., T. The values of B; can be
recombined using a custom mod Py adder or a table
lookup three of depth log, T. 'As a result, for
the purposes of analysis, %he throughput delay of
the scaler-encoder will be estimated to be 4+L
TLC's.  This is a moduli dependent value having
the range shown in Table 5.

Table 5
Moduli Range

# of Moduli “ TLC Delay Units
1-2 5
3-4 6
5-8 7
9-16 8

Thus, it should be remembered, that these figures
should be compared to the 21 TLC's required of the
51X moduli MRC system previously reported.

VI. CRNS - QRNS COMPARISON

The main advantage of the QRNS and 1ike QRNS
systems, is a reduced multiplication budget and,
through the wuse of the CRT, a 1lower scaling
burden. These new parameters must be factored
into the previous CRNS-DFT analysis. The data
presented in the CRNS case can be updated as in
Table 6.

3
b
k:

g
g

-
?
g




Table 6
CRNS-QRNS Comparison (ref Table 1)

without compression [Tay81]:

Level Item . CRNS , QRNS , SCALING
1 | Butterfly Adds N(16)/4 | N(16)/4 2NA
1 | Butterfly Adds N(16)/4 IN(16)/4 2NA
1 | Multiplies N(12)/4 I N(6)/4
1 | Recombining Adds | N(6)/4 |0
9rN-5N 5.5rN-1.5N 2rNA
with compression: 9rN-5N  5.5rN-1.5N (2rN-4N)A
The result of all this is a reduced arithmetic

complexity and scaling overhead. The previously
computed CRNS overhead ratio values, in light of
this analysis now becomes for a radix-4 FFT
OH = (Operations Count)/(Scaling Count) (10)
10
Radix-4 FFT: OH = 2.75 (vs. 4.5 for the CRNS)
Based on the data reported in Table 7, for 40
nsec TLC's, a 1024 pt FFT can be computed in less
than 7 ms. However, this is not a fair appraisatl
of the system since some sort of block processing
would normally be wused. For a pipelined
reqlization (which is trivial to achieve in the
RNS), a transform rate of 25 MFFTs/sec. can be
achieved. However, the possibility of a
prohibitly high hardware cost must be born. The
truth lies somewhere in between.

One last remark on the data reported in Table
7. A hybrid parameter called "work factor" has
been developed. It measures, as a ratio, the
amount of time used for DFT arithmetic versus
magnitude scaling. The Tlarger this number, the
better. A1l radix-4 FFTs tested are below
unity. However, smaller 1length FFTs exhibit a
comparatively superior work factor.

VII. SUMMARY AND RECOMMENDATIONS

The significant advancements made in residue
arithmetic warranted a reinvestigation of RNS-DFTs
reported in the late 70's and early 80's. The
data and analysis reported in this paper supports
earlier claims that the RNS may represent a
superior FFT architecture. This thesis is
historically questionable due to a high scaling
incumberance. In previous analysis  the
computational complexity of a scaling operation
was quite high (typ. 20-25 lookup cycles). In
this work a signficant reduction in scaling
complexity has been reported (4-fold decrease
typ.). Also, the introduction of the QRNS and
Tike QRNS systems significantly reduce the FFT
arithmetic count. This in turn translates to a
major reduction in arithmetic hardware (which in
this case is almost one to one with table lookup
semiconductor memory chips). However, the reduced
arithmetic  count artificially inflates the
overhead scaling ratio. This, by itself, is of no
concern. However, it is shown in this work that
the architecture of the QRNS scaler is moderately
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complex. The key to fast CRT converters/scalers
is reported to be an efficient mod M adder. Based
on this analysis, it would appear that a CRT based
CRNS autoscaler can be designed to run in two
Tookup cycles in limited hardware. This is offset
by the fact that twice as many CRNS autoscalers
than QRNS scalers are needed. Therefore, the
complexity issue becomes a “"wash". It can also be
sean that a radix-4 QRNS butterfly cycle can be as
short as three memory cycles vs. four for a CRNS
design which the CRNS butterfly unit is about 20%
more complex. Therefore, as a result, the
following observation are made

1. The conventional CRNS-FFT will probably be
slightly more complex but run slightly faster
than its QRNS counterpart.

2. The key problem, in all desiyns considered, is

that of implementing fast autoscaler. Several
viable approaches are recommended.

Based on this analysis, it can be seen that the
RNS-FFT approach has become increasingly
attractive and, for modest transform lengths, can
be realized in fast hardware. It would also
appear that either a conventional QRNS or QRNS
based design would be represented in a viable
prototype development project.
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1979. 1TEM T (Adds and Multiplies) $ (Scaling Calls)
RADIX 2 4 2 4
! |

Without 6Nr-4N YNr-5N ZNr 2Nr

Absorption

With 6Nr-aN 9Nr-5N 2Nr-4N 2Nr-aN

Absorption

Absorption implies that input/output magnitude scaling operations are

imbedded in first/last stage arithmetic operations.

Complex Input FFT Table Lookup Count

Table 1
DELAY  #UF #0OF #UF ORGANIZATION
ans MULT  ADY sSuB AT MULT ADD suB LEVELS
A 12 11 11 A 1,2,...,12 1,2,3,4,5,6,7,8,...,11 1,2,3,4,5,6,7,8,.,.,11 4
28 6 6 6 A 1,2,...,6 1,2,4,5,7,9 1,4,5,8,9 4
24 7,8,...,12 3,6,7,10,11 2,3,6,7,1u,11
LY 3 3 3 4 1,2,3 1,4,9 4,3 4
24 4,5,6 2,6,10 1,5,9
3a 7,8,9 3,5,11 2,6,10
LY 1u,11,12 7,8 3,11
8a 2 2 2 1y 1,9 1,9 6 4
2 2,10 2,10 7
3a 3,n 3,1 8
4r 4,12 4 1,9
54 5 5 Z2,1v
64 6 6 3,11
7a 7 7 4
8a 8 8 5
TABLE 2a: Number of Arithmetic Hardware Units Required vs. Throughput for a Radix-4 CRNS FFT Butterfly
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DELAY | #OF | #0F | #0F | #0F ORGANIZATION
ans | muLT | AoD| sus | SCALARS| AT MULT ADD sus -1 LEVELS
a(#) 6 81 6 2 A 1,2,000,6 1,2,3,4,5,6,7,8 1,2,5,6,7,8 (s3,m7)(sa,m8)] 3
a(t)y | 8 8] 8 0 a 1,2,...,6,7,8] 1,2,3,4,5,6,7 1,2,3,4,5,6,7,8 | N 4
a(h| 3 4] 3 1 a 1,3,5 1,3,5,7 1,5,7 (S3,M7) 3
28] 2.4.6 2,4,6,8 2,6,8 (54,M8)
28() | ¢ 4] 4 0 a 1,3,5,7 1,3,5,7 1,3,5,7 N 4
28| 2,4,6,8 2,4,6,8 2,4,6,8 NO
4a(#)] 2 2| 2 1 a 1,5 1,5 1,% NO 3
2a | 2,6 2,6 2,6 NO
34 3 3,7 7 (53,M7)
40| 4 4,8 8 (54,M8)
aa ()} 2 2] 2 v a 1,5 1,5 1,5 NO 4
22| 2,6 2,6 2,6 NO
3a | 3,7 3,7 3,7 NO
|l 4.8 4,9 4,8 NU
ga(#)| 1 1 1 1 A 1 1 1 NO 3
28] 2 2 2 NO
KT B 3 5 NO
] 4 4 6 NO
561 5 5 7 NO
68 | 6 6 8 ND
78 | NC 7 NO (83,M7)
8 | NC 8 NO (4,M8)
8a(l)y] 1 1 1 0 A 1 L 1 NO 4
28| 2 2 2 NO
38| 3 3 3 NO
da | 4 4 4 NO
50 | 5 5 5 NO
6a | 6 6 6 NO
a7 7 7 NO
8l 8 8 8 NO

# combined adder({subtractor)/scalar {i.e., hybrid units (S3,M7)} and (S4,M8) do (- -3;(a-b))modp,)
! split architecture separate adder(subtractor)/scalar {i.e., distinct S8,54,M7, MB units)

NO:

TABLE 2b:

PRIME FACTURS UF 24-1
q e (12,30}
212.123%3%5%7213
213-1=81914

214 y=yeg3r127

215 1=7#31%257
216.1=13%17#257
217.1=1310714
2181230303074 19*73
219-1=524287¢
220_1=3*y*5%1 143141
221 1=77%127%397

# too larye of moduli
high-speed memory

for use with commercially available

No operation

“% 2 -7 {a-| b)modp,

222_1=3%23*89%683
223.1=3+23*89*683#
228_1=47*1784814
225-1=31*601*1801#
226.1=3%2731*8191#
227.1=7%73*262657#
228.1=345%29%43*113%127
229-1=233*1103%2089¢#
230.1=3%3%7%11%31%151*331

Table

Prime Factorization

Table 3

7

Numerical Summary of {RNS

L MOLULL yRNS or

like QRNS OFTs

Number of Arithmetic Hardware Umits Required vs. Throughput for a Radix-4 QRNS FFT Butterfly

N TYPE ARITH SCAL ING MODUL! JSCALING | TOTAL UPERATIUNS | WORK FACTOR
POINTS AR SC*A L MULT. A T = AR + SC*A WF = AR/{SC*A)
128 radix-4 FFT 4927 1280*A 1-2 5 11327 .17
3-4 6 12607 .74
5-8 7 13387 .55
512 radix-4 FFT 24576 7168*A 1-2 5 60416 .68
3-4 6 67584 .57
5-8 7 74752 .48
1024 | radix-4 FFT 54784 163847A 1-2 5 136524 .67
[5a784) ] (16384 *[A]]3-4 6 153088 .56
5-8 7 169472[436224] .47
2048 | radix-4 FFT 120832 | 36864*A 1-2 5 303152 .65
3-4 6 342016 .54
5-8 7 378880 .47
L ] denotes requirement based on previously published MRC scaler.
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