BINARY PARADIGM AND SYSTOLIC ARRAY IMPLEMENTATION
FOR RESIDUE ARITHMETIC.

David Y. Y. Yun
Chang N. Zhang

Lepartment of Computer Science and Engineering

Southern Methodist University
Dallas, Texas 75275

abstract

The problem of residue, or modular, arithmetic is fun-
damental to symbolic and algebraic computation, cod-
ing theory and applications, as well as to error-free
arithmetic computations. This paper describes novel
algorithms that can lead to efficient hardware for arith-
metic operations in residue domains. One of the main
achievements is in allowing the flexibility of changing
moduli. The technology of systolic array has been used
to implement one of the most representative opera-
tions, the modular multipler. It is shown that a linear
systolic array can compute N modular products in time
O(N) with constant number of cells.

1. introduction

Residue, or modular, arithmetic is well known to be of
fundamental to symbolic and algebraic computation,
codipg theory and applications, as well as to error-free
arithinetic computations. It has long been recognized
that residue arithmetic is particularly suitable for
paraliel computations, by either software or hardware
implementations. Most implementations of residue
arithmetic algorithms are by software only, and they do
not take full advantage of machine instructions or
hardware. Those algorithms for residue arithmetic,
which attempt to improve computational speed by
hardware, often involve trade-off with other difficulties.
They are sometimes memory intensive in that some
table lookup operations are used to perform the arith-
metic [2,3]. Other times, these implementations pri-
marily rely on using moduli of the form 2",2”-1 and
2*+1 [1,2]. These algorithms essentially take advan-
tage of the inherent binary number representation and
hardware instructions to offer computational efficiency.
Unfortunately, these restricted powers-of-two moduli
are frequently inadequate when wider selections of
moduli are required for computation in several fields.
Residue arithmetic is one such example field, which

CH2146-9/85/0000/0189%01.00 © 1985 IEEE

189

clearly need more moduli than these restricted
powers-of-two. Often, the further requirement that
these moduli be primes makes it nearly impossible to
use these restricted powers-of-two. Our work elim-
inates these restrictions for the moduli, while still take
advantage of the inherent binary representations and
instructions. It increases modular computational
efficiency either by directly using machine instructions
or by special hardware designs.

In multiple-moduli arithmetic, let {p,, . . . , p;} be a set

of relative prime intege{s {moduli) and

z € Zp(0<z < P), where P =]]p; then there exist
i=d

integers k; and z; such that
z =k;p; + 1, 1=12..,1

The i-th residue of z, z mod p;, is denoted by z,. z

can be uniquely represented by a [-tuple:
z =(z,29, - - - ,%;). We use =p to denote modular
equivalence.

If T, Yy€lp and
2=(Il,$2, ' ”vzl)w yz(yl:y2v .”1yl)y

then Z =z o y =(zy,29, * * * ,2), where z; =, 7; 0 y;

for 1 =1,2, - - - I, and o denotes the operation *, +
or -. It is clear that the suboperation in each modulus
is independent of the other. Thus, parallel algorithm
and architecture can be designed to process all modular
operations concurrently.

In this paper we propose algorithms that use only
binary addition and multiplication operations for resi-
due arithmetic with arbitrarily selectable moduli. For
residue addition, the algorithm needs one binary addi-
tion cycle time (as opposed to 2 binary addition cycle
times in the normal method). For residue multiplica-
tion, the algorithm needs a constant number of normal
binary multiplications and additions for moduli of form
2% + s and 2* - s, where s is chosen from

some scale, such as s < 22 [p that case, zy mod
2" - s can be computed in four multiplications. We
also present a linear systolic array that computes a
sequence of N residue products, which requires O(N)
time units with constant number of basic cells. The
unit time is that of one binary word multiplication.

2. modular addition

First, we consider moduli of the form p=2"-3s.

The problem of the modular addition is that:

The normal way to compute z + y mod p is first to
compute ¢ :=z +y. One then computes ¢ — p. If
there is no underflow, this is the answer, also ¢ is the
answer. So it needs two binary addition cycle times.
The following algorithm: only needs one binary addition
cycle time (p =2" -).

c:=z+y+s; d =z 4y,

f bitnofc=1 then return(c),. s_1 (truncated
to bits 0... n-1) ;

else return d ;

Note that the additions on the first line can be done in
parallel and the addition that has three addends can be
implemented by a multioperand adder (8].

It is easy to show that the algorithm actually computes
z+y mod p.

In fact, note
z+y+s > 2" then
Try=(z+y+a)-s- p=(z+y+s)-2"<p
otherwise if (z + y + s) < 2"

thenz+yﬁ(z +y+48)- s <p.

s<z+y+s<2"*'_ 5 therefore if

Next, we consider moduli of form p =2 + 5. Our
algorithm quite clearly becomes:

=z +y-s;d:=z+y

if nth bit of ¢ = 1 or n+1th bit of ¢ = 1 then
return ¢ - 2*°

else returm d;
Note that -5 < ¢ < 27! 4. 4,
Therefore, if ¢ > 2" (¢, =1 or €y =1)
thenx+y=p(z+y—a)—p+s
=(z+y-s)-2"<p

otherwise if ¢ < 2*

3. modular multiplication

3.1 modulus p =2" -3
Definition 1: Let z be an integer and p be a moduli of
form p =2" - s. Define a function F such that
F(z) =z¢ + 2, s where z =z + z, 2".
Theorem 1: F(z) = T.
Proof: F(z) =z4+ 2,
=z¢ + 7,(2" - p)
=,29+ 122" =2 A
Example: Let n=3 and s=3 then p =23 - 3 =5,
¢ =19=2 x2°+3 = 4
g+ 2,8 =342 X3=p4
Theorem 2: Let z,y¢ Z, and p be modulus of form

p =2" - 3, where ¢ =2(1‘2‘k)", k is a positive con-
stant integer.

then F2'(zy) < 2+

here F¥' (zy) =F(F(- - (F(zy)) - - -)).
wher y (£ y

zK

Proof: Let w =zy, z,y¢ Z, we have 0<w 22"

Let w = wl + w 2" where 0<wl <2, o<w<o*.
From definition 1, F(w) =wl + w% where

0 < Fw)<2® + 2(2-2")n,

F(w) can be rewritten as F(w) =w{ + wi2"® where

0< wd <2" 0<w] <2(1-2")n,

By the inductive hypothesis: .
assuming that F*(w) < 2 + 2(2-27" i)n_

we have
F'(w) =w{ + w} 2"
where 0< w§ <2*, 0<wi <2(1-27" i)n

Consider F'*!(w) =wj + wjs, then

0< Fi+l(w)<2n + 2(2-2"(:’1—1))»‘

Therefore, we have

F¥'(zy) < 2" + 2" =2%¥1({ =2¢) A
Note that zy =, F?'(zy) < 2°*! (by theorem 1 & 2)
and F¥+! < 2" + 5.

Example: Let n=4 and s=4 (k =1) then p == 2%-4
= 12,

z =10, y =11, zy = 110 =, 2.

F(zy) =6 X4 + 14 =38 (110 =16 X6 + 14)
F(zy) =2 X4 +6 =14 (38 =16 X2 + 6)
F(zy) =14=,2

We can now use the following algorithm for residue
multiplication(asumming & < 2" /3).

¢ =z Yy,

for i:=1 to 2**! do ¢:=F(¢);

d:=F(c +3);

if d>2" then return d - 2°

else retumm ¢ ;
Note that 0 < F2™(zy) < 2" + s and let
d =F2k+l(zy) + 8. We have that s < d < 2" -~ 23
Because zy =, d ~ s, il d > 2" then

1y =,d-s-p=d-2"<p(s<2"°f3)

Therefore,
d-2" if d>2"°
ws |
¢ if ¢ <2®
3.2 modulus p =2* + s

Numbers in this Z, can be represented as binary

" .
(n+41)- tuples: z = ¥ z,2°.
1=0

Defining a function G , we can get some facts which
are similar to the ones of modulus p =2" - s dis-
cussed above.

Definition 2: Define a function G such that

G(z) =z9- 2, 8, where 2o + 2, 2" =2

191

Theorem 3: G(z) =z
Theorem 4: Letz , y¢ Z,, p =2" + 3, 8 =a(1-2")n
k is a positive integer, then

~2" < G¥(zy) < 0or0 < G¥(zy) < 2"+,

The corresponding algorithm of multiplication is as
follows(asumming s < 2" /3):

ci=zy;
for i=1 to 2¥*! do ¢:=G(c);

if ¢<O0 then relturn ¢ +p

else ff ¢ > p then return ¢ - p

else return < .

The proof of the theorems 3 and 4 is similar to the
previous ones, and the correctness of the algorithm is
also straightforward.

4. systolic array implementation

To ensure efficiency in the algorithms described above,
the set of moduli should be carefully chosen. A partic-
ularly useful set is {2" - 1, 2", 2" + 1}, which is
exactly the special case of ¥k =0 ,s =1. Another use-
ful example is to choose a set of moduli of form
pp=2" -8 or p;,=2"+4;,1=12 - -,1, where
8; < 2"%(k =1). By the Theorem 2 & 4, a multnphcar
tion of two integers in these moduli needs four binary
maultiplications.

One of the hardware implementations of these algo-
rithms is to use systolic array. We present a linear sys-
tolic array implementation to accomplish this process.
The problem of computing N modular products can be
defined as follows:

given z; , y € Z, where i=1,2, - - - N,

compute Z; =1z, y; mod p =12, --- N,

where p =2" -~ 5,3 < 2"/3.

4.1 two basic cells

w0. l_) wonl

w
wl,vl ﬁ ‘uf

8in J—’sout
Sout *=Sin>

wo,, =(wy, 8 + Wy, Jo_(n-1) (Pits 0 ... n-1)
=(wy_ 8+ wo,) (zn-1) (bits n ... 2n-1)

Loy -

Figure 1 basic cell(a).

r

wou —3 Zout
vy, — /

3n

(wo, +8)o-(a-n) U (W1)a =1

Ol'(’U)o_ + 8)n =1
Zout = .
Wy, otherwise.

Figure 2 basic cell(b).
4.2 the array

A full array consists of five cells(the right-most cell is
basic cell(b)) as depicted if Figure 3. The input
wy_, wy_ and s, to the left-most cell is 0, z; and ¥
res}ectively, and the input, s;,, of the second left-most
cell is s.

] 00 > - Z;s
Iy Ty - -
Yn © T Y2 =

Figure 3.

4.3 an i]lustration

Consider the case N = 6. Define a cycle to be the time
to perform the function of the basic cells. The status of

the array at the end of the next five cycles are depicted
in Figure 4.

4.4 remarks

A systolic architecture is designed to perform the mul-
tiplication operation in the moduli p=2" — 5. This
multiplier requires 5 basic cells. This multiplier -is
highly suitable for VLSI implementation because of its
simple and local comtrol methodology. Note that if we
choose the form of moduli p =2" - s where s is the
form of 2% 2% + 1 or 2t - 1 , then the operations of
the basic cells are only shift and
additions(subtractions).

In general the basic cell(a) needs a n#m-bit multipler
(assuming m=2n). Note that the output of the cell,
wo, and w,_, is two n-bit integers so we can divide its
input, w,_, into two parts:

wy, =wy_, 2" +wy_,

then compute w, , #s and w, , #s separately by
two m#m-bit multiplers and group them into two n-bit
sections as outputs:

wy,,, (low section 0-n-1 bits) and

wy , (high section n-2n-1 bits).
The detail design and more applications of these
processes were reported in another paper [6].

refences

[1] F. J. Taylor, A VLSI Residue Arithmetic Multi-
plier”, IEEE Trans. comput. Vol. ¢-31, pp. 540-
546, June 1982.

(2] W. J Jenkins, "A Highly Efficient Residue-
Combinatorial Arithitecture Digital Filters”, IEEE
Vol. 66, pp. 700-702, June 1978.

[3] W. K. Jenkins and F. J. Leon, "The Use Of Resi-
due Number System In The Design Of finite
Impulse response Filters”, IEEE Trans. Circuits
Syst., Vol. CAS-24, Apr. 1977.

(4 J. L. Massey and O. N. Garcia, "Error Correcting
Codes in Computer Arithmetic”, Vol. 4, Plenum
Press, New York, 1671.

[5] H. T. Kung, "Why Systolic Architectures”, IEEE
Computers, Vol. 15, No. 1, pp. 37-46, Jan. 1982,

(6] D.Y.Y. Yun and C. N. Zhang. "Systolic Array For
Programmable Galois Field Multiplier”, Report
Dept. of Comp. Sc. Eng. Southern Methodist
University, Oct. 1984,

[7] Jokn D. Lipson, "Elements Of Algebra And Alge-
braic Computing”, Addison-Wesley Publishing
Company, 1981.

(8] Kai Hwang, "Computer Arithmetic: Principles,
Architecture And Design”, John Wiley and Sons,
New York, 1979.

E2] 5

| ER—

0 __)

Vo

nn
s —
Zyy, Flz,11)
s
[
z3¥s F(z,y,) F243))
. s
LR
o
Bkl Flzsys) FP(2,y9) (zi1)
] . Il
4
l—_h’ L
Z5¥s Flzyy,) F¥(z,5y3) F(z,y,)
LN ’ 4]

Figure 4.

193

Zy

