Improved Normalization Results for Digit
On-line Arithmetic

Richard J. Zaccone! and Jesse L. Barlow®

Department »f Computer Science
The Pennsylvania State University
University Park, PA 18802

In digit on-line arithmetic, operands are introduced e.
digit at a time. After the first few operand digits have beer.
introduced, the result begins to appear a digit at a time
This feature of digit on-line arithmetic allows a significant
amount of overlapping of arithmetic operations.

Digit on-line arithmetic can sometimes produce
unnormalized results. This can present a problem for the
divide and square root algorithms. If the divisor and radi-
cand are highly unnormalized, these algorithms will not
produce the correct results. Two advances in overcoming
this problem are presented. First, several techniques for
producing results that are closer to being normalized are
developed. Second, it is shown that normalized results are
not necessary for divide and square root to work properly.
Combining these results yields algorithms that will always
give the correct results.

1, Introduction

Digit on-line algorithms for performing computer
arithmetic are a recent development [6. 8,13, 14]. These
algorithms are a radical departure from conventional tech-
niques for performing computer arithmetic.

Digit on-line algorithms are iterative algorithms based
on the continued sums/products algorithms of DeLugish
[4]. What distinguishes these algorithms from conventional
algorithms is that the operands are introduced a digit at a
time, and the result is generated a digit at a time. At each
iteration new digits of the operands are introduced. After
a brief delay, result digits are generated, one per iteration.

With digit on-line arithmetic, one can construct pipe-
line architecures for solving recurrence relations. Digit
on-line arithmetic allows these pipelines tc be constructed
with a high degree of modularity, and simple interconnec-
tions [9]. Also, a speedup factor between 2 and 18 over
conventional arithmetic can be expected [7].

The algorithms for digit on-line arithmetic can some-
times produce unnormalized results. This has seriously
limited their usefulness, since the divide and square root
algorithms, as originally presented [9], require a normal-
ized divisor and radicand. In this paper, it will be shown
that a normalized divisor and radicand are not necessary
for divide and square root to work properly. A condition
which is much easier to satisfy will be shown to be
sufficient. In the cases where this new condition is not met,
methods for conditioning the operands so that it will be
met are presented. The result is that the normalization
problem in digit on-line arithmetic can always be avoided.

'Work supported by the Office of Naval Research under contract No.
N0014-80-0517.

®Work supported by the National Science Foundation under contract
No. DCR-8402383.

CH2146-9/85/0000/0020$01.00 © 1985 {EEE

20

2. Notation

All of the digit on-line algorithms will use a redundant
base 8 number systemn.? Thus all digits used to represent a
number are from the digit set D, where

D=1{7,6,54,3210,1,2,3,4,5,86,7,

and 7 = -7, 6 = -8B, etc. (Xp,Xy) and (Yg, Yy) will be used
to represent the floating point operands of an operation.
Xc and Y; are the characteristic portions of the floatin
point number, and Xy and Yy are the mantissas. (Z;,Zy
will represent the floating point result. The following sym-
bols will also be used.

Symbols Used

symbol | meaning

number of characteristic digits
number of mantissa digits

z ith digit of X,

x; ith digit of Xy

7, ith digit of ¥,

Yy ith digit of Yy

Then
Xo =285 - By,
Xy =2~ Ty
Ye =412 Im,
Ya=y1We Ym,

where %, x;, §;, ¥, € D. Thus,

me—1
value of Xp = 3] T8,
1=0

and

my
value of Xy = 3 z,871,
151

Also, X}, will be used to represent the first i digits of Xy.

Le.
Xyp= 2y oz,

A floating point number (Xg,Xy) is normalized if
g | Xy] <1,

30ther bases such as 2, 4 and 18 are possible, and the results
presented here can easily be extended to these bases.

Note that because of the signed digits, it is not sufficient to
check the first digit of the mantissa to determine if it is

normalized. For example .12 is not normalized. In the
worst case, it is not possible to determine if a number is
unnormalized until the last mantissa digit has been exam-
ined.

Digit on-line algorithmns are iterative, and at each
iteration, they expect to be provided with the next digit of
the operands. Thus, if an algorithm requires two operands,
then E,- and ﬁj must be provided at the j*® characteristic
iteration. Likewise, z; and y; must be provided during the
4t mantissa iteration.

3. Floating Point Division - RDIV
Let (Yg, Yu) be the floating point dividend, (X, Xy) the
floating point divisor, and (Z¢,Zy) the floating point quo-

tient. Algorithm RDIV computes successive approximations
to the floating point quotient.

Following is the algorithm RDIV for computing the
floating point quotient.

Characteristic Initialization
A-s =0
Characteristic lterations§ =1, 2,..., mg
Aj-a = AJ'—4 + Bmc_j ('g, - Ej)
Characteristic Trailing Iteration j = m¢ + 1
Aj—S = Aj_4 +1
Characteristic Trailing lterations j = m¢ + 2, mp + 3
Ajg = Ajy

Mantissa Initialization

Ug=0
@s=0
So=1

Mantissa lterationj = 1
Uj = 8'U;-y + 8725z,
Qg = Qs + 87Ny
S1 =S

Mantissa lterationj = 2
tj = BlUj_l + 8-—25}_12‘1

s; = DIV (t;)

Uy =tjs5 -1

Q-3 = (@4 + 877yy)sy
Sy = 85551

Mantissa Iterations j = 3,4, ..., my
t; = B'U;_, + B7RS; 2y

sy = DIV4(ty)

Uy = t;(1 + 8%7s;) + 5,

Q3= (@4 + 87IS;_y;)(1 + B sy)
Sy = Sjo(1 + 8% 7sy)

2l

Mantissa Trailing Iterations j =my + 1, mgyg + 2, my + 3
tj = 81 U}—l

Sj = DNJ(tj)
Up = t5(1 + 8%75;) + 54
Q-5 = @j-o(1 + 8°7sy)

SJ- = Sj_l(l + Bz_ij)

The definitions for DIVy, j = 1,... ,mg+3 can be found in
{18].

4. One Step Normalization

Owens [9] describes an algorithm called *“one step
normalization' that can be incorporated into each floating
point operation to bring the result one step closer to being
normalized. It does this by waiting until the first approxi-
mation to the result mantissa has been generated, before
producing the last characteristic digit. If the mantissa can
be shifted left one place (i.e. if the first mantissa digit pro-
duced would have been a zero). the last characteristic digit
is decreased by one, and the mantissa is shifted.

For example, in the multiplication algorithm, let P, be
the first mantissa approximation. P, is an approximation
to the product which has been produced after examining
only the first two digits of the operands. One step normali-
zation says that the mantissa may be shifted left and the
characteristic adjusted if |P;| < .04g. If |P;| = .043, the
result is produced as usual.

The are many instances where |P,| = .04 but it is
possible to shift the mantissa anyway. One step normaliza-
tion will not detect these cases, and the following sections
suggest some improvements that allow many more shifts to
occur.

5. Multiplication

Let (Z¢,Zy) be the result of a floating point multiplica-
tion, where (X¢,Xy) and (Y¢,Yy) are the operands. By
definition,

Zy = XyYu. (]l)

If one step normalization is used to determine if a shift is
possible, the on-line delay increases by one, and a shift left
is performed if

| XBYE| < .04g. 2)

This test will miss many of the instances when a shift can
be performed. The following discussion will show how it can
be improved.

From (1) it follows that
| Zg| < (1 X4 +8°)| Y4 +87)
= | X34l + 87 (1 X4 + | YVA]) + 872

Therefore, it is possible to shift Zy left one place after the
first digit of each operand has been introduced if

| XAYh! + 87 (1 Xg| + |yhl) + 872 < 1, (3)
or equivalently if
| XAYh| +87(| Xd| + | YR|) = .07 (4)

This test is easy to compute, and since only the first digit
of each operand is needed, it does not increase the on-line
delay.

Another benefit is that this method can also allow &
shift of two places. If the right hand side of (3) is replaced
with .01, then this gives the test necessary to check if a
shift of two is possible. A shift of two is possible if

X=Yh=o. (5)

For purposes of comparison, consider the best that
can be done after examining two digits of each operand.
From (1),

| Zu) < (1G] +873)(| Y§| +879),

and therefore, a shift left is possible if

(1% +8)(| YRl +87®) = .1,

or equivalently if

| XBYE| + 8721 XG| + | Y§|) = 0777, (8

This test will increase the on-line delay by one, and gives
optimal results if only two digits are being examined. How-
ever, the number of bits involved in the comparison (8)
make this test prohibitively expensive and beyond current
technology. Therefore, this test will serve to gauge the
effectiveness of the other two methods presented in this
section.

The following table summarizes the performance. of
one-step normalization (), test (4), and test (6). Each of
these tests was applied to all positive combinations for X§
and Y§ (i.e. all combinations of X3 and Y§ were assumed to
be equally likely). “Percent Allowed” shows how often a
particular method allowed a shift.

Improvements to One Step Normalization for Multiply

Percent | On-line Delay
Test Allowed Increases?
One step
normalization 25% Yes
Test (4) 31% No
Test (8) 37% Yes

Test (4) is clearly superior to one step normalization,
since it can detect when a shift is possible more often, and
it does not increase the on-line delay. It has the added
benefit of allowing two shifts in a special case (5).
Although test (6) is not feasible to implement, it shows that
by looking at only one operand digit, test (4) can perform
almost as well as the best possible case when looking at
two operand digits.

8. Division
Let (Z0,Zy) be the result of a floating point division,

where (Y¢,Yy) is the numerator and (X¢.Xy) is the denomi-
nator.

The divide algorithm generates its first approximation
to the quotient after the fourth operand digits have been
introduced. Call this approximation &;. According to one
step normalization, a shift, is possible if

| @] < 4, (7)

The rest of this section will describe how the test (7) can

be improved.
By definition,
| Yul

87!,
[Xu |

| Zy| =

(8)

22

and therefore

Thus, after the first two operand digits have been intro-
duced, Zy can be shifted left one place if

+ 8%
| VGl +87 1,
| Xgl — 8%
or equivalently if
| Xg| — | Y&| = .02, (9)
Also, Zy can be shifted left two places if
+ 8%
L 8l g '016-
| Xg| — 82
or equivalently if
87 | X§| — | Y| = 011, (10)

Combining (8) and
for divisions.

(10) yields the following shift algorithm

New Shift Algorithm for Division
if87' | Xf| — | Y8 = .011, then

shift = 2

else if | Xf| ~ | Y§| = .02, then
shift = 1

else
shift = 0

For comparison, consider using a similar technique
after the first four operand digits have been introduced.
Using (8),

Yil +87%
2y < iR/ (Rl 871,
| Xg| — 8~

and so a shift can be performed if

| X&| — | Y| = .0002,. (11)
Similarly, a shift of two is possible if
871 | Xg| ~ | ¥l = .00011,. (12)

This method is too expensive to practically compute, but
serves as a good benchmark since no better than this can
be done after the first four operand digits have been intro-
duced.

The following table summarizes the performance of
one step normalization (7), new shift algorithm for division,
and the tests given by (11) and (12). "Percent Allowed"
indicates how often a shift of one or more was allowed “"Two
Shifts” indicates how often two shifts were allowed. The
observations were made by considering all positive possi-
bilities for X and Yj§. The decisions for the new shift algo-
rithm for division were made by considering only the first 2
digits of X4 and Y3.

Improvements to One Step Normalization for Divide

Test Percent Two On-line Delay
Allowed | Shifts Increases?
One step 28% 0% Yes
normalization
New Shlft' a_lgprlthm 54% 8% No
for division
Tests (11) .
and (12) 56% 6% Yes

The new shift algorithm for division clearly performs
better than one step normalization. Also, by only looking
at the first two operand digits, it performs almost as well
as the optimal algorithm which considers four operand
digits, and it does not increase the on-line delay.

7. Addition

Let (Z¢.Zy) be the result of a floating poiny, additigp,
where (X¢.Xy) and (Y¢,Yy) are the operands. Xy and Yy
are equal to Xy and Yy after they have been shifted so that
X¢ and Y; are equal. If one step normalization is used, the
on-line delay increases by one, and a shift is possible when

| Xg + gl < 4. (13)

The following analysis will show how (13) can be improved.
By definition,
Zy =87 (Xy + Ya),

and therefore,
|Zy| <87 (| Xy + Til +=87Y).

This suggests that 7y can be shifted left if
871(| Xy + V| +287) < .14

or equivalently if

| X + Yal < 6. (14)
Since (14) requires only the first digit of each operand to
decide if a shift is possible, the on-line delay does not
increase.

If however, an increase of one in the on-line delay is
tolerable, the following technique can be used. Note that

| Zy| < 87L(| X5 + YE| + 2879),

and a shift is therefore possible if
87 (| Xg + YE| +28%) < .1,

which reduces to
IX’E +)N,I:” < .7By.

(15)

The following table summarizes the performance of
one step normalization (13), test (14), and_jest (J;',g) To
obtain these results, all possible values for Xy and Yy were
tested to see when a shift was possibie. The “Percent
Allowed" is the percent of the total number of observations
where a shift was permitted.

23

Improvements to One Step Normalization for Add

Test Percent | On-line Delay
) Allowed Increases?
One step o
normalization (13) 47% Yes
Test (14) 68% No
Test (15) 7% Yes

The performance of test (14) and test (15) exceeds
that of one step normalization. Note that although test
(14) performs slightly worse than test (15), it has the
advantage of not increasing the on-line delay.

8. Post Normalization

This section describes an algorithm which can be
appended to any one of the digit on-line algorithms, and
which will bring the result one step closer to being normal-
ized. The advantage of this algorithm is that it can be
appended more than once to a digit on-line algorithm and
thus bring a result even closer to being completely normal-
ized.

Let (Z¢.Zy) be the result of a floating point operation,
and let Z; be the i characteristic digit, and z; be the ith
mantissa digit. If the post normalization algorithm is sup-
plied with the digits of (Zz,Zy) in an on-line fashion, it will
produce (Z¢.Zy), where (Z4,Zj) is one step closer to being
normalized.

The post normalization algorithm examines z; to
decide if it is possible to decrease Z; by one and then shift
Zy left one place. If z, = 0, then the shift and decrement
takes place. If z; # 0, then no shift or decrement takes
place. Note that because of the redundant arithmetic
being used, there are instances where |Zy| < .15 and it is
not posgsible to shift Zy. For instance, suppose that
Z§ = .17, The post normalization algorithm will not shift
Zy left since z; = 1. However, since Zy < .14, it is not nor-
malized. The post normalization algorithm handles this
case by changing Z§ to .015. Then, if it is applied again, it
will perform the shift. Note that each application of the
post normalization algorithm increases the on-line delay
by one.

Post Normalization

Characteristic lterationj = 1
E; = 8712

Characteristic Iterationsj =2, ... Mo
tj = BE'j—'l + 8—1 Ej

s; = DIS(t;)
By =ty -5
2| =55

Mantissa Iteration 7 = 1

1 ifz; =0
€ =10 otherwise
t; =8y, —e
sy = DIS(ty)

E,’nc =55
Fy=872

Mantissa Iterations j =2, ... ,my
t; =8°(8Fy., +871z;)
s; = NORM (t;)
%y =85
Fi=t; -5
Mantissa Trailing Iteration j = my + 1
tj = Ba+l Fj—l

s; = NORM;(t;)

Zji, =5
7 T<z
6 B=sz< 7
5 S5<=z< B8
4 4 =z< 5
3 3=z< 4
2 2=<z< 3
1 1= zxz< 2
NORMx{z) ={ 0 -1 <z< 1
1 2 <zs ~1
2 3 <z= -2
3 -4 < z< -3
4 -5 < z< —4
5 -6 < z< -5
6 -7 < < -8
7 —-10g < z
7 7 <z
6 Bsz< 7
5 S5<z< 8
4 4 <zx< 5
[3<sz< 4
4 2<sz< 3
1 0<z< 2
NORM; (x) =0 z= 0
; 7 =3, my+l 3 2 <z< 0
) 2 -3 < z< -2
3 -4 < z< -3
4 -5 < z< —4
5 6 < < —5
6 -7 < z< -8
7T -105 < z

Since the only function of the post normalization
algorithm is to try and normalize its input, it is necessary
to verify that it has no other unexpected effects. In partic-
ular, one would like to verify that (Zg,Zy) and (Z¢.Z5) will
always have the same value. It is fairly easy to see that the
characteristic iterations of the post normalization algo-
rithm work correctly. The following lemma and theorem
will show that the post normalization algorithm dces in

fact preserve the value of (Z¢,Zy).

Lemma 16. let z,,z,, . .. + 2, be the mantissa digits which
are input to the post normalization algorithm, and
21,25, ... ,z,’,,” be the mantissa digits output by the post
normalization algorithm. Let a; =87, For
j =2, ... ,my—1, where F; is as defined in the mantissa

iterations of the post normalization algorithm. Then
|a;| =7 and 2,2, - - - 25 = 2125 0 250y,

Proof. By induction on j. Assume that 2, # 0 and hence
e = 0. The proof for when z, = 0 is similar.

Basej = 2.

By definition, #; = z,.z,. If 2z, and 2z are of the same sign,
then from the definition of NCRMg, 2| = 2,. Hence Fay = 2,
@z = 2 and |a,| = 7. So, 2,2, = 2ja,.

Suppose that 2, and z, have different signs. Without loss
of generality, assume z; > 1 and z, < ~1. By definition, ¢,

= Z;.2z and from the definition of NORM,, 2| =z, — 1.
Therefore,

Fp = 225 — (2, ~ 1)
= zg+ 1.

Thus az = 8 + 2,, which implies |ay| < 7. Since

21871 +2,8%=(2, —1)87! + (8 + 2,)82,

then .z,2; = 2,a,.

Induction H thesis

2125 % T .2z Zi.104

Inductjon Step j =3, ... my+1

Suppose that either a; 21 and 25,21, or a5 < =1 and
%541 < —1 By definition tjs1 = u;.25,,. Therefore, from the
definition of NORM; zj = g;, and thus by the induction
hypothesis

where |a;| < 7.

Zycczg = z) ooz, (17}

Also, from the definition of Fiv1, Fy41 = 2444, and therefore,

Tjey = 244y where |a;z,,| <7 (18)
Thus, using (17) and (18)
By Zpe = 2] ziay,,.

Suppose a; = 0 and Zj+12 1. Then t;,; = 0.2;,,. Then from

the definition of NORM;, z{ =1 and from the induction
hypothesis

2y gg =2y - zf — B, (19)

From the definition of Fim Fya = 0.25,; — 1, and therefore

Qjyy =254, — 8 where [a;,,| < 7. (20)

Using (19) and (20) yields

212z 24 87 = 2] .z —87 481 a1

and hence

B1Zg 1 Zjey T Z] 0 2{A4,.

The cases for a; =0 and z,Hs —~1, a; =0 and i1 =0,
aj -1 and 24, =0, g;<-1 and 2, =1, a;>1 and
z;,; = —1, and a; > 1 and 2;,, = 0 are similar.

Let z,,2zp, . .. » Zmy, be the mantissa digits which are input to

the post normalization algorithm, and 2i,z3,... .z,’,,” be

the mantissa digits output by the post normalizatinn algo-
rithm The following theorern shows that the valus of the
mantissa is not altered by the post normalizaticn algo-
rithm.

Theorem 21.

= o
By 2, T Z) 2

Proof. By lemma 186,

'
2,29 " " Zmy-1Gmy

But, by definition

= NORM, (ty,)

= NORM;(8 Fp,)
= NORM;(@pm,)

'
k4 my

-

g

where }am’ll <7.

The improvements suggested for multiply, add, and
divide work significantly better than one step norrnaliza-
tion. Also, they are easy to implement and they do not
increase the on-line delay. Therefore, they should prob-
ably be incorporated into the forraulation of the cigit on-
line algorithms.

9. A Closer Look at Division

Owens [9] says that a normalized divisor is a sufficient
condition for RDIV to give correct results. This condition
can be relaxed considerably. It will be shown that X§ (the
first two digits of the mantissa of the divisor) muast only
satisfy

10g < | X§| < .77

so that RDIV gives correct results. Since the divisor does
not need to be normalized, it is no longer necessary to wait
until the last mantissa digit has been seen to determine if
a divide will be successful. This can now be determined
after the second mantissa digit.

The characteristic iterations are fairly streightfor-
ward since they compute Y.-X,+1. However, the rnantissa
iterations are a little bit more complicated. Hazre, the
object is to compute Zy = Yy/ Xy. (To make the discussion
simpler, the 87! factor will be ignored). If dj,
7=2, ... ,mg+3 are chosen such that

my+3
Xg [] dg™a,
j=2

then

25

my+s
The following lemma shows that Sg+3 is the same as 1T 2
j=2
in the above discussion.

Iemma 22. let s; and S; be as in algorithm RDIV. By
definition, s; = DIV; (tj) j=2 ... mg+3 let d; =
(1+8%75),7 =3, m”+3 and dz = s,. Then

T4

1=2
Sy_1d;,

S5

where S; = 1.

Proof. Sz =d,
definition S| = 1. Also by definition S; = Sj-

since by hypothesis s;=d; and by
(1 +8%7sy).
a

Lemma 23 establishes the definition of U;. A direct result
of this lemma is that if U is “small” (th1s will be defined
later), S;™1/ Xf.

Thus, the value of U; can be used as a measure of whether
S; is a good apprommatlon to 1/ Xj; . Note also that #; is
an updated version of 8'U;_; when2 = j < my.

Lemmazs For 2 <j<my+3, Uy = 8/7%(S; X}, — 1), where
Xy = if j = myg Also, for 35] <smy, t; =
8-"""(55 1X,],— 1), where X} = Xy if § = my.

Proof. By induction on j.)
Base. j = 2. By definition U, = tg8; — 1. It can easily be
seen that t5 = X§ and 55 = Sp. Thus Uz = SaX§ — 1.

Induction Step. By definition
t; = 8'U;_; + B82S z;

8RSy Xt - 1) + 87853
81‘25_,-_,(){}[1 +87z) - g2
8/-2(S;_ X - 1).

The proof for U is similar.
Uy = t;(1+8%7s;) + 55
= 8IR(S;_ X — 1)(1 + 8% Usy) + 5y
= 890X} S; (1 + 8% 1s;) — B %
= 8/%(XiS; - 1)
EZI

Lemma 24. For 2<j < my+3 Q;_s = Y|;S;, where Y = Yu
for j = my.

Proaf. By induction on j.
Base. 7 = 2. By definition,

Q-1 = (@ + 8%yz)s,.
But @_p = Y4 and 55 = Sp. Therefore, @_; = Y§Se.

Induction Step. By definition,
Qg = (@ +8775 y;)(1 + 827s;)

= (Yii5, + 871 S;yy)(1 + Bz_lsj)
= (Y + 877y;)S;,(1 + 8877 sy)
= YLS’,

c

By Lemma 23, if U/ is “small", SyN1/ Xf. and therefore
by Lemma 24 @, NYy/ Xy. This will be formalized later.
The following three lemmas can easily be verified by writing
a small program. These lemmas help to establish bounds
on U; (Remember that U; can be used to estimate how
close 5; is to the reciprocal of Xjj). Lemma 28 uses these
results to establish a bound for U; when X§ (the first two
digits of the mantissa of the divisor) satisfies (29). ¢, S,
and s; are as defined in algorithm RDIV,

lemma 25. By definition, f,=X§, s, =DIVp(ty) and
Up = tgsz = 1. It 105 < |ty < .77y, then | Up| < .35
lesnma 26 By definition, s3 = DIVg(ty) and Ug =

ta(1 + B871s5) + 4. If |£5] = 3.31p, then | Us| < .5g.

Lemma 27. By definition, if 4 < j < my+3, then s; =
DI[\j’j(tj) and U; = £;(1 +8%Js;) +5;. If |£] < 5.7, then
| U | < 441,

Lemma 28. 1f .10y < | X§| < 775, (X§ is the first two digits
of the mantissa of the divisor) then

[Usf < 0.5 (29)

j=2 ... Mmy+3.

Thus, if X§ satisfies (29), S; will be a good approximation to
1/ X3

Proof. By induction on j.
Base. j =2. If .105 < fx | .77, then .105 < |£,] <. 7%,
since by definition ¢; = X§. By lemma 25, | U,| < .25g.

For j =3, t3 = B'U, +8®S,xs which implies that
,ts' < 345 sipce Ug < .255, ISZI =7, and IZSI =7 By
lemma 26, | Ug| < 5.
Induction Step. By definition,
t; =810y +875; 1z,
and hence
[t = [B'U; | + 872 Sy-1%y |

< 5+ B"ZI Sj—l“"";ll

< 5'78'
Therefore, by lemma 27, | U; | < .441,. Cl

The following theorem establishes a condition on Xy (the
mantissa of the divisor) which is sufficient to cause the
divide algorithm to produce the correct quotient. Note
that this is a much stronger result than just requiring that
Xy be normalized. Condition (31) requires that the first
two digits of the mantissa must fall within a certain range.
This is stronger than previous resuits [9] since normalized
divisors are a small subset of the values allowed by (31).
Previously there were many instances when every mantissa
digit of the divisor had to be examined so it could be
determined if it was norrnalized.

Theorem 30. If

10 < | X§| < 775, (31)

then
Yy

X G < 8.25x8 mu*1).

26

Yu

where Qm” is the final approximation to X produced by

M
algorithm RDIV. Therefore, if the first two digits of the
mantissa of the divisor satisfy (31), then RDIV produces an

accurate approximation the the true quotient)—(IL

Proof. Using lemnma 24, !
;_z = @y, %‘:‘ = YuSmy+s
| Vil | 3 = Smgesl.

Then by lemma 23,

;—:—Qm.‘, < | Yul ;(-1; Upngaa8 ™V,
By definition, |%| <1, ﬁ< 125, and by lemma 28,
| Ung+sl < .Bg. Thus

XL:-— @y | < 8.2gx87 ™4, Cl

The following result can also be proven for the square
root algorithm. The proof is precisely analogous to that
for the division algorithm 1t is given in [17].

Theorem 32, If

105 < Xf§ = .77, (33)

then
|V Xy = B, | < 5.620x87 Y

where F,, is the final approximation to \/Xy produced by

algorithm RSQR from [9]. Therefore, if the first two digits of
the mantissa of the radicand satisfy {33), then RSQR pro-
ducges an accurate approximation the the true square root

Xu.
Note that this is a much stronger result than that

given by Owens [9], since theorem 32 does not require that
Xy be normalized, but only that (33) be satisfied.

10. Conclusion

The improvements suggested for multiply, add, and
divide work significantly better than one step normaliza-
tion. Also, they are easy to implement and they do not
increase the on-line delay. Therefore, they should prob-
ably be incorporated into the formulation of the digit on-
line algorithms.

According to Owens [9], a normalized divisor is a
sufficient condition for RDIV to give correct results. There-
fore, it was necessary to make sure that the divisor was
normalized to insure a correct result. In the worst caseg,
this means that if the mantissa of the divisor is .10 - - - 01,
where the 1 occurs in the last mantissa digit, the divide
algorithm won't know that it has an unnormalized divisor
until it has seen every digit. Thus a number that was only
slightly unnormalized has completely disrupted a divide
operation. The only way that the problem could be avoided
with certainty was to increase the on-line delay to my (the
number of mantissa digits). However, all advantages over
conventional arithmetic have then been lost.

With the results presented in the preceding sections,
this problem can be eliminated. In order to do so, it is
necessary to use the post normalization algorithm that was
presented in an earlier section of this paper. This

algorithm, which has an on-line delay of one, takes the
result of a floating point operation, {Z¢,Zy), as its irput. It
produces (Z¢,Zy) where (Z4,Zy) is one step closer to being
normalized.

The post normalization algorithm and the results
presented in the previous two sections can now be com-
bined to produce a new approach to the normalization
problem.

This approach involves a pre-conditioning for all divi-
sors and radicands. As shown in the previous two sections,
it is only necessary to look at the first two digits of the
mantissas of these values. If conditions (31) for divide and
(33) for square root are satisfled, then the operation can
proceed without any pre-conditioning, since it has been
shown that these are sufficient conditions for divide and
square root to work properly. If these conditions are not
satisfied, then the post normalization algorithm zan be
used as many times as necessary.

The fact that the post normalization algorithm is digit
on-line can be used to make this easier. The resul: digits
of one application of the algorithm can be fed back into
the algorithm as they are produced. The net effect is that
a new version of the operand is available at each time step.
That is, at each time step the operand is brought closer to
satisfying either (31) or FBB). As soon as the proper condi-
tion is satisfied, the divide or square root can continue.

Since the divide and square root algorithms will now
have variable on-line delays, this will affect other opera-
tions in the pipeline. Results will need to be buffered and
some timing problems may result. However, these are
implementation details that shouldn’t be difficult to solve.

11. References

1. R. L. Ashenhurst and N. Metropolis, Unnormalized
Floating Point Arithmetic, J ACHM 6, (1959), pp. 415-

428.
2. R. L. Ashenhurst, Experimental Invesigation of
Unnormalized Arithmetic, in Frror in Digital

Computation, vol. 2, L. B. Rall (ed.), John Wiley & Sons,
New York, NY, 1965, pp. 3-37.

3. D. E. Atkins, Introduction to the Role of Redundancy in
Computer Arithmetic, Computer 8§, 8 (June 1975),
pp. 76-84.

4. B. G. DeLugish, A Class of Algorithms for Automatic
Evaluation of Certain Elementary Functions in a
Binary Computer, Ph.D. Diss., Report 399, Dapt. of
Computer Science, University of Illinois, Urbena, IL,
1970.

5. M. D. FErcegovac, Radix-16 Evaluation of {Jertain
Flementary Functions, /EEE Trans. on Computers C-22,
6 (June 1973), pp. 561-568.

6. M. D. Ercegovac, An On-line Square Rooting Algorithm,
Proc. of fourth Symp. on Computer Arithmetic. Santa
Monica, CA, Oct. 1978.

7. M. D. Ercegovac and A. L. Grnarbv, On the Performance
of On-line Arithmetic, Proc, of the 1980 Inter. Conf. on
Parallel Processing, , 1980, pp. 55-81.

8. A L Grnarov and M. D. Ercegovac, An Algorithm for
On-line Normalization, Quarterly Report, UCLA
Computer Science Dept., July 1979.

9. R. M. Owens, Digit On-Iine Algorithms for Fipeline
Architectures, Ph.D. Diss., Dept. of Computer Science,
The Pennsylvania State Univ., University Park, PA,
1980.

10. R. M. Owens, Compound Algorithms for Digit On-Line
Arithmetic, Proc. 6th Symp. on Computer Arithmetic,
Ann Arbor, M], May 1981, pp. B4-71.

11. P. H. Sterbenz, Floaling-FPrint Computation, Prentice
Hall, Englewood Cliffs, NJ, 1974.

27

12.

13.

14.

15.

186.

17.

K. S. Trivedi and J. G. Rusnak, Higher Radix On-line
Division, Proc. of the Fourth Symp. on Computer
Arithmetic, Santa Monica, CA, Oct. 1978.

0. Watanuki and M. D. Ercegovac, Floating-Point On-
Line Arithmetic: Error Analysis, Proc. 5th Symp. on
Computer Arithmetic, Ann Arbor, MI, May 1981,
pp. 87-91.

0. Watanuki and M. D. Ercegovac, Floating-Point On-
Line Arithmetic: Algorithms, Froc. 5th Symp. on
Computer Arithmetic, Ann Arbor, MI, May 1981,
pp. 81-88.

J. H. VWilkinson, Rounding Frrors in Algebraic
Processes, Prentice Hall, Englewood Cliffs, NJ, 1983,

R. J. Zaccone and J. L. Barlow, Improved Normalization
Results for Digit Online Arithmetic, CS-84-186, Dept. of
Computer Science, The Fennsylvania State Univ.,
University Park, PA, Oct. 1984,

R. J. Zaccone, Numerical Properties of Digit On-line
Arithmetic, Ph.D. Diss., Dept. of Computer Science, The
Pennsylvania State Univ., University Park, PA, 1984.

