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Abstract. We present a universal scheme
or axiomatizing floating point arith-
‘thmetic. The schema can be used to axio-
matize any floating point arithmetic,
It consists of a labeled graph with
vertices describing some arithmetical
properties and edges containing appro-
priate axioms. The language of floating
point arithmetic is developed gradually
in this scheme. The scheme can provide
a vehicle for studying and implementing
various versions of floating point

arithmetic.

Introduction.
The purpose of this work was to develop
an axiomatization of floating point
arithmetic for the project "A System for
a Gradual Development and Verification of
Microprograms and Machine Architecture”
at the Technische Hochschule in Aachen.
Since the ©purpose of the program 1is to
build a wuniversal machine capable of
verifying different types of firmware and
microprograms , the axiomatization was
supposed to be similarly universal.
However the axioms induced, say, by
different mantissa representations can be

contradictory e.g. sometimes -(x-y) =
= ¥y-x and sometimes -(x-y) # y-x (in
twos complement representation ), and

there are many examples of that kind.

To the extent the author knows the
literature , <this difficulty has never
been overcome in the previous attempts to
axlomatize the floating point arithmetic,
(cf. [l0], [11], f[12}, [13]). People
usually tried to find a list of algebraic
properties (axioms) describing behaviour
of a floating point representation, or to
find a systenm with nice algebraic
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properties ,” that cdq e, applicable for
developing .arithmetic ofs @3l computers.
Although this approach«can produce

elegant theories it is upgdtisfactory
because, <cléatkly, there gtat be one
axiom system describing %E{oating

point arithmetf@,for all computers.,
On the other”hand, floating Boint

organizations of different machinesshare
many common properties. Therefore they
should not be treated separately. The
scheme presented in this paper allows a
uniform treatment of different floating
point organizations, with a possible much
larger range of applications. The
solution consists of a labeled graph,
whose vertices specify some arithmetic
properties and edges are labeled by
(names of) lists of axioms (cf. Fig. 1).
Paths of a fixed length through the
graph completely determine different
floating point organizations, hence the
approximation of the arithmetic of real
numbers is achieved by a collection of
floating point arithmetics, and not by
any single floating point organization.
The proposed system is universal i.e.
any system of floating point arithmetic
can be included in this scheme.

Figure 1 presents the graph. The
dotted paths denote two floating point
arithmetics implemented in a Z80 based
microcomputer under the CP/M operating
system [8]. A similar path for an IBM 370

computer would require much bigger
“boxes” on the Level 5 to contain
accurate “descriptions of how operations

are performed”. The labels

are omitted.

on the edges

Section 1. The scheme.

The graph is hierarchically built. It
contains seven levels. Some levels have a

specified, finite number of vertices
(Levels: 0,1,4). Other levels contain an
arbitrary number of vertices. But edges
can connect only vertices on different

levels. Therefore the longest path always
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***Y MANTISSA LENGTH)
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has length six. Vertices of the graph
specify the arithmetic properties of
different floating point organizations,
like the usage of normalized or
unnormalized numbers, describe rounding
schemes etc. The edges have the form:

and B is on
set of labels

is on level 1
and L+ 1is

where A
level i+l
of the form:

a

if AO,Al,... ,Ai(=A),B

then 10,11,... ,ls.

15

If A0”,Al",..

«yAL(=A),B

then 107,117,... ,lk”.

etc.
Aj“s denote here the names of vertices,
i.e. describe a path up to vertex B,
1j°s are names of group of axioms ( and
inference rules) that hold for any system
with the properties described by the

vertices.




the levels of the graph

Example. Consider the edge

BINARY -—-==---—-- 2-COMPL./SIGN-MAGN.

We will not list all the axioms that
appear here, but only show how the scheme
works. We have then:

L+ : If NORMALIZED, BINARY,
TWOS COMPL./SIGN-MAGN.
then 10,11,...,1s.

If UNNORMALIZED,BINARY,
TWOS COMPL./SIGN-MAGN.
then 107,117 ,...,1u".

Where, for example,

10 : x=x ; X=y ==-> y=x
(reflexivity and symmetry)
11 : x=y & y=z ---> x=z (transitivity)
12 ¢ y=-x --=>V i < tol-1 ( x[i]=y[i]:
& y[tol-1)=1-x[tol-1]

The symbol = denotes the equality of
floating point numbers. This relation is
always reflexive and symmetric, but not
necessarily transitive.

For example

+1234 E8 =.0012 E10 and
.1201 E8 = ,0012 E10 but
.1234 E8 F* .1201 E8 .

The axiom denoted by 12 says that there
is only one representation of -x , for
any floating point number x. The symbols
(cf. Section 3.0) have the following
meaning: "tol" stands for "total length"”
(in bits) of a floating point number,
x[1i] denotes the 1“th bit of x . The
sign bit is the last bit of a number.

13 Xty=y+x ; Xx-y = y.x

Since 11 and 12 do not hold for

unnormalized numbers, they will not
appear among 1j°s . The axioms 10 and
13 will.

The levels have been introduced in order
to develop gradually the language of
floating point arithmetic. For example,
on Level 0 we do not have in our
language bit strings. Symbols for
different roundings or predicates
describing the fields of exponent and
mantisssa appear later on when we make a
floating point system more complete. The
following facts are easy to prove and
intuitively obvious:

Proposition. Any path going through all
completely
determines a floating point arithmetic.

Proposition. If a path P reaches Level 5

(going through Levels 1-4 ) then P

uniformly determines a decision procedure
for all floating point arithmetics given
by paths extending P .

Section 2. Advantages of the scheme.

The proposed approach clarifies the
relationships between different types of
floating point organizations. Moreover it
is much more flexible than the approach
of developed in some of U.Kulisch papers
([10-13]): He proposed a system of
floating point arithmetic which can be
practically implemented and possesses a
reasonable mathematical structure (i.e.
the structure of ringoid). To this end
some special conditions are imposed on
allowed roundings, in particular, any
rounding [ ] should satisfy the
antisymmetry condition:

O¢x) = - Ox)

On the other hand, Yohe [17] (cf.also
[5] p.328) has suggested that any
computer should be capable of executing
the following rounding models:

R A » T’ A) P

These roundings are called:
optimal downward directed, optimal upward
directed, truncation, augmentation and
proximity (respectively). It 1is not
difficult ot see that not all of them
satisfy the above antisymmetry condition.
Moreover, in practice, other roundings
are being used, for example, ROM-based
roundings (cf. [5]).

The diversity of used systems of

floating point arithmetic proves
indirectly that there is no single system
of floating point organization which

would suit best for all purposes. On the
other hand, formalization of properties
of a floating point arithmetic is
necessary for wunderstanding of computer
arithmetic. In our scheme we impose no
restrictions on allowed finite
arithmetics (that gives the necessary
flexibility) but require that they must
be developed according to some scheme (in
order to allow a uniform formalization).

Section 3. The language and axioms.

We now come to a more close
examination of the levels, in particular
we will show how the language is
developed. We will describe the language
and the axioms level by level. When
analyzing the levels, we will also list
some axioms and show how they appear on
the edges of the graph. This will help
to clarify the meaning of the symbols.




In order to avoid ambiquities the
arithmetic operations will be denoted as

follows:
Real: E , lg ,E], L—/_]

Floating point : + , - y * /

0,0 ,0. O

Moreover one should distinguish between
the equality of floating point numbers,
denoted by = in this paper, and the
equality of real numbers, denoted by = .

The symbol = will also be used for
denoting equality of bits and bit
strings, because this does not lead to
any confusion. We examine now the graph
level by level:

Digit strings

Level O. On this level we introduce a

significant part of the language:
Varjiables: X,y,z2,xl,yl,z1,x2,...

They will be interpreted later as
floating point numbers or -equivalently-
as bit (digit) strings.

Constants:

zero, one

Additional constants: GRTST,SMPLST,SMMGN

These letters stand for:
"the smallest” , and
magnitude” - numbers.

"the greatest”,
"the smallest

Functional symbols: +, -, ,/ , abs,

(the latter stands for the “"absolute

value”).

Predicates: =, <, UNFLOW, OVFLOW,

DIVISION_ BY ZERO .

Additional predicates: sm( , ), >, 2, 5 ,

(the interpretation is given below).
The lexical object above preceded by the

word "additional” mneed not be used at
all, or they <can be replaced by other
constructs. However all other objects
that appear above seem to be indis-

pensable in analyzing any floating point
organization.

The two edges linking Level O and
Level 1 contain , in the L+ - part,
labels for the following axioms (among
others):

X=X , X=y --=-> y=x ,
x=y <(=--> x-y=zero ,
zero= =-zero , xtzeroc = X

~(x<x), x<y-==>9y<x),

m

x <y & y<z-=--->x<z

x < GRTST v x=GRTST ,

SMLST < x v x=SMLST

zero < x ==-=> OVFLOW(GRTST + x) ,

x < zero =---> OVFLOW{SMLST + x)
zero < X -==> abs(x)=x ,
x < zero -—--> abs(x) = -X

- (zero < x & X < SMMGN) ,

zero < SMMGN

r-1
& x # zero,

sm(r,x) <--=> x ¥ zero

where xr abbreviates X<Xs.oe*X ,
r-times.

Moreover some basic substitution axioms
should be present in this list, like the
ones expressing the following properties:

Sub < :

zero < x < w and y < z .

hold.

Assume
Then a, b, ¢, d

- OVFLOW(xty) ) —-==>
OVFLOW(w+z))

a) (y £ zero v
-==> (xty < wtz Vv

OVFLOW(x y) )
OVFLOW(w z) )

b) ( + UNFLOW(w z) & ~
-——=>( xy<wz V

¢) zero <y -==> ( yl/w < z/x v
- v UNFLOW(z/x) )
d) zero £y -——=> x-z < w-y
Sub =
x=w & y=z ---> ( X.o0p.y = w.op.z &
& flag.op.) ,

where .op. stands for +,-,+ or / , and
flag.op denotes

(OVFLOW(x.0p.y) <-=-=-> OVFLOW(w.op.z)) &
(UNFLOW(x.0p.y) <==-> UNFLOW(w.0P.z))

[ & (DIVISION BY ZERO(x/y) <--->
(DIVISION_BY_ZERO(w/z)) - in the case of

division].

The axioms listed below appear in the
the edge going to NORMALIZED .

X=y & y=z -==> X=z
(transitivty of = )

[» OVFLOW(x+y) & - OVFLOW(ytz) &
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& - OVFLOW((x+y)+z) & - UNFLOW(x+y) &

& - UNFLOW(y+z) & - UNFLOW((x+y)+z)]

===> (xty)tz=x+(y+z) ,

(associativity of + )

(x.y)-z = x-(y-.2z) ,
under similar conditions ,

(associativity of « )

One can list more axioms that appear on
the edges linking the top two levels but
this is not necessary for the purpose of
exposition. Note that we do not have yet

- (-x) = x nor (x~y) = -(y-x),

since our arithmetic is not determiaed
yet enough, for example, in the twos
complement arithmetic these rules do not
hold. In order to express the number
representation we must add new objects
to the language.

Level 1. At this level most of rthe

language 1is introduced, however it will

take more steps to determine most of the
properties of the introduced objects.

We introduce here:

Variables of the second kind:

i,j,k,i1,31,kl,...
ranging over the numerals.

Constants: 0,1,2,3,...,199,...
denoting numerals,

0,1 - denoting bits.

Functional symbol: [ 1

where | ] denotes the function from
Bit Strings » Numerals into {0,1} .

We will write as usual x[i] for

[ 1(x,1) .

Convention. Our aim is to be able to talk
about floating point numbers and their
properties. We need a convention about
representation of numbers in our system.
Without loss of generality we can assume
that any number consists of two fields:

The field of the exponent and the field
of the mantissa. It is necessary to be
able to say in our language that a
certain bit is a bit of an exponent or of
a mantissa. To this end we introduce the

predicates EXPF and MANF . We need
also the variables for the length of
these fields: expfl and manfl. It is

also useful to introduce the variable
tol (total length). We then have

tol = expfl + manfl

There are many representations that can
be chosen for exponent and mantissa. Some
of them do not wuse the sign explicitly
(like the twos complement), therefore we
adopt the convention that if the sign
bit must be described explicitly (as in
the sign-magnitude notation) then it will
be the 1last bit 1In any of these two
fields. For the sake of completeness and
convenience we add another two predicates
to our list of additional predicates:

EXPS and MANS
(exponent—-sign, mantissa-sign).

We augment our language with:

Predicates: EXPF, MANF

Additional predicates: EXPS, MANS

Variables: tol, expfl, manfl

The properties of the above objects are
stated by the axioms:

tol = expfl + manfl

/\\ EXPF(x[1]) ,

iexfl

(we will abbreviate /\N by \fi )
i

Vi (expfl < 1 < tol ---> MANFL(x[1]))

We need also

Variables: expl, manl

(the length of exponent and mantissa
without the sign bit), with the proper-
ties (axioms):

- EXPS(x[expfl-1]) ---> expl=expfl-1
EXPS(x[expfl-1]) ---> expl=expfl

(i.e. if there is no sign bit then the
length of the exponent equals the length
of the field of the exponent), and with
similar axioms for the length of the
mantissa - manl .

Now the language 1is rich enough to
express the property 1like "a number is
represented in base 2" or "a number is
represeted by the BCD code”. It should
be clear how to write the appropriate
axioms for the edges going from Level 1

to Level 2 . The same applies to the




edges connecting Level 2 and Level 3.
There we describe properties like

Vi ( (1< expfl ---> =-x[i] = x[L])&
& (expfl < i < manl-1 -——=>
-==> -x[i] =1 - x[i] )} ),

for the edge going to
i »ao/ ONES COMPLEMENT.

Level 2. NO NEW LEXICAL OBJECTS !

Level 3, At this level we already know
how the numbers are represented, except
for the decimal (binary) point. In order
to complete the description we introduce:

Predicates: POINTL , POINTR .

The edges connecting Level 3 and
Level 4 <contain labels for the axioms:

POINTL(x) <---> - POINTR(x) , and eitter
POINTL(x) or POINTR(Xx).

Level 4. The edges linking the vertices
on this level with the vertices of the
next level describe how the arithmetic
operations are performed . This
description should be done in terms of
operations on strings of bits.

Thus we must introduce names for
functions dealing with bit strings. One
should also take into account that
results of arithmetic operations on
mantissas do not preserve the length of
input, i. e. the result can be a
string of bits longer than the operands.

Therefore it would be rather difficult
difficult to avoid operations on strings
of variable length.So we need a new kind
of
Variables: e, el, e2, ....

that will be interpreted as bit strings
of variable lengths, and

Functional symbols: ,P , lngth,

denoting respectively : concatenation,
restriction and length of a string.

Lack of space does not permit for a full

description of arithmetic operations for

different kinds of floating point

systems. These descriptions can be

written Iin a not-too-difficult way using

radix polynomials introduced in the pavjer
of J. Kent [9] , (cf. also [5]).

We need also

Functional symbols: exp, man

denoting functions with the properties
el=exp(x) <---> Y 1< expfl (el[i]=x[i]),
similarly for e2 = man(x).

(These functions return the strings of
exponent and mantissa bits - respective-
ly. We use here the base 2 only, but
this approach works for all positive
bases (cf. [7], [5]).

It is easy to formalize operations on
mantissas as operations on corresponding
to them binary radix polynomials. The
only problem arising here is that the
number of nonzero coefficients in the
resulting polynomial is greater then the
length of mantissas in most cases. In
order to describe this phenomenon it is
convenient to have functions that deal
with bit strings of mantissas as binary
radix polyomials. We introduce

Functional symbols: k plus, k times,
k_divid )

that are interpreted as arithmetical
operations corresponding to them, the
parameter k specifies the 1length of
result i, e. the number of coefficients
in the resulting polynomial.

I1f some uniform coding of binary radix
polynomials into bit strings is assumed
then the axioms describing the functions
introduced above are common for all the
edges leading to Level 5 . Using the
operations defined on mantissas one can
define arithmetic functions on floating
point numbers which will give as results
extended floating point numbers 1. e.
bit strings of the form

! a floating point number ! extension !

where the bits of the mantissa of the
floating point number in this string,
together with the extension, glive the
code of the appropriate polynomial.

We will use

®.9,0,0

Functional symbols

for these extended arithmetical
operations.

After a normalization and rounding or
truncation to tol-many bits we will get a
result in the form of a floating point
number. Therefore we need:

Functional symbols

k_shl , denoting the shifting of a
mantissa by k bits left,
increasing the exponent by k.




The domain of k shl is the
set of extended ?loating point:
numbers.
k shr | denoting the shifting of the
- mantissa k bits to the rightu,
decreasing the exponent, and
increasing the length of the
extension accordingly.

truncation of mantissa to k
digits ( k > manfl ).

truncation of the mantissa to
manfl digits.

As in Section 2 we introduce: k_v ,V

k__A » kA , A, kP , P, where, for
the functions with the prefix k_, M 1is
the class of floating point numbers with
k-bit mantissas, and for the functiors
without the prefix, M is the class cf

floating point numbers with mantissas c¢f
the length manfl
norm , which normalizes an extended

floating point number i.e. sets
the leading coefficient to one,
but does not change the total
length of the extended mantissa.

Note that for different bases norm has
different meanings, for example, in base
16 the first digit of a normalized
mantissa can be zero. It is clear that
the descriptions of the above functions
by sets of axioms will vary for POINTL
and POINTR but it is easy to see how.

We will treat k in k F as a
parameter (a numeral) of the function
F, so we allow writing sentences of the
form

k = manfl - 7 & el=k shl(xl).

We also need

Predicates: LSSTH , LESS

where LSSTH(el,e2) states that the value
of el as a binary radix polynomial is
less than the value of e2 as a binary
radix polynomial. LESS(x,y) holds iff
LSSTH(exp(x),exp(y)) or exponents are
equal as binary radix polynomials Dbut
man(x) is less (LSSTH) than man(y) as
a binary radix polynomial.

Using the above defined functions and
predicates we describe the floating point
arithmetical operations in teruws of
operations on string of bits.

I1f a path through the graph
IBM 370
of the edge
contains the defini-

Example.
describes the arithmetic of
computer then the label L+
going to

Level 5

divided into NORMALIZED

Remark 2.

tion of addition:

Assuming LESS(x,y)

xty = k_T norm (x@® k+1_T (i_shl(y))

where k is manl that will be set to 25
on the edge going to Level 6, i is the
difference of the exponents, and
normalization is in base 16.

Level 5. We do not introduce any new
constructs to our language, it is already
rich enough and complicated enough. We
need however

Functional symbols

error, relerr, errl, err2, ...

denoting different kinds of errors, say,
the absolute error, the relative error
etc. These symbols are not necessary to
describe fully the numbers and operations

of any floating point arithmetic, but
because of their importance for any kind
of numerical analysis they must appear

in our scheme.

Level 6. The vertices on the last level

contain only label of the form manfl=8

& expfl=24 . Thus the length of the

exponent and mantissa are set to concrete
values here.

Section 4. Final remarks.
Remark 1. The arithmetics are already
and UNNORMALIZED
at Level 1. This division is supported
both by practice and theory. Almost all
computer system use normalized numbers
(in particular IBM370 , VAX“es, and all
microcomputers), unnormalized arithmetic
is given as an option for Cyber.

An axiomatic analysis of the latter
arithmetic is contained in {19]. An
analysis of errors for both types of
arithmetic is given in [9].

Strictly speaking, the

computing of errors is not a part of a

floating point arithmetic, because error

is a difference between a received value

and some "true” value i.e.

requires a superstructure of the usual
arithmetic of real numbers. Therefore we
can say that errors belong to
"meta-floating point arithmetic”. On the
other hand , error analysis is
indispensable in numerical problems, so
it must be included in any complete
axiomatization of a floating point
organization. In our scheme we can
formalize a substantial part of the error
analysis in a floating point arithmetic
itself. One possibility is to formalize




arithmetic within the
([14]1,[9],(18] might

the interval
presented system
be helpful).

Remark 3. The approach used here seems
to have more applications in the areas
where it is necessary to approximate

(models of) rather large systems using
smaller systems or theories (e. g. in ex-
pert systems in artificial intelligence).

Such an approximation can be done by a
gradual development of a language toge-
ther with a partial axiomatization of

interesting phenomena, i.e. by creating
a graph of the kind presented in this
paper. Then a most convenient, for a
given task, system (i. e. path through
the graph) can be chosen.
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