SYSTOLIC & SEMI-SYSTOLIC DIGIT SERIAL MULTIPLIERS
Poras T. Balsara & Fobert M, Owens

LDepartment of Computer Science
Pennsylvania State University
University Park, Pa 16802,

Abstract

Digit serial data transmission can be used to
an advantage in the design of special purpose
processors where commurnication issues domr
inate and where digit pipelining can be used to
maintain high data rates. VLSI signal process-
ing is one such problem ¢omain.” We propose
designs of systolic and semi-systolic digit
serial multipliers. These multipliers are pro-
grammable i.e. one operand is pre-stored in
the multiplier and the other operand is fed in
a digit serial fashion. The VLSI implementation
of the systolic multiplier is also given. This
systolic mulitiplier is used in our 1 signal
processing system.

Introduction

Data which is transmitted bit or digit serial
results in efficient commurication both within
and between VLSI chips. Bit serial transmis-
sion requires only one communication wire per
data item, but requires 2p cycles to transmit
the data across that wire fwhere 2p is the pre-
cision in bits). Digit serial transmission
requires only O(log b) communication wires
per data item and 2p/ (logb) cycles to
transmit the data (where b is the base). Limit-
ing transmission between chips is desirable
due to pin limitations in 1. Limiting
transmission within chips is important due to
the desire to reduce the chip area used by the
interconnect., Although the bit or digit serial
transmission slows down the processing speed,
the slow down can be overcome by using pipe-
lining to its fullest extent (pipelining at the
digit level). As soon as a result digit is gen-
erated by a processing element, it is passed
along to the next element as an input. This
achieves very high degree ¢f concurrency, and
a high rate of data flow can be mainfained
[DeR, KWK].

In this paper we give the designs of digit pipe-
lined multiplier (also referred to as digit
online in some of the literature [TrE, Erc,
Ir0]). First, some of the system conventions
are established. Then we discuss the design of
the primitive component called Scaler, which
is used in these multipliers. Finally, we give
the design of the above multipliers for base 4
digit serial multiplication, along with suitable
examples. The constructions meet various
requirements for a VLSI design to achieve
efficient use of silicon; viz, simple and regular
design with replication of simple processing
components, regular and lirnited interconnect,

CH2419-0/87/0000/0169$01.00 © 1987 IEEE

169

regular and limited control, and a high degree
of concurrency [Kun].

System Conventions

Data Communication Format -- In our system
all data communication is digit serial, where a
digit is represented in base 4 signed-digit for-
mat [Atk]. Thus the allowable digit sets for the
operands are :
Digit Sets :
Conventional digit set = {0, 1, 2, 3}
Maximally Redundant Symmetric Signed-
digit set = {-3,-2,-1,0, 1, 2, 3}
Minimally Redundant S etric Signed-
digit set = §{-2,-1,0, 1,2
Two's complement encoding is used to encode
the digits into a binary form.

Data Communication Flow -- The data flow in
our system is right directed (i.e. from the most
signigcant digit (msd) to the least significant
digit (Isd)). The reason for this choice is
explained later.

Numerical Format & Word length -- The data
is stored in fixed point, two’s complement for-
mat. All data has fixed and constant word
length of p, base 4 digits. Overflow is not per-
mitted in our scheme.

Clocking Scheme -- The standard convention
of tgvo phase, non-overlapping clocks [MeC] is
used.

Latency -- The first result digit is generated
and output some number of clock cycles after
the first set of operand di%its are input. This
latency (or digit online delay [TrE]) is meas-
ured as an integer number of digits. In our
system the primitive component %t,he Scaler)
has a fixed latency of one.

Primitive Component Size -- The Scaler conr
ponent can be classified as Fine Grain [Sei];
i.e., the component is limited in size so that
many components/processors can fit on a sin-
gle (or a very few) chip(s).

The Multiplication operation, if done Ilsd first,
requires latency equal to the precision due to
the convention that all data in the system
have fixed word lengths. Lsd first multiplica-
tion of two fixed point, single precision (frac-
tional) values gives a double precision result
with the least significant word of the the result
produced first, only to be discarded. The most
significant word is the one that must be out-
put.

R e T o e T T

It is not obvious that we can perform multipli-
cation in an msd first, right directed fashion,
since, with right directed processing it appears
that there is no way to wait for a carry which
starts at the least significant end ! The use of
Signed-digit (or redundant) [Atk] arithmetic
allows us to achieve right directed processing.
The choice of the base 4 systemn was governed
by the fact that it uses fewer interconnects
and has simpler logic, and it is consistent with
the other components of our VLSI signal pro-
cessing system.

Digit Pipelined Scaler

Digit Pipelined Scaler is a right directed primi-
tive component of the Digit Serial Multiplier,
which conforms to the conventions given in
the previous section. A digit pipelined scaler
is shown in Figure 1. This scaler scales the
input operand X, by the digit value y¥. This
digit value is input on the s,, line while the
LOAD signal is active to load the internal y
register %i.e. this scaler is programmable).

Zin SCA ™ Tout
[Fp— L . S
n <y> out
Cin — [Cout
LOAD

Load Cycle (LOAD = 1) :
Sout =Sin: Y =Sip
Muiltiply cycle (LOAD = 0) :
(1) Tous =Tip
() Sout =YTin +54 + Cin " BCoys

where, for base b = 4,

Tin, Tous € (3,2,1,0,1,2, 3
Sin» Sz € (3,2,1,0,1,2,3)
Y1 Cin, Cous € (2,1,0,1,2]

Figure 1 MSD Pipelined Scaler.

During the scaling operation, the LOAD signal
is inactive and the's,, line is set to zero.
Since the scale digit 2=y =2 a slightly
modified version of this component can be
used for Arithmetic Shift, Clear and Comple-
ment operations. The scaler, a primitive com-
onent for digit pipelined mulI'l‘.iplier, has a
atency of one digit.

The SCA component comprises of a full digit

roduct cell (MULT), two digit adder cells
IEADDL ADD2R & ADDBE and some delay cells.
igure 2 shows the block diagram of the SCA
component.

oul

’ &
? DELA‘Q d 1 5 Cout

* | appa ADD1 }

A 3

. MULT [7 :

R S o ADD2 |4 2 !
5
J(s :

1 ADD2 1

LOAD 3 f’—— (b "';‘ DELAY,| ™ dout 3

Figure 2 Block Diagram of the SCA Component

Lo4p

; L]
Figure 3 Layout of the SCA Component

The SCA component measures 967\ by 862 in
custom logic, double lager metal CMOS (using
the MOSIS™ scalable CMOS rules). From igure
2, one can see that the SCA component is made
up of different pipelined stages through which
the data is clocked by the system clock.
Hence, the clocking spéed of the SCA com-
ponent will depend on maximum time delay
through a stage. This delay, in our design is
agproxunately S0nsec. This time delay was
obtained by electrical simulation of the circuit
using SPICE. Table 1 gives the inputs-outputs,

area and time delays of each {3CA component.

The SCA component layout is done using the

%gash] Array technique for CMOS circuit design
ee].

Table 1. Detasls of The Cells in ar SCA

Component Input OQOutput Area | Speed
Name (23 (nsec)

MULT 3-bit stored(y) 3-bit product(p) | 200175 48
3-bit input(zin) | 2-biv carry(p)

ADD1 3-bit & 2-bit 3-bir sum(e,y) 86132 35
inputs(p ,,p4)

ADD2 two 3-bit 3-bit sum 173166 40
inputs 2-bit carry
(3) (Portia) (3) (paips)
(b) (paes) (5) (80u ,26)

ADD3 two 2-bit 3-bit sum(p) 44969 38
inputs(p ;,p ;)

DELAY1 2-bit input(p |} 2-bit output(p,) 20160 20
(1 clock delay)

DELAY?2 3-bit input{s,e } | 3-bit output(s,, | 30500 20
(2 clocks delay)

g S ZTin S 3 5 :; Cin 1Cout S 3
§ S Sin 7Snut S 3 -'?: ‘f; Poypz S 3
_Sy <2 ijf;pl,p:;,pSS_l
2 Pyl 2
Digit Pipelined Multiplier

This multiplier is constructed from the SCA
primitive component mentioned above. Two
types of multipliers could be considered : (i)
programmable multipliers -~ which are
preloaded with the multiplier while the multi-
plicand is supplied to the unit at processing
time, and (i2) multipliers where neither
operand is preloaded but both are supplied at
processing time. In this paper we consider
only the programmable kind, so that we can
design a multiplier which has both low latency
and limited intercomponent interconnect. We
can either design a pure systclic or a semi-
systolic multiplier [Kun].

To multiply two p digit values, (p +3) SCA
components are interconnected as shown in
F‘i(lgures 4 and 6 (where p =4). The three extra
SCA components are necessary to combine
appropriate carries and sums.

The three rightmost SCA components are
loaded with ¥ =0. Thus, the function of these
three components is to allow for the carry free
formation of s, at the output of the last
stage. The SCA corrll})onents are programmed
with the multiplier ¥'= (3,42 3¥4), which has
been recoded so that y; ¢ {2,1,0,1,2 . The digits
of Y are loaded using the s;, line while the
LOAD line is active. The least significant digit
of Y is stored in the leftmost SCA component.
The digits of the multiplicand are assumed to
belong to the maximally redundant base 4 digit
set.

1. Semi-Systolic Digit Pipelined Multiplier :
.oz z, z; =z,
*. ¥ Y2 Y3 Ve
Ty Z2Y ziyﬂ/' 34}4/
ztya,,/;z'!l}/’{ay;/z/4ya, 7
P
zl‘!:llz/fzzy/z/ zay//’g/z‘,f;y
vy ;/{zy}/’/ay }/ziyj) /

1 "2 73 74 e steph

7
%iY;. TtV
P s
Cid Sij Cierj . yVa
/ R ‘I/ . / ’
”iyi-l/ 3¢+:yj— Ziadlj-1 -
s ; p P
step, stllzp“1 step; 4z

Figure 5 Flow of Computation in the Semi-Systolic
Multiplier.

The multiplicand digits in the semi-systolic
version are broadcast to all the SCA com-
onents, while the intermediate data is passed
rom one component to the next. The msd of
the multiplicand X;,, is broadcast first.

e e e e

. SCA SCA SCA SCA SCA L SCA ,-— scA | 8,ut
tn =" > "
Cin— Y4 ¥3 Yo Y1 0 0 0

LOAD I B l

1

Figure 4 Block Diagram of the Semi-Systolic Digit Pipelined Multiplier.

171

R L e R o e

et <

The inputs sy, and ¢, flow tarough the multi-

lier in a systolic fashion. Figure 4 shows the
glock diagram of a semi-systolic digit gipelined
multiplier. Figure 5 shows the flow of compu-
tation in this multiplier. It also shows how
different carries c,,; and sums s,,; are comr
bined. One can see that for every broadcast
the carries that are generaled are combined
with the relevant sums in the same step i.e,
there is an inherent time delay due to the
carry ripple. Because of this there has to be
an interval of O(p) between the subsequent
?g:adcasts of the digits of the multiplicand

Y 1 1.2 2 0 00
Zp =1 | yz,, 1 1 2 2 0 0 o
Coyg |O 0O 0O 0D 0 0 0

Ser |1 (N2 2 0 0 0

Tn=2 |yz, |2 23 1 0 0 0
cot |0 @ L 0 0 o

Sout 2 3 _ 13 3 0 0©

Tpn=2 |y, |2 2 4 4 0 0 O
ot |0 1 2 L 1 1 0

Sar |12 0 ON3 0 0 1]

Tw=3 |y, |3 3 6> 0 0 o0
Cout o 1 1 1 0 0

S 183 1 3 U 0 1 [

Z;, =0 | yz,, 0 0 0 0 0 0 o0
oy {0 0 0O O 0 0 O

S, 10 3 1 8 3 0 [T

=0 {yz, /10 0 0 0O 0 0 O
ot |O 0O 0O 0O 0 0 O

S 1O 0 3 1 3 3 [0

An example of msd, base 4, digit pipelined mul-
tiplication is given in the Table 2. In this
example, X, =(.1223), and Y:=(.2211),; there-
fore, Sne =(1011(0121)), [=(.1010(3313)),]
From the examﬁple given in the Table 2, it is
clear that the first digit of the result is avail-
able after the two muﬁiplicand digits are sup-
plied in, hence the latency of this multiplier is
two. This latency is independznt of the preci-
sion. However, in terms of actual clock delay,
this scheme is quite slow beciuse of the O(p)
clock delay between the two broadcasts.

2. Systolic Digit Pipelined Multiplier :

In the pure systolic multiplier, the multipli-
cand digits as well as all intermediate data are
;Bassed rom one SCA component to the next.

he advantage of the pure systolic approach is
it maintains nearest neighbor interconnect.
The multiplicand X, is fed serially into this
multiplier (msd first). Figure 8 shows the
block diagram of a systolic digit pipelined mul-
tiplier. Figure 7 describes the flow of compu-
tation in this multiplier. In this multiplier the
carries of the previous step are combined with
the relevant sums in the next clock step.

.z zp Z3 Ty
¥V L Vs Ve

.y -ﬂlh,/i:}y L EgY,
is- T2y, “Eye T

- - L

LT 7) - -
step§ L EWa o ZaYa. ~Eaya Z4Yy
e L — - _—
I o
— = .
1 ,/"ﬁg/ £y Ta¥e . ~Egya -
- — — o
e - - -
2 - . — . " L - _— :
3 /:lb,, - ::ayl/ ’s’y; .z% ~
4 T ———
5 68 9 -

step; Y- Yy L ELali
- ‘ ,/ - /—— ‘ - - /—;
- —
step; 4 step; .2

Figure 7 Flow of Computation in the Systolic
Multiplier.

Thus, one digit of the multiplicand X, is con-
sumed every clock cycle. However, the latency
of this multplier depends on the precision, i.e_,
it has an O(p) digit latency. An example of
msd, base 4, digit pipelined multiplication is
iven in the Table 3. In this example,
in =(.1222), and Y =(.2112), therefore,
Sout = (:0332(0130)), [= (.1110(3513)),]

Fin—w sca f— SCA SCA SCA SCA
8. SCA SCA 3o|“
m " r Pt
Cin—1 Y4 y3 Yo ¥, 0 0 0
LOAD ! | |]

Figure 8 Dlock Diagram of the Systolic Digit Pipelined Multiplier,

Saut
7 Ty =2 YZin

t—Table 3, Systolic Muyltiplication Fxample .

Y 1 1
Ty, =1 | yx, 6 o
Cout 0 0

Sout 0 0

Tin =2 | yz;, 1 0
Cout 0 0

Sout (D 0

Tip =2 | Yz, 2 1
Cout 1 0

Sout 1N\ 1

Py

i S IS

ooooooooowoo»—-ooow@o»—nux vw-aovwicoocloooloo o
R

out
Saut

Tin =0 YZin

out
Saut

SIS Sy

Cout

Cout
Saut

Tip =2 YZin
[

out
Sout

Ty =3 YZin

out
snuf

Cout
Sout

Tin =0 YZin
Cout
Sout
Ty =0 YZin

Cout
Saut

OOOOOOOOOOOOOOOOOOOOOOOOO’—'AOP—‘AOHAN)Oww
OOOOJOOHOOOOO[OOOCOOOOJOOOOOOOOOOOOOOOOOO
'—‘OOOOON)OOODOOC»OOOOOOOOOOOOOOOOOOOOOOOO

COoOOoCoowWoopwooloocooloocoocjocoocjwow|wo

COOCI0DOCO0O OO COoOOCOO|wo o

googoogooaoooooooo coofoccolbocolcoolconlooole

Conclusions

We have proposed the designs of systolic and
semi-systolic digit pipelined, most significant
digit first multipliers. These constructions
meet various requirements for a VLSI design to
achieve efficient use of silicon, i.e., simple and
regular design with replication of primitive
components, regular and limited interconnect,
regular and limited control, and a high degree
of concurrency.

The systolic multiplier is designed in 3 micron,
double metal CMOS using the MOSIS CMOS
design rules. The electrical and logical simula-

173

tions of the circuit were carried out usin§

SPICE and MOSSIM. 1t is currently being use

in the Arithmetic Cube, a programmable struc-

ture to solve linear transformations such as,

anﬁolutions and Discrete Fourier Transforms
wi].

References

[Atk] Atkins, D., “An Mitroduction to the Role
of Redundancy in Computer Arithmetic”,
Computer, Vol. 8, No. 8, pp. 74-78, June
1975.

[Bee] Beekman, J., "Mesh Arrays]{or CHOS Cir-

cuit Design”, M.S. Thesis, Dept. of Com-

uter cience, Pennsylvania State
niversity, August 1986.

[DeR] Denyer, P. and Renshaw, D., VLST Signal
Processi‘r&)g . A DBit-Serial Approach,
Addison-Wesley, 1985.

[Erc] Ercegovac, M. D., "On-line Arithmetic .
An OQuerview”, Proceedings of SPIE, Vol.
495, 1984 -- Real Time Signal Processing
VII, pp. 86-93, 1984,

[Ir0}] Irwin, M. J. and Owens, R. M., “Fully Digit
On-Iime Newtworks', 1EEE Transactions
on Computers, Vol. C-32, No. 4, pp. 402-
406, April 1983.

(Kun] Kung, H. T., “Let’s Design Algorithms for
VLSI Systems”, Procee ir‘}ﬁs of the First
Caltech Conference on VLSI, pp. 85-90,
January 1979.

Kung, H.T., Whitehouse, H. J. and
Kailath, T., Editors, VLSl and Modern Sig-
nal Processing, Prentice-Hall, 1985.

[MeC] Mead, C. and Conway, L., ntroduction to
VLSI Systems, Addison-Wesley, 1980.

[OWI] Owens, R. and Irwin, M. J., “The Arith-
metic Cube”, Department of Computer
Science Technical Report CS-85-20,
Pennsylvania State University, Sep-
tember 1985.

[Sei] Seitz, C., “Concurrent VLSI Architec-
tures”, IEEE Transactions on Computers,
Vol. C-33, No. 12, December 1984,

[TrE] Trivedi, K. S. and Ercegovac, M. D., “On-
Line Algorithms for Division and Multi-
plication”, IEEE Transactions on Comput-
ers, Vol. C-26, No. 7, July 1977.

