T]

A Formal Approach to Rou. 'ing

Geoff Barrett
Oxford University Programming Research (:roup

Abstract

This paper presents a formal description o round-
ing, as specified in the IEEE Standard, and an
algorithm to perform the task along with 1is proof
of correctness.

Introduction

The main aim of a standard is that “couforming”
implementatious should behave in the manner speci-
fied - it is, therefore, necessary that they should be
proved to do so. It has long been argued thnt natural
language specifications can be ambiguous or mislead-
ing and, furthermore, that there is no form:l link be-
tween specification and program. This paper sets out
to formalise the definition of rounding given in [IEEE]
and to present an algorithm, with proof of correctness,
which performs this task.

The notations used in this paper are Z (see
[Abrial Hayes,Z]) and occam (see [iumos]). The mean-
ing of each new piece of notation is explained in a
footnote before an example of its use.

Using a formal specification language bridges the
gap between natural language specification and imple-
mentation. Natural language specifications have two
disadvantages: they can be ambiguous; and it is dif-
ficult to show their consistency. The first problem is
considered to be an important source of software and
hardware errors and is eliminated complete!y by a for-
mal specification. Further, it is important to show that
a specification is consistent (i.e. bas an implementa-
tion) for obvious reasons.

Of course, it could be argued that an implementa-
tion of a solution provides a precise specification of
a problem. While this is true, no one likes to read
other peoples’ code and the structure of a program is
designed to be read by machine and not by humans.
Moreover, any flexibility in the approach to the prob-
lem is hampered by the need to make concrete de-
sign decisions. Specification languages are structured
in such a way that they can reflect the structure of
a problem or a natural language description or even
of a program. But, above all, they can also be non-
algorithmic. This means that one can formalise what
one has to do without detailing how it is to be done.

A formal development divides the task of imple-
menting a specification into four well-detined steps.
The first is to write a formal specification using mathe-
matics. In the second, this specification is decomposed

CH2419-0/87/0000/0247%01.00 © 1987 IEEE

into smaller specificaiions which can be recombined in
such a way that it .un be shown formally that the
decomposition is v... i. Third, programs are written
to satisfy tie deo ssed specifications. And, lastly,
program transforinaiions can be applied to make the
program more ef.iciont or, possibly, to adapt it for im-
plementation ou ;. cuiar hardware configurations.
The example ;i ated here is part of a large body
of work which La. .cen undertaken to formally de-
velop a complete [n.ting-point system. A formalisa-
tion of most of the IZEE Standard and proofs of the
non-exceptional aritl.netic routines can be found in
[Barrett]. This we: Las been taken further by David
Shepherd to trau:i . tie resulting routines into a
software model of tk¢ inmos T800 processor, and so
specify its fanctions. Thus, the development process
has been carricd t ¢ gh from formal specification to

The structure of this paper is as follows. Section 1
presents a formal dcfinition of floating-point numbers
and how they are used to approximate real numbers.
Section 2 states some theorems and decomposes the
definition to give a specification of a rounding module.
Section 3 presents the algorithm with its proof and a
brief description of the techuiques used in the proof.
1 Specification.

This section presents a formal description of
floating-point numbers and how they are used to ap-
proximate real numbers. The description serves as a
specification for a rounding procedure.

First, floating-point numbers and their representa-
tion are described. Each number has a format. This
consists of the exponent and fraction widths and other
useful constants associated with these — the minimum
and maximum exponent and the bias: !

Format

wordlength, expwidih, fracwidth :IN ‘
EMin, EMaz, Biag :IN

wordlength = ezxpwidth + fracwidth + 1

EMin =0
EM&Z — zczpwidfh -1
DPias — Zezpwidth—l -1

1The variable names which are used are declared in a signa-
ture (the upper part of the box) and any constraints on these
are described by the predicates in the lower part.

Four formats are specified - ihe exponent width and
wordlength are constrained to have particular values:

Single = Format = expwidth = 8A
wordlength = 32
Double = Format ! erpwidih = 11A

wordlength = 64
erpwidth > 11A
wordlength > 43
DoubleEztended = Format | expwidth 2 15A

wordlength > 79

SingleEztended = Format |

Once the format is known, the sign, exponent and
fraction can be extracted frc:a the integer in which
they are stored: 2 (See Fic.ds, fgure 1)

Some of the elements of Fi.'ds are considered to be
error codes, or non-numbers. These will be denoted

by NeNF:
NoNF = Fields| frac # O A ezp = EMaz

Now, there are enough def :itions to give a defini-
tion of the value. This is on , specified in single or
double formats when the num’ er is not a non-number:
(“infinite” numbers are given 1 value to facilitate the
definition of rounding) (Ser FP, figure 2)

To facilitate further descriptions, FP is partitioned
into five classes depending on how its value is calcu-
lated from its fields: (non-numbers; infinite, normal,
denormal numbers; and zero)

NaN = FP|frac# VA czp = EMaz
Inf 2 FP| frac = YA exp = EMaz
Norm = FP|EMin < exp < EMaz

Denorm = FP| frac 7 YA czp = EMin
Zero = FP|frac= YA czp = EMin

Finite = Norm VvV Deaora v Zero®

The essential ingredients of rounding are as follows:
¢ the number to he appror™ nated;

¢ a set of values in whicl

be;

e approximation must

¢ a rounding mode;

¢ a set of preferred values in cuse two approxima-
tions are equally good.

2This form is equivalent to dec! ring the variables of Format
in the signature and conjoining °
constraint.

3Logical operators between s !
ing the signatures and performin
the predicates.

coi.straints with the new

1as Bave the effect of merg-
2lc: ‘cal operation between

248

Because the number to be approximated may be out-
side the range of the approximating values, two val-
ues, fazValue and MinValue, are introduced which
are aualogous to +00 and —oo. The set of Preferred
values is restricted to ensure that when two approxi-
mations are equally good, at least one of them is pre-
ferred. To ensure that rounding to zero is consistent,
0 must be in the approximating values,

Mod: ::= ToNeareat | ToZero | ToNegInf | ToPosInf

(Sece Round_Signature, figure 3)

The following schemas describe the closest approxi-
maticns from above and below. If, e.g., the number is
smallcr than MinValue, then the approximation from
below is MinValue: (See Above, figure 4) (See
Belou, figure 5)

Fiually, we are in the position to define rounding
in its various different modes. Rounding toward zero
gives the approximation with the least modulus:

RoundToZero
Found_Signature I

120de = ToZero

(r > 0A Below
\'

» S OA Above)

Rounding to positive or negative infinity returns
the approximation whick is respectively greater or less
than the given number:

RoundToPosInf

Round _Signature]

mode = ToPosInf
Above

RouvndToNegInf
Round_Signature]

mode = ToNegInf
Elow

Wien rounding to nearest, the closest approxima-
tion s returned, but if both are equally good, a mem-
ber of the set Preferred is returned: * (See Rownd-
ToN urest, figure 6) These specifications can be dis-
joinc ! to give the full specification as follows.

Round = RoundToNearest V RoundToZerov
RoundToPosInf v RoundToNegInf

1L vcorating the name of a schema with, e.g., ;, / has the
effect of decorating the names of the variables in the signature
of that schema throughout.

Fields

Format]
sign :0..1
exp, frac, nat :IN

nat — f‘s'gn X r;:wordlengfh—l + ezp X nfracwidth + fra(‘
ezp < -:,:czpundth
/’.ac < ~fracwidth

Figure 1. Fields

FpP

Fields; value : R

(Single v Double) \ ~NaNF =

ezp = EMin A walue = (=1)9" x 20%—Bias 5 9 frac,
Vv
ezp # EMin A wvalue = (—1)%97 x 2¢2P=Bies 5 (1 4 frae)
where fraco, = 27Irecwsdth o fr4e

Figure 2: FP

Round_Signature

r:R;mode : Modes
ApprozValues, Prefer-ed : PR
MinValue, MazValue - R
value' : R

Preferred U {value'} - ApprozValues U {MinValue, MazValue}
0 € ApprozValues

Vvaluey, valuey : App-ozValues U {MinValue, MazValue} | value, > valuey o
3p : Preferred o volue; 2 p > value,

Vvalue : ApprozVaiuc: o MinValue < value < MazValue

Figure 3: Round_Signature

Above

Round_Signature

r > MazValue = vilue' = MazValue
r & MazValue = value’ > r
Vralue : ApprozValues U {MazValue} |value > r o
ralue > value'

Figure 4: Above

249

Below
Round_Signature]

r < MinValue = value' = MinValue
r > MinValue = value' <r
Vvalue : ApprozValues U {MinValue} | value < r o
valve < value'

Figure 5: Below

RoundToNcarest
Round _Signature T

mode = ToNearest
3Abovey; Belowy [ry=r=1ry o
value; — r < r — value, A Above
\Y
valuey — r > r — value; A Below
\
valuey — r = r — value, A
(raluey = value; A Above A Below
\
| value) # value; A value' € Preferred A (Above vV Below))

Figure 6: RoundToNecrest

P_Roundl

Round A FP']

AppiszVelues

{Finite | Format = Format' e value}

Preferred = {Finite| Format = Format' \fracMOD 2 =0 o value}
MirValue € {Inf |Format= Format'\sign=1 e value)
MazValue € {Inf |Format= Format'Asign =0 e value)

Figure 7: #P_Round:

250

So far, the specification is suitable for describing
rounding into any format - be it integer or floating-
point. To adapt Round specifically for floating-point
format, all that is necessary is to fill in the definitions
of ApprozValues, Preferred, MinValue and MazValue.
This inevitably involves the format of the destination,
so FP' must be conjoined with Round. Ouce the dei-
initions are filled in, they are no longer nceded out-
side the specification and can be hidden (y existen-
tial quantification). It is not difficult to show that
the definition of Preferred is cousistent wi‘h the con-
straint in Round_Signature, but this will be left un-
til section 2 where a result is proved which makes
it even simpler. It is also simple to verify that O is
an element of ApprozValues and tha‘t MinValue and

MazValue satisfy the constraint of Round Signeture,
(See FP_Roundl, figure 7)

FP_Round2 =
FP_Roundl\{ApprorValues, Prefe:red,
MinValue, MazValuc}

The resulting error-conditions have not yet been
specified. The conditions resulting in overfow and un-
derflow exceptions are specifically related to a floating-
point format and can be described as follows:

Errors
Error_Signature

= inezact | overflow | underflow
= r:R;errors': PE-rors; FP'

(See Error_Spec, figure 8) (The two alternative con-
ditions under which underflow is included in the set
errors’ mean that there is a choice about which con-
dition to implement.)

Finally, the whole specification is:

FP_Round = FP_Round2 A Error_Spec

2 Towards an Algorithm.
The aim of this section is to specify ‘he relation
between R and its representations in the jrogram.
First, notice the simple result that the crder on the
absolute value of a number is the same ¢s the usual
order on the less significant bits of its representation
as a word:

FP;FP'| Format = Format' A =(NaN v NaN')
F abs value < abs value'
&
nat MOD zwordlength—l < nat' MOD 2-uordlength-—l

This can be used to see that the number of least
modulus with modulus greater than a giver finite num-
ber is obtained by incrementing its repre:entation as
aword: (See Succ, figure 9)

FP; FPy | Finite A naty = nat + 1+ Suce

From tlis result, 1l.e cousistency of Preferred in section
1 can be deducec.
In turn, this n.
modulus is know

1s that if the approximation of less
only enough extra information to
determine the fo- predicates in RoundToNearest is
needed to return - e correct value. This is, of course,
the familiar guard .nd sticky bits defined below:

Bounds

Suce; guard, ¢ ky:0..1:r: R

r>0 = sign = 0 A Below|value/value')
r=20 = Zero

r<0 = sign = 1 A Above[value/value']
guard =0 <« r - value < valugy — r

sticky =0 <« r— value = valuey — r V r = value

Bounds -

3Abovey; Belor |ry=r=r; o

value; — r < r — valuey < guard = OAsticky = 1
valuey — r > r — valuey < guard = 1Asticky = 1
valuey — r = r — valuey < sticky =0

value; = valur < guard = OAsticky =0

This is, howcv r, not quite enough information
to return the cc..ect overflow condition. If r >
2BMas'~Bias’ thi. information is lost. Conversely, it
is not possible to ¢ :termine the overflow condition be-
fore rounding as t ie condition Inf’ cannot be tested
until the final resu.. is calculated. Thus, it is necessary
to divide Error Sp~c¢ into two parts. The snezact and
underflow conditions can be determined before or after
rounding. The dc.ign decision is made that so many
error conditions r: possible will be determined after
rounding in order -hat the precondition of the module
is simpler. Thus, :le following decomposition is valid
(the validity is deronstrated by the theorem):

Error.Before
Error_Signature]

’ R
overflow € errors’ « absr > 2EMes —Bias

Error_After

Error Signature; errors : PErrors l

r . ’
overflow € crrors & abs ¢ > 2EMaz —Bias
snezact € crrors’ ¢ r # value'
overflow € crrors’ < overflow € errors Vv Inf’

underflow € crrors’ & Denorm'

b Error_Spec C (Error _Before; Error_After)’

5If a schema is thought of as a function from its unprimed to
its primed components, the sequential composition {;) is analo-
gous to the right composition of the two functions. The symbol
C is used to indicate that a design decision has been made.

Error_Spec

Error _Signature

inczract € errors’

overflow € crrors’

(underflow € crrors’
\%

underflow € cerrore’

r # value'
Inf'v3Inf e absr > abs
0 # abs r < 2EMin'—B‘ms'

Denorm')

Figure 8: Error_Sp:c

Suce

FP;FPO

Finite
abs value < abs value,

VFP'|abs value < abs value' o abs valuey, < abs value

Figure 9:

Because real numbers canot be represented in a
machine, the specification w:'ch has been produced
so far is not implementable. liut, given the conditions
of Bounds, it is possible to v'rite an implementation.
The specification of the module that will be presented
here is;

Round_Proc= 3r :R;FFPy e
FP_Round2 A BoundsA
Error_4fler| sign = sign'

(Since the sign of 0.0 ofte: (rpends on factors not
available to the rounding p: ~dure, the sign of the
number is maintained.)
3 The Algorithm.

There are two things to n« :ice about the specifica-
tion:

o the specification of errors is conjoined in such
a way that the unprimed variable, errors, upon
which it depends is not restricted by the the other
conjuncts; thus the spe “cation decomposes into
a sequential compositic - 7 a specification on FP
and a specification on ¢ rg;

Round, and hence FP_I
specifications and thus .
conditional.

1nd, is a disjunction of
» be implemented by a

The first observation can ! formalised as:

F Round_Proc =
(3r:R;FPy ¢ FP_." «nd2A Bounds);
Error After

Succ
And the second observation can be formalised as:

+ FP_Round2 A Bounds

FP_Round? | mode :=—ToNearest A Bounds

FP_Round2 | mode ==VT0PosInf A Bounds

I'P_Round2 | mode ==VToNegInf A Bounds
FP _Round? | modcr\f—- ToZero A Bounds

The first observation has the obvious implication
that tlie module can be implemented as the sequence of
two sinaller programs, the first of which sets the cor-
rect approximation and the second of which returns
the correct error conditions.

The second observation leads to a decomposition be-
cause cach of the disjuncts is disjoint (i.e. the conjunc-
tion of any two is not satisfiable). Thus, a conditional
can be formed in which the guards discriminate ac-
cording to the rounding mode.

The following annotated program constitutes a
proof of correctness. The predicates in braces, e.g.
{6)P{1’}, mean that if P is executed in a state satis-
fying >, then it is guaranteed to terminate in a state
satisfying . Some of the conjuncts of the assertions
are or.itted for the sake of clarity. The first assertion
is call-d the precondition of the program - if this does
not hiold on entry to the program, neither is it guar-
antved to terminate nor, if it does, to terminate in
any scusible state. The rules relating the program to
the u:sertions are described in [Gries|, [Dijkstra] and

g & eiha s
B — cinmeh £ " o

[Hoare]. A brief description follows:
Rule 1 The program SKIP does nothing bu! terminate:
F {¢)SKIP{g)

Rule 2 If the ezpression e can be evaluai~d correctly
(i.e. there is no division by zero etc.), ther if the state
18 required to vatisfy ¢ after termination, ;' must sat-
isfy ¢ with e substituted for x before:

F{DeAgle/x|}x := e{¢}

Rule 3 If P starts in state ¢ and terminzics in state
¥ end Q starty in state Yy and terminater in state x,
then P Jollowed by Q starts in state ¢ and terminates
in stale x:

SEQ
{o}P{v} A {v}a{x} F {0} :{x}

Rule 4 The rule for condstionals is that i/ P starts in a
state salisfying ¢ and its guard and terminates in state
¢ and ssmilarly for Q then the conditional composition
can start sn a state whick satisfies one or other of the
guards and ¢ and lerminate in a state satisfying :

{bp A S3P{'} A {bg A $}0{¥)} -
IF
bp
{bpVvbg)Ae} P{y}
be
q

Rule 5 The precondition of a prograrn may be
strengthened:

(x = 6) A ()P4} F {x)P{v)

Rule 6 The postcondition of a program may be weak-
ened:

(x <= ¢) A {o}P{w} F {¢}P{x}

The most cbscure line is the following: nat :=
nat + (guard A (sticky V nat)) . This is de-
rived from: nat := nat + ((guard A sticky) V
(guard A (nat A 1))) . Using guard = guard A
1 and the commutativity and associativity of A, the
last part of the expression reduces to guzrd A nat.
Now, A distributes through V to give the optimised
expression.

The original expression can be seen to be correct by
studying the inequalities used to define FoundToNear-
est.

{overflow € crr rg <= r > 2EMaz—Bias}
{r>0=> DB o|[FP[FI]}
{r<0= Abou [FP|FP']}
SEQ
IF
node = i .uro
SKIP
{FP_R(:;JldQ[FP/FP']}
mode = T leglnf
IF
sign = 0
SKI»
gign - 0O
nat := nat + 1
{FP_Round2[FP/FP']}
mode = 1. oslnf
IF
sign = 0
nat :=
sign £ O
SKiP
{FP_Round2|FP/FP'|}
mode = JT.Nearest
nat := nat +
(guard A (sticky V nat))
{FP_Ro.ind2|FP|FP'|}
{overflow € crrors < r > 2EMoz—Biar}
errors := errors N {overflow}
{underflow, inezact & errors}
{overflow € crrors < ¢ > 2EMoz—Bios}
IF
Int
errors := errors U {overflow}
- Inf
SKIP
{overflow € crrors <= Inf v r > 2EMoz—Bias}
{underflow ¢ errors}
IF
Denorm
errors := errors U {underflow}
- Denorn ’
SKIP
{underflow € errors —> Denorm}
{inezact & errors}

nat + 1

IF
(sticky V guard) # 0
errors := errors U {inexact}
(sticky V guard) = 0
SKIP

{inezact € errors < r # value}
{FP_Round|FP/FP'}}
Conclusions
It is often heard said that formal methods can only
be applied to practically insignificant problems, that
development costs in large products are too high, and
that the desired reliability is still not achieved. Al-

253

though the problem presented here may seem insignif-
icant, it is only a small part of a large body of work
which has been undertaken to implement a provably
correct floating-point systerr. This work develops the
system from a Z specificaticn to silicon implementa-
tion - an achievement which cannot be considered in-
significant. The formal deve!spment was started some
time after the commencemest of an informal develop-
ment and has since overtaken the informal approach.
The reason for this was mainly because of the large
amount of testing involved i the intermediate stages
of an informal development - a process which becomes
less necessary witl a forma! levelopment.

As for reliability, that rer.uins to be secn. However,
the existence of a proof of currectness means that mis-
takes are less likely and can be corrected with less
danger of introducing furtl. r mistakes. Errors can
arise in two ways: first, a si.aple mistype iv the pro-
gram; or a genuine error in . he proof. Becuuse of the
steps in the development, 1u. . effect of thic can be lim-
ited. Either, a fragment of . ogram is wiong and can
be corrected without affecti: - any larger ccale propet-
ties of the program; er, the sitia! decon:
at fault, in which case me of the Jdo
have to be reworked. If ths
dire, remember that decon
of any structuced prosram.
rors at this stage arc more |
formal development. Furthe nore, there are wow two
ways to discover bugs and . way to shiow that they
are not present. The pos:ii lity of automatic proof-
checkers gives some hope ‘a4t prorrammers will be
able to guarantee the qual= ol a prograim more reli-
ably than an architect can « -rantee the rspustness of
a house.

rosition was
prrent may
-ems a little
ositlon i: & prevequisite
g methodoiogy but er-
~ly to be discovered in a

=t scenorio

This example, however, « ¢s demounstrate some f
the advantages which car - gained from a formal
specification. Speciiications .l.cn become modified ~
either the customer chang.
nal description of the probl:
Trying to modify & badly ¢ :vmentcd system is dis-
astrous. Trying to modify . vl dezamcated system
is, at best, error prone. U = 1 4 foi.au; specification,
it is possible to deicrmine .l purts of the system
to change and, mor-over, v ‘o change them without
affecting unmodifi~ 1 pazts. 7 riuetecce, if the spec-
ification of error coudition: ere to LenTe, 4 would
be possible to prov that o, he ¢ ~ond part of the
rounding module ., perl ¢ its 1 :~condition need
be changed. The n. odificat. 5 .un tale place without

Ler mind or the origi-
. is found to be at fault.

having to resort to various - - s of ~ le. Likewise, in
the development st- o, th- ol 2ists to reason
about how proposcd mod v f sagether. More-

over, modules ma:* be rene
because there is a rrecice ¢

~eater confidence
iptinn of what each one

e

. .

does.

TLe advantages of a non-algorithmic formalism
spea’s for themselves. The language used here bears
a forinal relation to its implementation and can be
tran:formed to emulate the structure of a program.
Ou :lie other hand, the high-level specification can
be written to bear a close relationship to a natural
language description - there are many mathematical
idion:s which already exist to formalise seemingly in-
tractzble descriptions. This paper has assumed some
famiiiarity with the IEEE Standard, but it is desirable
to use the formalism as a supplement to a natural lan-
guage specification to which reference can be made in
casc »f ambiguity.

Re erences

[Absil] Abrial, J-R., Schumann, S.A. & Meyer,
B. Specification Language 2. Massachusetts
Computer Associates, Inc. 1979.

[Barcott] Barrett, G., Formal Methods applied to a

ioating-point Number System. Internal Re-

port, Programming Reasearch Group, Ozford
Universsty, 1957,

(D4 ra] Dijkstra, E.W. A discipline of program-
ming. Prentice-Hall, 1976

[Grizs] Gries, D. The science of programming.
Springer-Verlag, 1981

[Hayes] Hayes, 1. (ed.) Specification Case Studies.
Precntice Hall, 1987

[Ho: v:f Hoare, C.A.R. An axiomatic Basis for
Computer Programming. CACM 12 (1969).
pp.576-580,588.

[IEEZ] IEEE Standard for Binary Floating-Point
Arithmetic. ANSI/IEEE Std 75{-1985, New
York. August, 1985.

finmos] inmos, ltd. The occam Programming Man-
val. Prentice Hall. 1984

[Z] Sufrin, B.A., Sprensen, I.H., Saunders, J.W.,

Woodcock, J.C.P. et al The Z Handbook.
Programming Research Group, Ozford Uni-
versity. To appear.

