Fast Multiply and Divide for a VLSI Floating-Point Unit

B. i{. Bose, L. Pei, G. 8. Taylor, D. A. Pattersor:

Departmert of Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

ABSTRACT

This paper presents the design of a fist and area-
efficient multiply-divide unit used in building a VLSI
floating-point processor (FPU), conforming to the IEEE
standard 754. Details of the algorithms, implementation
techniques and design tradeoffs are presented. The multi-
plier and divider are implemented in 2 micron CMOS
technology with two layers of metal, and occupy 23
square mm (23% of the entire FPU). We expect to per-
form extended-precision multiplication and division in 1.1
and 2.8 microseconds, respectively.

1. Introduction

High speed computation is essential for a large class
of problems, like computer modeling and simulation,

CAD/CAM, computer graphics, image processing, and.

robotics, where integer arithmetic lacks the range and
precision of most of these real-world needs. 'Traditionally,
floating point arithmetic has been slow in software and
expensive in hardware. VLSI technology is now making it
possible to have fast, inexpensive floating point.arith-
metic.

In ‘keeping with increasing CPLvaerformance,_ float-
ing point.computation needs to be fast. A ba’ anced imple-
mentation should :take into account the relative frequency

7

Shared Global Memory

1&D
Cache e

Control _]

Exponent :

Multiply
Divide

Fraction
Add/Subtract

Figure 1: The SPUR System

CH241 9-0/8;7/0000/0087 $01.00 © 1987 [EEE

87

of different floating point operations and implementation
constraints, that in turn affect the choice of algorithms,
the micro-architecture, the clocking methodology and the
design style.

In order to investigate these design tradeoffs, a
single-chip floating-point processor has being designed. It
is a tightly coupled coprocessor in the SPUR shared-
memory multi-processor system [Hill86], providing
instruction set enhancement for fast floating point
computation (Figure 1).

The VLSI chip conforms to the IEEE Standard 754,
providing the basic arithmetic functions for single, double
and extended precisions, IEEE-style rounding, and detec-
tion of special operands and exceptions. It is designed in
2 micron, 2-layer-metal CMOS technology. This paper
will focus on the multiply/divide section of this chip,
which has a target speed of 1.1 microseconds for
extended-precision multiply and 2.8 microseconds for
extended-precision divide.

Several floating point units are commercially avail-
able, and some have recently been described in the litera-
ture [Nave80], [Shahan84], [Wolrich84], [Gavrielov86],
[Troutman86]. We compare execution times between
different implementations, to get an.idea of the relative
performance of our algorithms and implementation. We
do not include multiple-chip designs in this comparison,
since the design tradeoffs are then quite different. ‘Table
1 summarizes the results for register-to-register opera-
tions. Co o

Table 1: Performance of Multiply and Divide in 1-chip VLSI FPUs
Implementation Significand Cycﬁime {ns} | Multiply (us) [Divide {us)
Intel 8087 64 bits 100 13.80 10.80
National 32081 " 53 bits - 100 6.20 11.30
Motorola 68881 64 bits 60 3.12 6.04
Western Elec. 32106 64 bits 56 2.80 16.80
Digital Equipment® 56 bits 100 2.80 4.70
Fairchild Clipper* 53 bits 30 2.07 5.46
SPUR 64 bits 140 1.12 2.80

*These numbers are typical, while the others are worst-case.

2. Choice of Algorithms

Recent papers [Gamal86], [Uya84) show that with
current 2 micron technology, combinational 32 bit multi-
pliers require about 40,000 transistors, and take up about
30 square mm. Full 64-bit array muitipliers are still
difficult to integrate onto a single chip. Even if we could
build a multiplier that computed in a single cycle, it
would be difficult to find an adder that was propor-
tionately faster. Again, divide times must improve with
multiply; otherwise, algorithm designers will be tempted
to avoid divide. Addition and multiplication in VLSI
arithmetic accelerators have received a lot of attention

lately, but not much work has Leen reported to build fast
division schemes in VLSI. Higher radix non-restoring
division is becoming feasible in VLSI, and here again,
operation frequencies can serve as a guideline for choos-
ing the most appropriate algorithm and for budgeting
hardware. This is especially critical in VLSI, where pro-
pagation delay between modules within a chip and inter-
chip delay are so different, dirzctly affecting what goes
onto a chip. Thus, chip area and I/Q pins need to be allo-
cated very carefully. Again, since there is a linear rela-
tionship between delay and fanout in MOS technology,
putting more functionality on chip can adversely affect
cycle time, since control signals have to now drive larger
capacitance.

There have been several studies of various programs
and benchmarks that are intensive in floating-point com-
putation. We summarize results irom Berkeley [Leung86]
with those of Knuth{1971] and (3ibson[1970} in Table 2.
We see that add/subtract operatiuns occur from 1.5 to 2.5
times more frequently than multi ply operations, which in
turn are 2 to 3 times as frequent as divide operations.
The Lattice Filter seems to be an exception in that divi-
sions occur much less often than in the others, and addi-
tions occur less frequently than multiplications. This
table indicates chip resource al'ocation for a balanced
design, where the proportion of hardware for add : multi-
ply : divide should be close to the ratio of operation fre-
quency. For example, a large chip area invested in an
array multiplier may not be cost-effective without a pro-
portionately fast divider.

Table 2: Relative Frequencies of Floating Point Operations
Sowrce Add, Sebtract Multiply Divide
Knuth 2.30 1.00 038
Gibsos Mix 1.80 1.00 0.39
Whetstone 180 1.00 0.50
Lattice Filter » 075 1.00 008
SPICE 1.4% 1.00 035

Operation frequencies are normalized to Multiply.

Algorithms can have quite different area and time
costs depending on their implementation technology,
whether it is Schottky TTL, ECL MSI, ECL gate arrays or
MOS VLSI. Estimates of ‘area und delay depending on
gate count ignore such realities us fan-in, fan-out, inter-
connect and chip crossings. In VESI, datapath pitch is
usually determined by interconneit requirements, like the
number of data busses that need te traverse it. Thus, the
size of a variety of circuits is the same in one direction,
while varying in the other. Naturally, some circuits will
be much more densely packed than others, and so merely
counting the number of gates in a circuit block can give a
misleading idea of the area it requires. In Table 3, we
present the relative areas of sorne basic circuit blocks,
together with their relative delavs, for driving identical
loads.

To illustrate this technology dependence, lef us see
whether it is advisable to build Booth recoding into an
iterative multiplier in the two technologies. Without
recoding, we require eight rows »f adders to reduce one
multiplier byte into its partial ‘sum’ and ‘carry’ vectors;
and with recoding, we require four 4:1 multiplexors and

Table 8: Circuit Area-Time Relationohips in Bipolar LSI and CMOS VLST
Technology
Circuit Macrocell ECL LS! Custom CMOS VLS|
Ares Time Ares Time

2:1 Multiplexor 1 10 1 1
4:1 Multiplexor 4 20 2 1
2-in OR,NAND 1 08 1 2
2 2-ip Exclusive-OR 1 1.2 2 2
D Flip-Flop 2 1.2 2 3
Full Adder 4 1.2 8 3
8-bit barrel-shift 7 30 7 1

Area and time of circuit blocks are normalized
to a 2:1 multiplexor in each technology. In
ECL, for example, a full adder is the same size
as a 4:1 multiplexor, whereas in CMOS, a full
adder is four times the size of a 4:1 multiplexor.

four adders. Note that some CSA rows can evaluate in
parallel, resulting in 5 and 3 effective adder delays in the

two cases. From Table 3, we see that in Bipolar LSI, the
areas of the two schemes are the same, and the scheme
with Booth recoding is 7% faster. In CMOS, the area with
Booth recoding is 37% less than without recoding, and is
also 33% faster. Clearly, Booth recoding is preferable in
CMOS, whereas it is a toss-up in Bipolar LSI.

Using process yield curves, we estimated that the
maximum size of our chip can be 10mm X 10mm.
Accounting for periphery, this leaves about 9mm on a side
for circuits. Allowing 25% area for control and routing,
this leaves 60 square mm. for the exponent and fraction
datapaths. Using the relative frequencies in Table 2,
multiply and divide together accounts for 40% of the
operations, and so are allocated close to that percentage of
the datapath, i.e., 24 square mm. Given this area con-
straint, we moved away from purely combinational algo-
rithms to iterative ones.

3. Implementation Considerations

The custom chips in the SPUR system are being
designed in. CMOS technology. Complimentary MOS pro-
vides a variety of desirable characteristics for implemen-
tation of a system of this complexity. CMOS technology,
with. its characteristic scalability, provides a good speed-
power produet, making it attractive at high levels of
integration. CMOS has high noise immunity, high eircuit
density, provides a wide choice of design styles, and is
compatible with the CAD tools at our disposal.

The maximum width of the fraction datapath is 73
bits (for example, the partial product vectors for multi-
ply). Delay in control signals that run the entire length of
the datapath has a large impact in the delay in and
between modules in the datapath. If there is any appreci-
able resistance in these control lines, the RC delay can
become a significant fraction of module delay, leading to
slower computation rates and large clock non-overlap
times to protect against clock skew. We chose a process
with two available layers of metal, with control and data
signals running orthogonally for the most part in the two
metal layers, thus virtually eliminating any resistive
delay. To minimize clock skew, we scale the drivers of the
control lines to match the capacitances they have to drive,
so that control delay is held between very tight tolerances
for the entire width of the datapath.

To allow for a mix of static and dynamic design
styles, we chose a four-phase clocking scheme, used in the

other chips in the SPUR system as well. With an on-chip
register file with an access time of one phase, this allows
two accesses, one for read and one for write per cycle,
with the two intermediate phases going to precharge the
dynamic busses. The cycle time is limit:d by the register
file read and write time. The current echnology allows
transistors with minimum channel length of 2 microns,
with 8 minimum size inverter discharging 1pf capacitor in
one phase. The present clocking scheme is shown in Fig-
ure 2.

PHI2 PHI4

Figure 2: SPUR Clocking Scheme

3.1. Pipelining the Inner Loop

A key factor in making our desiga area-efficient is
that the multiply and divide schemes have much in com-
mon, enabling significant sharing of hardware. Figure 3
shows the entire datapath for multiply snd divide. A key
factor in making our design achieve the: speeds it did is
the fact that the inner loop, the hear. of our iterative
algorithms, is completely pipelined, with different stages
of the pipeline carefully adjusted for balanced delay.
Modules that are density-critical are designed using
dynamic circuits, and modules that have rigid timing con-
straints, and where precharge times cannot be overlapped
with evaluation times, are designed using static circuits.
The hardware blocks that are not shared are the mul-
tipler Booth recoder and the divider quotient selector and
accumulator, and account for 8% of the entire
multiply/divide unit.

The following sections describe the algorithmic and
implementation considerations for this multiply/divide
datapath.

4. The Multiplier

Since it is not feasible to build a 64 X 64 array mul-
tiplier as part of a single-chip FPU with currently avail-
able technology, we considered several iterative schemes.
A 64 X 32 array requires 2 iterations to compute the full
product, but takes up about twice as much area as a 32 X
32 array, which requires 4 iterations. Even the area of a
32 X 32 array just for the multiplier 2xceeds our area
budget for both multiply and divide.

4.1. The Algorithm

Our multiplier is implemented ir nine iterative
steps. Each iteration implements a 64 bi: by 8 bit multi-
plication. In each iteration, four overlapped triplets of
multiplier bits (9 bits) are decoded by s modified Booth
recoder. Four multiplicand multiples of magnitude
+2MCD, +1MCD, -IMCD and -2MCD are needed per
iteration, along with 0. The relative cost of a multiplexor

89

Bus B Bus A
[
[ShiftR3]
I Neg Quotient 1‘“
o 7
ShiftR3] ! Round
[Pos Quotient I‘(—
[PPC-Slave }
[
ShiftR8/L2]
-
[sHifL1L F T
PPC Master I
s [
[PPS Slave] ;[oPLA]
[ShiftR8/L T
L Mux
¥ =]
[SHiftLL
Ly
[PPS Mastdr]
[CSA<O>]
b1
T CSAX3 1S —
=
T11]
1]
Mcd-Seter B
[Setect y T
o Il oM |
L MedyDivisor] T
- - :
Comp-Mpr/Dvr l L Latch J
= P O |
L] Multiplier] : ‘
' Booth
L] Mprshitrs |]
I V'_;_."j\”"

Figure 3: The Multiply-Divide Datapath

The datapath has the following sections, from
bottom to top: input latches and multiplier
shifter; multiplicand/divisor select; carry-save-
adder tree; partial sum and partial carry forma-
tion; quotient accumulation.

compared to that of an adder makes Booth recoding feasi-
ble in CMOS, exchanging six rows of carry-save-adders
with four rows of multiplexors and four carry-save-adders
in the datapath. Also, separating the recoding from the
carry-save-addition allows us to evaluate them in
separate time-slots in our pipelined implementation, thus
avoiding six CSA rows in the critical path.

The four overlapped triplets of multiplier pairs gen-
erate the four multiples of the multiplicand. They are
added to the partial ‘sum’ and ‘carry’ terms of the previ-
ous iteration, using an array of four carry-save-adders
(CSA). Note that the four multiples of the MCD are
shifted left 2 bits with respect to each other, depending on

<o s

CBA <i1> ‘_S“——_-—AEL—:
s <o> o R~ T S—
B <> n—{§_ 4 __J
Master 1 L 73 1
Slave 1 O 65 fe]
Master 2 L 73 18|
Slave 2 / 85 18
Slave 8 : l .23 64 —|
Master 9 b 0 —'*I 64 .ELG- OR
© 9 Zeros : Sticky Bit

Figure 4: Forming the Product

The width of the CSA, multiplexors and
PPS/PPC are 73 bits. After right-shifting 8 bits,
the sum of the two partial products is 65 bits (64
bit magnitude and 1 sign bit),

the significance of each multiplier triplet. The partial
‘sum’ and ‘carry’ are shifted left 8 bits and 7 bits respec-
tively, when looping them back to be the new inputs of
the CSA for the next iteration. Since there are negative
as well as positive operands, both in two’s complement
form, the multiplexers and CSA must be fully sign-
extended to the left (MSB) side.

A carry-look-ahead adder is necessary at the start of
the multiply operation, to produce the complement of the
multiplicand. It is also necessary at the end to form the
final result by adding the partial product vectors. Since
the fraction unit has such an adder already, we share this
module instead of duplicating it in the multiply/divide
unit. This increases the setup and completion times by
one cycle, but reduces the area of the unit by 14%.

4.2. The Multiply Inner Loop

The CSA tree, containing four rows of adders, is the
critical path for the multiplier inner loop. To reduce this
delay, two rows of the CSA tree, CSA<71,0>, evaluate in
parallel, reducing the net delay to 3 CSA stages. This
makes the interconnect less regular, but provides a 25%
speed improvement in the CSA stage. For the divider,
only one row of the CSA tree is necessary, and so we can
use the isolated CSA row to advantage. Figure 5 shows
the organization of the CSA tree.

In the multiplier inner loop, multiplicand selection is
overlapped with shifting and rounding the partial product
vectors. During each cycle, two phases are for signals
controlled by the master, and the other two phases are for
the evaluation of signals controlled by the slave. Blocks
that are controlled by the master are the Booth recoder
and the CSA tree, and blocks controlled by the slave are
the multiplexor set and the shifter between master and
slave partial product latches. Figure 6 shows the multi-
plier pipeline.

We have shown how the different parts of the multi-
ply inner loop are pipelined. Several of the modules were
designed using dynamic circuits to meet area, intercon-
nect and timing constraints. Table 4 shows the design

K0,

e
FPS<I> FPS.a> FPS<a> FP8<4> FPS<a> FPSa> FFSa> FPsa>

Figure 5: Least Significant Bits of the CSA Tree

Master Slave Master Slave i
c g " ok ‘l&a_r:'od><;E ><
X céA'<q:9> >< >< c;A""<.a;q> >< ><

: >< smnmgm_gx

4

Figure 6: The Multiplier Pipeline

style used for building the modules in the multiply/divide
inner loop, together with their area and time relation-
ships, normalized to the Booth recode block.

The four rows of carry-save-adders take the longest
time among the pipeline components. The dynamic CSA
design was 16% smaller than its static counterpart, and
was still able to meet the timing requirements. If we went
to a more aggressive clocking scheme, it would be feasible
to build the four multiplexors and the CSA tree static,
and modify the pipeline to have only two stages. One
stage could perform Booth recoding and MCD selection,
while the other could do CSA evaluation and the right
shift. Not only could the disparity between the stages
become smaller, but we could also utilize two out of the
four clock non-overlap times.

Table {: Area-Time Relationships of Muitiply Function Modules

Function Design Style Ares Time
Booth Recode Dynamic 1.0 1.0
MCD Select Dynamie 2.6 09
CSA Tree Dynamic 929 4.3
Partial Sum & Carry Static 8.7 0.5

Area and time are normalized to the Booth
recode block. The CSA, for example, is almost
ten times larger and more than four times
slower than the Booth Recode block.

i
|
,
|
|
i3

4.3. Rounding

The ability to perform unbiased rounding with error
less than half a unit in the last place requires three extra
bits, called the Guard, Round and Sticky bits. The Guard
and Round bits are used if the intermediate result of a
division is between .5 and 1 and hence requires a one-bit
normalizing left shift. The Sticky bit is zqual to zero only
if all subsequent bits in a result of infinite precision are
zero and is used to identify the half-way case for unbiased
rounding.

During a multiply operation, the vectors containing
the partial products are shifted right eight bits before
being returned for the next iteration. These two eight-bit
quantities are added together, and ORed to form the ‘par-
tial sticky’ bit. This is fed back to the rounding adder for
the next iteration. At the end of the final rounding addi-
tion, bit<0> of the result is the most significant bit of
the rounding adder result, followed by the Guard bit. The
Round bit is zero, since the result must be in a range
between 1 and 4. The OR of the remaining bits of the
rounding adder provides the Sticky bit, as shown in Fig-
ure 7.

Since each iteration takes half a cycle in this pipe-
lined scheme, partial product evaluation takes four and a
half cycles. It takes almost that long, ajgain, for evaluat-
ing the MCD complement, the final carry-propagate addi-
tion and the rounding, making the total multiply latency
8 cycles. Some of this can be saved by duplicating the
fraction ALU in the multiply/divide unit, and also dupli-
cating the rounding PLA that gensrates the least
significant bit. Currently, both of these are shared with
the fraction unit; if these were duplicated, the potential
time saving can be 20%.

Iterations I to 8 I'eration 9

PPS<7:0>PPC<7:0>

PPS<7:0>PPC<7:0>

[RN
Cin \.! tound Adder

Sticky bit
Figure 7: Multiply Rounding

5. The Divider

Restoring divide is the least expensive approach for
radix-two division, but the cost increases exponentially
with the number of bits generated per it:ration. The same
is true of parallel-serial schemes. Multiplicative inverse
schemes produce incorrectly rounded quotients and inex-
act remainders, and later fix-ups can e expensive and
time-consuming. SRT division [Robertson65], [Atkins67]

91

focuses attention on quotient digit selection, and the
remainder iteration does not require .back-tracking.
Higher radix SRT division schemes are likely to provide
significant gains in area and speed, as better ways are
found to provide compact quotient-selection logic, and con-
currency between different portions of the algorithm (like
partial remainder formation and quotient selection) is
exploited.

5.1. The Algorithm

Our algorithm is based on radix-four, non-restoring
division, using estimates of the divisor and partial
remainder. The radix-four quotient digits are expressed
using redundant representations of -2, -1, 0 +1 and +2,
and the partial remainder is irredundant. This redun-
dancy in the quotient digits permits less precision in com-
paring the divisor and partial remainder to select a quo-
tient digit. The required precision required in inspecting
the partial remainder and the divisor can be determined
using P/D plots. It can be shown that six bits of partial
remainder and four bits of divisor are needed to deter-
mine the next quotient digit [Freiman61],[Atkins68].

<64:0>
PPS-Master 34 8! 100
+ H
PPC-Master 34 ls £ 000
Remainder [S 00
<67:0>
Positive Quotient 0 }°<2ﬂ>]
Negative Quotient o }4<2:o>|

Figure 8: Forming the Remainder and Quotient

The division is done iteratively, with two quotient
bits computed per iteration, with the equation expressed
as follows:

py+ = rXpj — gyi+nXd

where j = index of the recursive loop <33:0>
Di = partial remainder after the jth loop
po = dividend
qy+1v = quotient digit after the jth loop
d = divisor
r = radix <4>

The hardware loop for generating the next remainder and
the next quotient estimate contains an eight-bit carry-
lookahead-adder, which generates six bits of truncated
partial remainder. Together with these six bits, four bits
of the truncated divisor are sent to the quotient selection
logic, which in turn generates three bits, representing one
of the five possible values of the quotient digit. Depending
on the sign of the quotient digit, it is channeled into one
of two registers, one holding positive and the other hold-

T —_—

ing negative quotient estimates. These registers are
shifted left two bits per iteration. "he quotient selection
logic is decoded to control a multiplexor, that decides
what multiple of the divisor to use for the next iteration.

5.2. The Divide Inner Loop

For the divider, the partial product latches are used
to hold the partial remainders, with one modification.
Multiplexors in front of these latches let us load the mas-
ter with the dividend at the very beginning of a divide.
The PPC latch gets loaded with zero. The partial
remainders are shifted left by two bits after every
iteration.

Since the divider uses only one row of the CSA tree,
one of its rows is separated out from the rest of them, to
enable this fast and direct path for the divider. Partial
remainder evaluation and quotient estimation are done in
parallel. In the remainder evaluation, the CSA and left
shift operations are split into master and slave phases.
For the quotient evaluation, the 8-bit estimation adder is
evaluated at the master time, while the quotient selection
PLA and the divisor selection is dons at the slave time.
The divider pipeline is shown in Figure 9.

Slave Master Slave Master

: v

REMATNDER

>< QA?dder X :

Q Ajdder (

QUOTENT

Figure 9: The Divider Fipeline

There are several reasons for our efficient divider.
First, we use radix four, allowing the evaluation of two
quotient bits per iteration. Second, non-restoring divide
allows us to look ahead for quotient selection, keeping
exact quotient determination until .ater, without back-
tracking at every iteration. Third, a small degres of
redundancy in the quotient digit representation keeps us
from having to generate more costly raultiples of the divi-
sor, albeit requiring an increase in quotient selection
logic. Lastly, the concurrency between partial remainder
formation and quotient selection [Atkins74] significantly
increases algorithm efficiency. Table 5 shows the relative
area-time cost for different sections of the divide pipeline,
normalized to the divisor select block.

5.3. Quotient Selection

An integral part of the divide scheme is the logic for
quotient selection. To keep the quoiient selection logic
from becoming the critical path, the quotient adder and
PLA were split into two phases. The adder can now be

92

Table 5: Area-Time Relationships of Divide Function Modules

Function Design Style Ares Time
Divisor Select Dyaamic 1.0 1.0
CSA Row Dynamic 4.1 3.2
Quotient Adder Static 0.4 35
Quotient PLA Static 0.5 48
Quotient Accumulate Static 6.4 0.8

Area and time are normalized to the divisor
select block. The quotient PLA, for example, is
half as large and almost 5 times slower than the
divisor selector.

dynamic, since it can be precharged when the PLA evalu-
ates, thereby saving area. The PLA that generates the
two bits of quotient per iteration, gets its inputs at the
beginning of every slave phase and has to evaluate the
quotient bits by the end of that phase. To achieve this
strict timing requirement, we went with a pseudo-static
PLA design. At the expense of a little DC power, output
evaluation can be done in a single phase time. There are
ten inputs to the PLA (6 bits from the quotient adder, and
4 from the divisor), and three outputs (2 quotient bits and
the sign bit). Two optimizations were done to reduce the

size of the PLA. Firstly, the quotient sign bit is the same
as the sign of the partial dividend, and hence does not
have to be a PLA output. Secondly, with optimal encod-
ing of the PLA outputs, the number of product terms were
reduced significantly. Given the small number of outputs,
it was possible to exercise the PLA minimization tools
[Rudell86] to find what encoding of outputs resulted in
the smallest number of minterms (*). Table 6 summarizes
the results.

Quotient selection takes the longest time for radix 4
division; remainder evaluation takes only 40% of the time
of quotient selection. For radix 16 division, there is no
extra cost in remainder evaluation, but quotient selection
area increases by about 6 times. In the critical path, we
now require several quotient adders that work in parallel,
with the final result muxed out to the quotient PLA. The
extra time cost is about 30%.

Table 6: Effect of Output Encoding on the Quotient PLA
Output Twelve Unique Output Encodings
Q=0 [} 0] 1 1 1] 1 1 3 3 3
Q=1 1 1 3 0 0 2 2 3 3 [} 1 1
Q=2 2 3 1 2 3 [} 3 0 2 1 2 4
P-Terms 43 26 26 26 26 29 30 27 27 26 4 25°

5.4. Rounding

The divider must provide three rounding bits along
with a 65-bit result. Since two quotient bits are generated
at every iteration, 34 iterations are necessary to generate
the partial remainder and quotient vectors. After adding
the two partial remainder vectors, the sign of the
remainder is returned to the multiply-divide unit. The
OR of the rest of the bits provides the ‘partial sticky’ bit.
Using a 3-bit rounding subtractor, which uses the comple-
ment of the sign of the remainder as carry, bits <2:0> of
the quotient vectors are subtracted. The least significant
bit is ORed with the ‘partial sticky’ bit to form the final
Sticky bit, while the other two bits of result provide the
Guard and Round bits. The carry out of the subtractor
goes out to the fraction adder, as shown in Figure 10. It
would be possible to eliminate most of this logic if we had
a 68-bit ALU. But since we share the ALU with the frac-
tion unit, which has only a 65-bit ALU, we have to retain
this logic.

POBQ«<87:3> NEGQ<B7:3>

L |
\iﬁﬂ

[3Rs
Figure 10: Divide Rounding

6. Scaling Implications

Further enhancement in performance will come from
two inter-related causes. As technology continues to scale
to smaller and smaller geometries, individual transistors
and logic gates will improve in performance. Sealing will
also enable more logic to be put on a single chip, allowing
for further algorithmic enhancements. Reducing the
feature size by a causes area to decresse by the square of
a and the speed to increase by almost the same factor.
Table 7 indicates the effects of halving the smallest
geometry on chip, from 2 microns to 1 micron, on algo-
rithms and their area and time.

Table 7: Techm Impact on Algorithm sirea-Time Cost
Technology
Algorithm 2 micron 1 microa

Ares Time Ares Time
Mubtiply (64 X 8, iterative) 10 1.00 0.25 0.25
MuRtiply (64 X 32, array) 19 0.6¢ 0.48 0.16
Multiply (64 x 64, array) 38 0.3¢ 0.95 0.00
Divide (SRT 1) 10 1.00 0.28 0.25
Divide (SRT 1= 16) 1.5 0.7¢ 0.38 0.18
Divide (Prescale, r=256) 3.8 0.40 0.88 0.10

Area and time are normalized to those for our
implementation in 2 micron CMOS. For exam-
ple, our multiply scheme will-be 25% its present
size when built in I micron CMOS and will be 4
times as fast. Again, a radix 16 divider will be
80% larger than radix 4 in 2 micron CMOS, but
38% its present size in 1 micron CMOS.

We can expect significant speed enhancements by
matching technology to algorithm, while retaining a bak
anced design. Large combinational multipliers will soon
be feasible as components in an FPU. Rounding hardware
will need to be integrated into the multiply unit, to keep
it from becoming the bottleneck.

Dividers, being inherently sequential in nature, are
harder to speed up. The size of escalating cost (in area
and time) in quotient selection logic will probably limit
the use of non-restoring divide to racix 16 [Taylor85].
Partial remainder evaluation will be virtually unaffected,
but the quotient selection logic will increase from radix 4
by about 6 times. Prescaling schemes ‘Ercegovac85] are
worth exploring, for generating more quotient digits per
iteration. Eight and even sixteen bits per iteration seem
feasible, provided initial setup, final remainder adjust-
ment and data flow can be handled effiziently. The esti-
mate in Table 7 takes into account the fact that we need
two 64 X 8 multipliers for the prescaling, and the data-
path width increases by eight bits; on the other hand,
quotient selection logic is greatly simplified.

93

7. Conclusion

VLSI provides certain unique opportunities and con-
straints in the design and implementation of high-
performance arithmetic. Chip area and delay closely
interact to affect all levels of design, from available func-
tionality and choice of algorithms to clocking strategies
and circuit design styles. In particular, we study the
design tradeoffs offered by CMOS technology, the dom-
inant VLSI technology in the 1980’s. In an attempt to
explore tradeoffs in this complex and inter-dependent
design space, we present the design of a fast and compact
multiply/divide unit implemented for a single-chip FPU.

8. Acknowledgements

Prof. Kahan has helped us understand the intricacies
of the IEEE Standard and encouraged us all along; Prof.
Hodges has always been available to advise us on circuit
issues. Glenn Adams wrote portions of the FPU simulator,
which Corinna Lee has completed and tested. Albert
Wang and Timothy Hu have helped in layout and circuit
simulation. Principal funding for the project is by
DARPA, under contract N00039-85-C-0269.

9. References

[Atkins67]- D. E. Atkins, "The Theory and Implementa-
tion of SRT Division,” Report No. 230, Dept. of Computer
Science, Unviersity of Illinois, June, 1967.

[Atkins68)- D. E. Atkins, ‘Higher-Radix Division Using
Estimates of the Divisor and Partial Remainders,” IEEE
Trans. Computers, Vol. C-17, No. 10, October 1968, pp.
925-934.

(Atkins74)- D. E. Atkins & U. Kalaycioglu, ‘Concurrency
in Generalized Radix Non-Restoring Division,’ Proc.
Twelfth Allerton Conference on Circuit and Switching
Theory, October 1974, pp. 628-640.

(Ercegovac85) - M. Ercegovac & T. Lang, 'A Division
Algorithm with Prediction of Quotient Digits,” Proc.
Seventh IEEE Symposium on Computer Arithmetic, June
1985, pp. 51-56.

{Freiman6l] - C. V. Freiman, 'Statistical Analysis of
Certain Binary Division Algorithms,’ Proc.IRE, Vol. 49,
January 1961, pp. 91-103.

[Gamal86]- A. E. Gamal et al, ‘A CMOS 32b Wallace Tree
Multiplier-Accumulator,” Proc. ISSCC, February 1986, pp.
194-195.

(Gavrielov86] - M. Gavrielov & L. Epstein, ‘The
NS32081 Floating-Point Unit,’ IEEE Micro, April 1986,
pp. 6-12.

[Gibson70] - d. C. Gibson, ‘The Gibson Mix,’ [BM Sys-
tems Development Div., Tech. Report, June 1970.

[Hill86] - M. D. Hill et al, ‘SPUR - A Multiprocessor
Workstation,” to appear in IEEE Computer, November
1986.

(Knuth71]- D. E. Knuth, ‘An Empirical Study of FOR-
TRAN Programs,’ Software: Practice and Experience, Vol.
1, No.2, April 1971, pp. 105-133.

[Leung86] - B. Leung & Y. M. Lin, " Statistics on Floating
Point Arithmetic,” CS 252 Report, May 1986.

[Nave80] - R. Nave & J. Palmer, 'A Numeric Data Pro-
cessor,’ Proc. Intl. Solid-State Circuits Conference, Febru-

.
f
i
%
4
L
.}

ary 1980, pp.108-109.

[Robertson65] - J. E. Robertson, ‘Methods of Selection of
Quotient Digits during Digital Division, File No. 663,
University of Illinois, Urbana, June 1965.

{Rudell86]- R. Rudell, ‘ESPRESSO, 1986 VLSI Tools,
Report No. UCB/CSD 86/272.

(Shahan84] - V. Shahan, ‘The MC68881: The IEEE
Floating Point Standard Reduced to One VLSI Chip,
Proc. IEEE Computer Conference, March 1984, pp. 172-
176.

[Taylor85] - G. 8. Taylor, 'Radix 16 SRT Division
Methods With Overlapped Quotiert Selection Stages,’
Proc. Seventh IEEE Symposium on {‘omputer Arithmetic,
June 1985, pp. 64-71.

[Troutman86] - W. W. Troutman et al, ‘Design of a Stan-
dard Floating-Point Chip, IEEE J. of Solid-State Circuits,
Vol. 8C-21, No.3, June 1986, pp. 396-399.

(Uya84] - M. Uya et al,* A CMOS Floating Point Multi-
plier; IEEE J. Solid-State Circuits, Vol. SC-19, No.5,
October 1984, pp. 697-702.

[Wolrich84] - G. Wolrich et al, ‘A High Performance
Floating Point Coprocessor,’ IEEE J. of Solid-State Cir-
cuits, Vol. SC-19, No.5, October 1984, pp. 690 - 696.

94

