Structured Arithmetic Tiling of Integrated Circuits*

Tony M. Carter
University of Utah
Department of Computer Science
3190a Merrill Engincering Building
Salt Lake City, Utalh 84112

Abstract

Robertson’s Theory of Decomposition and Structured
Tiling (an IC design technique) are combined in a struc-
tured arithmetic circuit design method. This method,
extended by a set of inverse operators and a set of multj-
ply operators, is used with computer-aided design tools
to automate the design of arithmetic circuits.

1 Introduction

Automated design for digital integrated circuits is cur-
rently well advanced in the areas of control logic and
register-transfer logic, but arithmetic circuits are still
designed in a relatively ad hoc manner. In particular,
little has been done to unify the theory of arithmetic
with techniques for integrated circuit design. Robert-
son’s Theory of Decomposition [1,2] for binary addi-
tion and subtraction, when combined with what we
have learned about integrated circuit design in pursuing
the development of Path-Programmable Logic (PPL)[3],
becomes a powerful method for specifying and auto-
matically designing arithmetic structures. The de-
sign method is known as Structured Arithmetic Tiling
(SAT)[4] and has been used to implement a Variable
Precision Processor (VPP)[7]. The Theory of Decom-
position can also be implemented using the gate-array
or standard-cell approaches, but would then incur the
costs of those methods relative to PPL[8].

2 Theory of Decomposition

The Theory of Decomposition is a circuit design method
for addition and subtraction. It relies on the concepts
of digit-sets (a set of contiguous numbers that must
include zero), diminished cardinality (§ — the num-
ber of elements in a set minus one), and offset (w —

*This research was supported by DARPA through contract
number DA AK11-84-{-0017.

CH2419-0/87/0000/0041$01.00 © 1987 IEEE

41

the distance from zero of the smallest element in the
set). For example, the digit-set {T, 0, 1} has diminished
cardinality § = 2 and offset w = 1. The most inter-
esting digit-sets (from an implementational view) are
the binary digit-sets a® = {0,1} and a! = {1,0}, and
the ternary digit-sets b® = {0, 1,2}, b! = {T,0, 1} and
b? = {2,1,0}. The theory’s main concepts are:

1. Weighted sums of binary and ternary digit-sets im-
plement higher-order digit-sets.

Set-equations represent arithmetic operations.

If (8in > 8out) the equation is unrealizable.

SRS

. If (6in = bout) the equation is decomposable.

5. If (6in < 8,4:) the equation is not decomposable.
Add mythical inputs (= 0) to make the set-equation
decomposable by equalizing the 6s and ws of the
input and output expressions.

6. All operations that transform set-equations must
keep bin = Sour and Win = Woyt-

7. Lose information as rapidly as possible.

A simple example will serve to illustrate this style
of design. Let us represent the addition of two three-bit,
unsigned binary numbers as a set equation. A three-bit
unsigned binary number is represented as 4a°+2a®+a0.
The result of adding two three-bit numbers is a four-bit
number, 8a® + 4a® + 2a + a®. Thus, the set-equation

8a’+4a%+2a+ a0 < (4a°+2a%+a0%)+(4a%42a%+a).

represents the addition of two three-bit numbers. For
the left-hand side of the equation 8,y = 8- 1441+
2.141 = 15, and for the right-hand side §;,, = 14.
Obviously, w = 0 on both sides.

Since 6;n < 6,41, this equation is not decomposable,
but we add a mythical input (which does not change the
value of the result) of minimum information content to
make it decomposable. Since A§ = 1 and Aw = 0 we

Table 1: Logic Implementations of the Operators

[Name

| Set Equation |

Logic Implementation

HAO b0¢a?+ag boza?.ag b2=ag®ag

HAl bl < al +ad bilza1 bl = al @ a°

HA2 b? < al 4+ al b§=a§~a§ bZ = al @ al

CGO 2a" + a] < bl 1 ay anzbg—{-bg-a_g a; = bl @ al

CGla |2a°+a} < b+ al 2a°:E2_+b2-a_} a} = bl @ al

CGlb | 2a%+a! < bl 4 a0 22° = bl - &% + b} - b} al =bl @ a®

CG2a 2al + 2% <= bl 4 al | 2al = bl.al 4 E.‘ll b} al = bl @ a!

CG2b | 2a'+a) <=Db2+a) |22l = b2 +b2. a a) = b2 af

CG3 | 2al+al =b2+al |2al=bf4bs.al al = b2 @ al

RCGO | 2a°+bJ < bl +bJ [2a0 = by, + by, bgs = bl - bY, + by, -by, bl =1l @by,
RCG1 | 2a’+ b} < b%+ b} | 2a° = bj + b}, -b?- bl __ bup=by “bey b, = bl @ b,
RCG2a | 2al 4 b® <= b} 4 b} 2a1=_t3;l-b§1+2§g_-bl2'_tl§_l bg=bl1'b}2'_bi'z bl = bl, ® bl,
ROG2b | 2%+ b? = bl + bl | 2a® = bl, - bly + bl - bly - B, b = b, - bl - bi, b? = bl @ b,
RCG2c | 2al +b <= b9+ b? | 2al = b2 + B, b, - b2 bl = b, - b2 b, = b9, @ b?
RCG2d | 2a° 4+ b <= b0+ b} | 2a% = bY + b0 - B2, - b7, b2, = b2 - bY b2, = b?, & b2
RCG3 | 2al+b} <= b2+ b} |2a! = bf +bl, . B, bl, = b2+ b2 b}, bl, = b2 bl,
RCG4 |2a' + b < b?+ b2 | 2al = b2 + bZ, bgs=b3, bl + b2 b2, bZ =b2 @ b2,

must choose a single a® of weight 1. If we view the 8a°
term of the left-hand side of the equation as a carry-out,
we note that there is no corresponding carry-in and we
can rewrite the set-equation as

8a° + 4a0 4 2a° + a® «
(42° + 2a° + a°) + (42° 4 2a° + a°) + a®

where the last a® can be mythical, or can serve as a
carry-in! Note that by so doing we have equalized the
6s (the ws were already equal) and thereby rendered
the equation decomposable. There is a set of seven-
teen operators that can be applied to set-equations,
transforming the input expression into the output ex-
pression, to implement any addition/subtraction opera-
tion: three generalized half-adders (denoted HAn) take
two binary digit-sets and produce a ternary digit-set of
the same weight, six carry-generators (denoted CGn)
take a binary digit-set and a ternary digit-set and pro-
duce a binary digit-set of the same weight and a binary
digit-set at twice the weight, and eight redundant carry-
generators (denoted RCGn) take two ternary digit-sets
and produce a ternary digit-set of the same weight and
a binary digit-set at twice the weight. Carry-generators
and redundant carry-generators serve as information
losing devices and half-adders reconfigure an equation
so that information may be lost. Table 1 contains the
(previously published) logic designs for the seventeen
operators. Note that some of the logic designs are iden-
tical; the seventeen logical operators map onto only

42

eleven physical implementations. In the logic equa-
tions, ternary digit-sets are implemented as two bits
denoted by subscripts ;, (Robertson’s Greek variables)
and . (Robertson’s English variables). The superscripts
represent the digit-set offset. The sub-subscripts are
enumerative and serve to disambiguate logic variables.
Therefore, b® would be implemented as b) and bl.

2.1 Inverse Operators

In the design of the VPP, Robertson saw the need to
change a d? digit-set into the sum of two bl digit-sets to
simplify the design of the multiplier, and to eliminate all
outputs of weight 8 in the multiplier-level. This resulted
in the design of one inverse redundant-carry-generator
and the concept of fanout circuits that only modify cir-
cuit interconnection without adding any hardware. The
fanout module generates an input to a half-adder, and
this combination performs exactly the function of an
inverse carry-generator. In fact, each of the operators
in the Theory of Decomposition has an inverse. The
designs for the inverse half-adders are from Robertson
(who calls them converters) and are included in table 2
with the rest of the inverse operators.

2.2 Non-Adding Operators

In the design of Chow’s Variable Precision Processor
[5], Robertson notes the need for two additional com-
putational modules that are not strictly part of the

Table 2: Logic Implementati

ons of the Inverse Operators

[Name [Sct Equation | Logic Implementation

IHAQ aj +aj < by a) = by a] = by + by
IHA1 | a®+al « b! al = bl a% = bl @ b
IHA2 | al 48l < b? al = b} al = bf 4 b
ICGO b’ + a) <227 yal | by = 2a? bl =0 ay = aj

o ICGla | b%+al & 2a%+al b§ = 2a° bl =0 al = al
ICGIb | b'+a%«=2a’+al |bl=2a0 bl = a® = al
ICG2a | bl+al < 2al 4+4° | bl = 24! bl =1 al = a0
ICG2b | b2+ a} <= 2a! + a9 | b? = 2al b2 =0 al = a
ICG3 | b2+4al «2al+al |bd=2al b2 =0 al = a}
IRCGO | BY+ b« 2a + b | b8, = b7 b =b% b% = 22" B% =0
IRCG1 | B+ b} =220+ b} | BY=DL, bl, b2=Dl, bi =220 bl =1
IRCG2a | b} + bl < 2al! 4+ bo b;,l = b0 bl, = P_g b;z = Za_l bl, =
IRCG2b | bl + bl < 2a%+ b2 | bl, = bg bl, = b? b§2 =2a’ bl,=1
IRCG2¢ | bY 4 b2 <= 2a! 4+ b by, = by, bd, = b?, b?=2al b2=0
IROG2 | b2+ b7 240 4 b3 | b = b7, bz, b2 = b2 b2, =%a0 b2 =0
IRCG3 | b?+bl<«2al +bl | b2= by, -bl, bZ=bl, by, =2a! bl =
IRCG4 | bi+bj <« 2al + b2 | b, = 1) b =b2 bl —2al bl =0

method[6]: a conditional complementer (for subtraction
by addition of the complement) and an elementary mul-
tiplier. Conditional complementers require symmetric
digit-sets as inputs and thus are restricted to digit-sets
whose diminished cardinality is even. There is a whole

| . amily of elementary multipliers that may involve higher

" order digit-sets. Indeed, in the Variable Precision Pro-
cessor we use a b! by d? multiplicr. I'he logic designs
for the first two conditional complementers and the ba-
sic set of binary and ternary elementary multipliers, as
well as the b! by 42 multiplier are presented in table
3. It should be noted that the complexity of coupled
don’t-cares in higher-order operators renders the task
of designing a minimal logic implementation very dif-
ficult, and that layout considerations occasionally war-
rant using a non-minimal logic implementation.

2.3 Algorithms for Decomposition

We are currently implementing a CAD system that
transforms a set of adder specifications (set-equations)
into a silicon implementation. This object-oriented sys-
tem, which is based on operator (such as HAO0), digit-
set-term (a weighted digit-set), adder-block (defined
by a set-equation), and information-loss-table objects,
can check the validity of a sct-equation, decompose
adder-blocks (backtracking if necessary by using inverse
operators), generate a logic-level emulation program,
and generate input to simulators such as MOSSIM or
SPICE. The hard part remains: to automatically place

and interconnect the circuit modules that implement
the desired arithmetic function.

In the specifications for adder units, input and out-
put set-expressions must represent digit-sets. Robert-
son’s method for verifying set-expressions (based on the
radix and diminished-cardinality of successive terms in
the set-expression) does not detect all set-expressions
that represent digit-sets. Sometimes it is necessary to
do the set additions indicated by the set-expression and
check the resulting set to see if it includes all integers
between its least and most significant elements.

Inverse operators are not necessary for decomposi-
tion to minimum information content when redundant
carry-generators are used, but are used when the desired
output set-expression does not have minimum informa-
tion content. In the cases we have studied, the inclusion
of this extra operator incurs no performance penalty
because it does not change the number of gates in the
worst-case delay path. Redundant carry-generators are
necessary in the decomposition of some modules (such
as the one discussed later in this paper) if inverse oper-
ators are not used.

The order of operator applications must be consid-
ered since, in some cases, it can cause decomposition
to succeed in achieving minimum information content
while not matching the desired output set-expression.
In general, there usually is not a single unique decompo-
sition that results in minimum information content, but
some operator orderings will result in a shorter worst-
case delay path from input to output. One can achieve

43

i

Table 3: Logic Implementations of the Non-Adding Operators
Wame [Set Equation Logic Implementation J
CC2 (on o) | b} < £bg bl,=by &o b, = bgy
CC4 (on o) |2a} + by < £(2a] +bY) |2ai=0® 2al b%, = b?, - (¢ & bY,) b?, = bl
MPY1.0a |a < a)xa) a3 = aj - a}
MPY1.0b [a < al *a} a% = al - a}
MPYI1.l1 |a}<alxa® al = al-a°
MPY2.0a |b®<« blxa’ b? = a® - bl b0 = a° - bl
MPY2.0b |bO <= b2 # a! b= o bf 10 = ol - b2
MPY2.1a |b} < Db}xa® bl, = bl bl, = a® - bl
MPY2.1b |b} <= bi xal bl, =b}, bl, = al - b},
MPY2.1c |b} <= blx*b} b%a = gt ® by bl; = bl, -bl,
MPY2.2a |b} <= b? +a® bZ, = a0 . b2, b2, = af - b2,
MPY2.2b |b? ¢= b0 xa! b= al . b b? = al - b
MPY4.0a [2a®+ b3 <= b+ b) 2a°% = b%l -bY% + bgl -b%, by =bY, b, + bJ; - b, bl = b, - b, |
MPY4.0b [2a® 4+ b° < b? + b3 200 = by < by + by b, by = by b, + bl b2, bO=b? b
MPY4.4a |2al + b3 < b%+bi 2al = bg~b§+bg-b3 bls = Eg_:bg-%-bg bl b?; = bY - b?
MPY4.2a |2a}+bd < bl«(2al +bY)|2a3 = bl-(2al ®by) b, = bl - bl . (b, @_b}) b, = bl - bd;
MPY4.2b |2al +bJ <= bl * b} 2al = bl b0, = b} BT+ b, - B, - b} + b, By by b3, = bY, - b
MPY4.2c |2al + b0 <= bl +Db? 2al =Dy bO=Dl-bl+bl-b2-bZ+bi-bi b bg=b; be

still better performance and space efficiency by consid-
ering the dependence of circuit layout on decomposi-
tion. Since the goal is to lose information, we currently
apply redundant carry-generators and carry-generators
before half-adders, but we do not yet have enough de-
sign experience to predict which operator ordering will
result in the fastest or smallest circuit.

3 Physical Implementation

Path-Programmable Logic (PPL) began as a folded
PLA, where the and and the or planes are superim-
posed. This gives the designer the ability to include
memory and other logical elements directly in the ar-
ray, and to arbitrarily segment the large array into
smaller, independent sections connected by a few sig-
nal wires. Extensions made to the PPL concept have
led to a methodology in which it is not the folded and-or
plane that is important, but rather a conceptual array
of wires, some being used to generate and carry logi-
cal values and others interspersed at regular intervals
to carry power and ground (see figure 1). The grid
pitch in one direction is determined by the pitch of the
power/ground busses and in the other direction by the
layout size of the simplest (or unit) logic tile. Logic
functions are physically implemented as tiles that can
be superimposed on the wiring array. Furthermore, the
size and shape of each logic tile is quantized by the un-

derlying grid and signal ports are constrained to be at
locations where wires cross the tile boundary. Since the
logical tiles are conceptually superimposed on a wiring
array, tile adjacency implies the automatic interconnec-
tion of physically corresponding signal ports. If inter-
connection is not desired, the wire must be explicitly
broken (by the user) between two adjacent tiles.

The wiring array abstraction, automatic (and hid-
den) inclusion of power and ground routing in the array,
and a symbolic notation for functional tiles yield a very
powerful circuit design paradigm in which many time-
consuming details are more or less automatically han-
dled (a feature of equal value to human circuit designers
and CAD tool writers alike). The generic methodology
is called structured tiling. With respect to physical im-
plementation, the fundamental elements of structured
tiling are: 1) modules are constructed by placing func-
tional tiles on a wiring array (or grid), 2) in general,
power and ground routing should be automatic and hid-
den, 3) tile adjacency should imply signal interconnec-
tion unless an explicit break is specified, 4) tile areas
and shapes must be quantized by the underlying wiring
grid, 5) the tileset must provide for signal routing.

3.1 The NMOS Tileset

Structured Arithmetic Tiling was first developed using
an NMOS technology with a single level of metal in-
terconnect. In NMOS circuits, a single load transistor

Y r '4d
L 11 i
L nl .
1 signals
3 + GND
EER ‘
i signals
et ,

. Vad
stgnals

Figure 1: Wiring Array

is attached to eachi gate output and pulls the output
high when the input conditions don’t require pulling
it low. With NMOS logic using gates having more
pulldown transistors than pullup transistors, and struc-
tured arithmetic tiles generally losing information (that
is, they have fewer output signals than input signals and
therefore fewer grid locations at the output edge than
at the input edge), the NMOS tileset carry-generators
have an upside-down “L” shape for optimal space effi-
ciency. Our CAD systems that deal with hierarchical
tile-based designs handle non-rectangular hierarchical
tiles (since limiting them to be rectangular would be
too costly in terms of area), and non-rectangular leaf
tiles can be handled in the same manner.

Figure 2(a) presents the layout of the RCG2a tile.
This particular tile is four grid units wide at the top
(one for each input signal), three grid units wide at the
bottom (one for each output signal) and is two grid
units high. The unit tile is 66 microns high and 21 mi-
crons wide in a 3-micron technology. There are three
horizontal ground busses, one at the top, one at the
bottom and one in the center of the tile. The top and
bottom busses are shared with adjacent tiles. Running
horizontally through the centers of the top and bottom
halves of the tile are the power busses. Between the
power and ground busses are horizontal routing wires
that may carry signals through the tile. The four input
signals enter at the top of the tile, and the three output
signals leave at the bottom, all on polysilicon. Note that
the polysilicon wires do not extend to the edge of the
tile. The CAD tools automatically insert small rectan-
gles (actually connection tiles placed between functional
tiles) of the appropriate material to connect signal wires
between adjacent tiles, unless a wire break is specified.

All tiles that lose information (carry-generators
and redundant carry-generators) produce a carry (ei-
ther 2a° or 2a') that is the leftmost output and is there-
fore available at the bottom edge or at the top of the
notch. The notch greatly reduces the height of hierar-
chical tiles designed using the NMOS tileset since often
only half a functional tile height is needed to connect
carry signals. Tile modifiers are used to connect inputs
and outputs to the horizontal (metal) routing wires.

N
M
N N
4) 3
1 s “"" ONNNANNNN Ql
X S — \
|
\ .
IN |
E
8
P
NE
N
[-

(a) NMOS Layout

S R e 2
sooonfee

(b) CMOS Layout

Figure 2: The SAT RCG2a Tile

45

3.2 The CMOS Tileset

The CMOS tileset implements the same logic function
as the NMOS tileset, but its tiles are all rectangular
because the number of pullup devices equals the num-
ber of pulldown devices. Figure 2(b) shows the CMOS
layout for the RCG2a tile. Power is present along the
top and bottom edges of the tile, and ground is in the
middle. The minimum routing pitch is such that a tile
requiring four columns (having four inputs) cannot be
contained in the area of four routing tiles. Instead, we
chose to make each input and output signal available at
at least two adjacent grid locations. This permits tiles
to slide one grid location relative to each other while
still assuring that tile adjacency implies correct signal
interconnection. Each CMOS tile contains well and sub-
strate contacts (to reduce the charnce of latchup) in the
leftmost and/or rightmost column. While only one sig-
nal wire is present in each column, six horizontal signal
routing wires exist at minimum routing pitch and each
tile has an associated set of tile modifiers to connect
any input to any of the top three wires and any output
to any of the bottom three wires. There are also modi-
fiers to connect any input to ground (logical zero) which
permits mythical inputs to be implemented simply by
grounding the input wire. The grid size for CMOS is
135 microns high by 13.5 microns wide for a 3-micron
technology. Each CMOS half-adder takes 1.97 times
the area of its NMOS counterpart, each carry-generator
2.31 times the area, and each redundant carry-generator
1.75 times the arca. In addition, to obtain equal routing
capability in each technology, CMOS takes about 0.85
times the area needed in NMOS. CMOS SAT designs
that are functionally equivalent to an NMOS design
whose area is 70% functional and 30% routing should
be about 1.7 times the size of the NMOS circuit.

4 A Comparative Example

The Variable Precision Processor furnishes us with sev-
eral interesting but not too complex modules: Input-
Level-2 will serve as an example. This module is de-
signed from the following set-equation:

16b! + (8al + 4a° + 2a" + b?) &
4b! + (8a! +4b° + 2a! + b?) + (8a! + 4b° + 2al + bY).

This circuit adds two numbers with § = 20 and w = 10,
with the 4b! input being set to 0 for addition and sub-
traction (but not for multiplication). Running the de-
composer generates the information-loss chart in table
4, which can be drawn as a block diagram as in fig-
ure 3. This module has been designed in NMOS PPL,
CMOS PPL, NMOS SAT, and CMOS SAT. Table 5

contains some comparative data on these various de-
signs (all dimensions are in units of A, which would
be 1.5 for a 3-micron technology). Note that NMOS
SAT is nearly three times as area efficient as PPL for
this specific task, while the CMOS ratio is greater than
four. This should hold for large arithmetic circuits in
general. It is also important to note that CMOS SAT
is more area efficient than NMOS PPL. The PPL and
SAT designs are presented in figures 4 and 5. The lay-
outs of the PPL and SAT tiles were done by hand and
made as small as possible. The tile-level designs were
done using an editor (INSTED [9]) especially designed
for handling hierarchical, non-rectangular tiles. If the
results cited by Israelsen[8] hold, SAT circuits should
range from being roughly comparable in area and per-
formance to a full-custom implementation to consuming
twice the area and incurring some small performance
penalty. While no actual comparisons of NMOS cir~
cuits versus CMOS circuits have been made using SAT,
it is assumed that the normal tradeoffs between the two
technologies will hold (i.e. CMOS will be roughly twice
as large as NMOS, will consume virtually no power,
and will operate between five and ten times as fast as
NMOS).

5 Conclusions

The Structured Arithmetic Tiling (SAT) circuit design
methodology is one member of a family of methodolo-
gics that rclics on an entirely tile-based approach to
circuit design. The unification of SAT, PPL, and other
related methodologies through a set of common design
tools will give us the capability to design complex inte-
grated systems that include innovative arithmetic ar-
chitectures such as the Variable Precision Processor.
The size comparison between SAT and PPL implemen-
tations of the same circuit indicates, not surprisingly,
that design methodologies that are specifically tailored
to a task will be more efficient than more general meth-
ods. SAT strives to keep the advantages gained in us-
ing a structured technique like PPL while improving
over PPL by taking into account more domain-specific
knowledge.

The automatic tools associated with SAT permit
the casy design and implementation of complex arith-
metic modules that would be difficult if not impossible
to design otherwise. Although no SAT circuits have
been returned from fabrication at this point, two initial
circuits implemented using PPL have been fabricated,
tested, and shown to be completely functional at first
silicon.

We believe that SAT can play an important role

_STI 8?1 4b!? 4b% 4b0 2 1241\1 bo bo

L1 1] T N
'\ "HAz RCG1 HA2 RCGO
L~ BbY ga® Jab! 2b2 2 b0 i
§§
i =
CG2b RCG1 CG2b L
16a’ [8a® [8a0 4bl| |4al 2a° 3 7%
— ¥ eE <
% a3 B pre o 3
: £ o B £ (3] L g
HAO CG2a %3 = = s,
H - T]
8b 8al [1a0 ' T A
) A Ry
PR
%"5’ "Dﬁ"":'é'—mu ""
CGla o &TE BT Wl
16a® [8al 53 -
HA1 (a) NMOS Design
16b! 8a!l 4a0 2a” b0 — _
3l glz
. . 4 31 i
Figure 3: Block Diagram of Input-Level-2 ik s = o }_j‘
g & SIOmmE
g[) a2 [-
Table 4: Information Loss Chart for Input-Level-2 £ ‘ﬁl‘; 1 g -_‘,Tf ;P J 33
Lev.[Weight{ 16 8 4 2 i ﬁh——j ﬁﬁ - El —— Lg
Set [blala®b?b%al a®lb! b0 al a®[b? al a0L,0 8e g B N 3%:' « -il
Input 2 1 2 |l 2]2 Bl i %‘IS g 2 8 -j;
1 [RCGO 2 1(1 1 2 1]1 § B L ;3!5 H
1 [HA2 1 111 1 11 iy 2 THHEE lﬂr i
2. ICG2B | 1 1111 1)1 s o ! Pt
2 RCG1| 1 211 1 11 ;}ﬁ . & ; s
3 |HAO 1 1 11 11 3 o SR e 2 i =) 2
3 [CG2A| 1 11 i §E & [HEEHE: A
4 ICG1A 11 1 1 1)1 HE iy :ZJ 33{551 3 T 33
5 [HA1 |1 1 1 1)1 ils = } [T
]
Table 5: Comparison of Input-Level-2 (size in A) De- HERN
signs 2le F
.

Unit |Bounding Box[Relative Size
Technology[Hgt Wdt[Row Col % UselBBox Used
nmos SAT| 44 14 13] 8] 62 [1.00] 1.00
cmos SAT| 90/ 91 34/ 3] 88 [1.20] 1.80 (b) CMOS Design
nmos PPL| 14| 22| 25 22| 60 |2.65] 2.67
cmos PPL| 21| 50| 30| 18/ 68 |[8.85| 9.54

|
I
|

Figure 4: PPL Designs of Input-Level-2

47

4bBel

4bBgl

4ble

4blg

8all Bal2

§E—T H
§§§:*8“__ F-E
i =7
5% T (8 W2
iw g B5—3 §
=5 B85 SHH
§ AHE =] 32—]g 7°
H & ™ —E [1. 3]
[2H][z .S'bJJ S E
P -, —a S J~ -
E—a7 2 “ 1 _Fe 5w =
2 >/ B ®EF o= 3B3—8
«

5 Jrow (8 RE— B3 SWEE
w8 se—— 8 AT
% x5 i {
(a) NMOS Design

[y
$i
S |
U L]

i PR
3 o BR=
112 o & R
T - (&] Q
§}§ o 3 f% 2

- d
i3 %{ I =R
re N — 2 O
13 ©
o SN %j
[o~ L] o o~
] }9:' <
ihy TR N S
}}o o olfy o -
fhe § o To & 3
st T & }3 d
I ..| « 3
o o 13 &
2 2 e
~ ~ 8] :0){ . N
#ﬁ& 3 o 2 -
® o - +
o™ |
i - u: ST
. S 2 2 0—1
I 7 o Nl
3'}3 o }"-’; o %
el 3 a{ s £
L1 - - 18 T 8
o 8
z g & 7 :
aho o orl 8
13 o« 8, © Hf% ~ 3{°
s, € 08 &l g e
m
I }e T 28
£¢

(b) CMOS Design

Figure 5: SAT Designs of Input-Level-2

B8ai3

16big 16ble

in the development of complex integrated systems. We
are continuing our investigations into influencing de-
composition with physical constraints (including area
and performance), automatic placement and intercon-
nection of modules implemented using SAT, and in-
tegration of SAT with other tile-based, circuit-design
methodologies such as PPL.

References

(1]

2]

(3]

(4]

[}

(7}

(8

()

J. E. Robertson, “A Theory of Decomposition of
Structures for Binary Addition and Subtraction”,
Tech. Report UIUCDCS-R-81-1004, Univ. of Ill. at
Urbana-Champaign, Jan. 1983.

J. E. Robertson, “A Systematic Approach to the
Design of Structures for Arithmetic”, Proceedings
of the 5t Symp. on Compuler Arithmelic, May
1981, pp. 35-41.

K. F. Smith, T. M. Carter, and C. E. Hunt, “Struc-
tured Logic Design of Integrated Circuits Using
the Stored Logic Array,” IEEE Trans. on Electron
Dev., Vol. ED-29, No. 4, Apr. 1982, pp. 765-776.

T. M. Carter, Structured Arithmetic Tiling of Inte-
grated Circuits, Ph.D. Diss., Univ. of Utah, Dept.
of Computer Science, Dec. 1983.

C. Y. F. Chow, A Variable Precision Processor
Module, Ph.D. Diss.,, Univ. of Ill. at Urbana-
Champaign, Dept. of Comp. Science, July 1980.

J. E. Robertson, “Design of the Combinational
Logic for a Radix-16 Digit-Slice for a Variable Pre-
cision Processor Module”, Proceedings of ICCD
1983, Nov. 1983, pp. 696-699.

T. M. Carter and L. A. Hollaar “The Implemen-
tation of a Radix-16 Digit-Slice Using a Cellular
VLSI Technique”, Proceedings of ICCD 1983, Nov.
1983, pp. 688-691.

P. D. Israelsen and K. F. Smith, “Comparison
of the Path Programmable Logic Design Method-
ology with Other Custom and Semicustom Ap-
proaches”, Proceedings of ICCD 1985, Oct. 1985,
pp. 73-76.

R. M. Neff, INSTED: An Integrated Structured
Tiling Editor, M.S. Thesis, Univ. of Utah, Dept.
of Comp. Science, Aug. 1986.

