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Abstract

Arithmetic isues in the calculation of the Singular
Value Decomposition (SVD) are discussed. Traditional algo-
rithms using hardware division and square root are replaced
with the special purpose CORDIC algorithms for computing
vector rotations and inverse tangents. The CORDIC 2 X 2 SVD
processor can be twice as fast as one assembled from tradi-
tional hardware units. A prototype VI.SI implementation of
2 CORDIC SVD processor array is planned for use in real-time
signal processing applications.

1. Introduction

Recent advances in parallel architectures and VLSI have
encouraged the use of special-purpose arithmetic techniques
for the implementation of computationally complex
scientific algorithms. The Singular Value Decomposition
(SVD) is an important algorithm for image processing [1] and
is especially weli-suited for analyzing data matrices from
sensor arrays {2]

Traditional SVD algorithms for us: on uniprocessor sys-
tems rely heavily upon costly division and square root opera-
tions to compute the required rotation parameters. Special
purpose parallel architectures and numerical algorithms can
increase the efficiency of the SVD by more effectively map-
ping the algorithm to hardware [3, 4]

The systolic array structure of Frent, Luk, and Van
Loan [5] uses an expandable square array of simple 2 x 2
processors to compute the SVD of a large matrix. In this
paper, a novel architecture for a CORDIC 2 X 2 processor is
presented. In addition, a new scheme which simplifies
CORDIC scale factor correction for the two-sided vector rota-
tion is introduced. The reduction in the area and time com-
plexity of the SVD processor through the use of the coordi-
nate rotation algorithms (CORDIC) is also analyzed. The
replacement of explicit multiplication, division, and square
root units by CORDIC modules produces a processor that is
twice as fast and also allows for a regular structure suitable
for VLSI implementation.

2. SVD - Jacobi Method

The singular value decomposition of a P X p matrix
M is given by
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where U and V' are orthogonal matrices and I is a diagonal
matrix of singular values.

The Jacobi method seeks to systematically reduce the
off-diagonal elements to zero. This is done by applying a
sequence of plane rotations to M which transforms M into
L. Several sweeps over the entire matrix M may be neces-
sary to complete the SVD. Within each sweep, the matrix
elements need to be paired and appropriate rotations need to
be calculated. The p X p matrix is distributed over an array

of .g. x % simple 2 X 2 processors where the basic

operation is the two-sided rotation of each 2 X 2 matrix.

2.1. Basic Methods for a 2 X 2 Matrix

A 2 X 2 SVD can be described as
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where 6, and 6, are the left and right rotation angles,
respectively. The rotation matrix is

cos 0 sin @
RO®=|_ 9 cose" @
and the input matrix is
a b
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The efficient computation of the rotation parameters is
essential. Several methods are possible to solve this problem.
The two-step method first applies Oy, = (6, — 6.) to sym-
metrize M and then utilizes 6. to diagonalizea M. The
direct two angle method [5] calculates 8, and 6, by comput-
Ing the inverse tangents of the data elements of M. Given
M as defined in (4), 657, and OprrF are

Osure = (6,46,)= tan™! ‘Ciis , &)
rrr = 0. — §)= tan™ : :l; . ©

The two angles, 6, and 6, can be separated from the sum
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and difference results and applied to the two-sided rotation
module as in (2) to diagonalize M .

In a typical serial computer, the calculation of the rota-
tion angles for the SVD is expensive and can be avoided by
finding the sines and cosines directly. Matrix-vector multi-
plication can then be used to apply the rotations to the 2 X 2
submatrix. However, these operations still involve costly
multiplication, division, and square root.

With the CORDIC algorithms, the inverse tangent func-
tion is a primitive operation and the angles can be found
explicitly, without penalty. If CORDIC processors are used,
then the rotation parameters can be calculated from the
inverse tangents of the elements of M. Also, vector rota-
tions are primitive CORDIC operations and can replace tradi-
tional matrix-vector multiplication. The diagonalization of
M can be performed by treating M as a pair of vectors and
using the rotation angles to transform M . The computation
of these vector rotations and inverse tangents can be per-
formed efficiently by the CORDIC algorithms. Thus, a general
algorithm for a 2 X 2 CORDIC SVD processor would be:

Algorithm corbic SVD () :
begin
Use CORDIC angle-solver module to
find rotation angles;
Use CORDIC rotation module to
transform the 2 X 2 matrix;
end.

3. CORDIC Algorithms

The Coordinate Rotation Digital Computer algorithms
(comrpic) were first presented in 1959 by J. Volder [6]
Further theoretical work was done by J. Walther [7] in
1971 to show the applicability of CORDIC to various tran-
scendental and hyperbolic functions. The CORDIC algorithms
allow fast iterative hard ware calculation of sin, cos, arctan,
sinh, cosh, arctanh, product, quotient, and square root.

Recently, there has been renewed interest in the use of
CORDIC algorithms for real-time signal processing [8), pri-
marily due to the possibility of VLSI implementation [9).
The applicability of CORDIC to the basic operations in the
SVD will be presented along with the limitations of the
algorithm. The CORDIC SVD processor described here may be
used as a math co-processor or within a special purpose sys-
tolic array.

3.1. CORDIC Recurrence Equations

The CORDIC algorithms are based upon defining a vector
{xq yo) in the 2-plane, and then applying a rotational
transformation. That is, the vector (x.y,) is rotated
through an angle 6, in the clockwise direction, to (x4, y4) .
The CORDIC equations describe a rotation in one of three
modes: circular, linear, or hyperbolic. For the SVD, the rota-
tions are in the circular mode and the equations are;
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The CORDIC algorithms decompose the rotation -angle
into a sequence of n known smaller angles, such that

n—1
6= 6,6 ---x0,_,= 33586, 8
i=0

where 91 >0 and 8§, = t 1. From the geometry of rota-
tions, it is clear that the result of n rotations using the
sequence of 6;’s is equivalent to that of one rotation using 6.
The number of known angles in the sequence determines the
accuracy of the CORDIC algorithms. In order to achieve n bits
of accuracy, at least n rotations must be performed.

From the rotation equations, the recurrence equations
describing these rotations can be found. If the recurrence
equations are divided by cos §;, then

Xit+1

= i__= x, + Siyltanet ’ C)]
Yiv1 _ — &, x tan 0
= ) =y 1 % ) - o)

The key contribution of Volder [6] and Walther [7] was
to set tan 6, = B~ where B is the machine radix. In most
applications, binary arithmetic is used, so 8= 2, and there-
fore multiplication by tan 6, becomes a simple arithmetic
shift operation. For example, when { = O, then 2% = 1 and
§, = tan"}(27) = 45" Again, for i = 1, §, = 26.7". Obvi-
ously, as i increases, 6, decreases toward O.

3.2. CORDIC Scale Factor Correction

The CORDIC formulation is not yet complete since the
vector is not only rotated but also scaled at each iteration.
This scaling is only by a constant, and can be factored from
the recurrence equations. If k, = cosf),, then the CORDIC
equations are:

xp1=k (x, + §y,27), (11

Vis1=k (y = 8x271). (12)

If the multiplication by %k, is postponed unti! after the com-
pletion of n iterations, then the scale factor, K., can be
defined as:

n—1 n-—-l1 1

n—l1
K, = TIlk = Jlcost, = TI . (13)
B=r: i=0 i=o Vit 22
The final CORDIC iteration equations which are to be imple-
mented in hardware are:

X =% + 8y, 27, (14)

Vo1 =y = dx 2. (15)
The desired final values of the CORDIC operation, x Fingt @nd

Y finar» 8re Dot readily obtained by these equations. Instead,

after after n iterations the values
x
_ *rfinal _ Yrna
xn - K » yn - Kn ’ (16)

n n

are determined. As a last step, a scale factor correction needs
to be performed to yield
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where the scale factor correction constant is X sFc S CK,.
The constant C is either 1 or a power of the machine radix,
B, so that it can be easily cleared by a simple shift to yield
X fingr a0d Y gy .

For the SVD processor, a CORDIC scale factor correction
is required after the two-sided vector rotation. While a sin-
gle CORDIC vector rotation module re quires correction by
K, , a twosided vector rotation module requires correction
by X n2. The time complexity of the existing schemes will be
described and a novel method which offers a factor of two
speedup for the two-sided vector rotation will be presented.

The most direct scheme involves a multiplication by
K, using the CORDIC hardware in the linear mode [71 This
scheme has been dismissed as too costly since it may require
n shifts and n additions. However, since X n is a hardware
constant, its binary representation can be used to determine
which shifts and additions truly need to be performed. If
the CORDIC processor is modified to perform special iterations
for both the x and y variables of the form

XTex+ 2%, (18)

then selected multiples of x, and y, are accumulated. The
index j is used instead of i to distinguish the scale factor
correction iterations from the normal CORDIC iterations. The
total scale factor correction constant is

Kspe= L 2/ =K, . (19)
j€r
If n = 32 bits, then set J has 18 elements and J = {1,4,
5,7,8,10, 11,12,14,17, 18, 19, 21,22, 24, 25, 27,29}.  After
approximately n /2 special iterations, the scale factor would
then be corrected and the final values determined.

Haviland and Tuszynski [9] proposed a method
whereby the special scale factor correction iterations,

X e—x—-2"0x, ¢.0)]

are performed for both the x and y variables This scheme
also causes a multiplication of x, and y, by K rc and pro-
duces x 4,y and y 4, as in (17). The scale factor correc-
tion constant will be

II GQ-270)=g (21)
jeJ
where j €J and J = {2,34,7,8, 10,12, 14, 16, 19, 20,
22,23,24,25,31}. Note that there are 16 elements in this
set or approximately n/2, and that the reduction in extra
iterations is slight compared to direct multiplication.

Ahmed [8] seeks to make the constant, C, a power of
the machine radix by repeating certain full CORDIC itera-
tions. A final shift will then clear the remaining scale con-
stant. This scheme operates differently from the previous
methods since it relies on using extra CORDIC rotation itera-
Uons instead of special multiplicative scaling iterations.
Recall from (9) and (10) that at each CORDIC rotation itera-
tion, x; and y; will increase by (cos 8; Tlork j_l. There-
fore, these extra iterations will produce a correction constant

Kspe =
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where C = 2 and the set J contains 28 elements or almost
n. When K¢ is applied to x,, then

Ksrc =

X finat ~
2 Kspe ™ 2% pia s (23
n

Xn KSFC =

and x £,.,; can be found by a simple shift since the machine
radix is chosen to be 2. As an extra benefit, this method
extends the domain of convergence of the CORDIC algorithm.
However, all CORDIC operations for the SVD can be made to
fall within the basic CORDIC domain of convergence. There-
fore, the time penalty caused by almost n extra iterations
does not make Ahmed’s method attractive for the SVD.

Delosme [10] combines the methods of Ahmed and
Haviland and Tuszynski by repeating both CORDIC rotation
iterations and special scale iterations and produces a low
overhead scale factor correction scheme for a single CORDIC
operation. When n = 32, this scheme requires 7 extra
CORDIC rotation iterations, and 2 special scale iterations or a
total of about n /4. The variables x,, and y, are again mul-
tiplied by (cos 6 ;5 )™! when CORDIC iterations are applied and

(1 £277) when special scale factor iterations are applied.
The scale factor constant,

Kspe = (1-2790+279

1
I o
i %0 (24)

= 2K

n!

where J = {0,1,3,5,6,8 14} and C = 2, also requires a
final shift to yield x £, and y s, as in (23).

Each of the above schemes requires numerical methods
to determine the appropriate sequence for a particular word
length. The number of iterations is chosen to reduce the
approximation error to less than 27". Unfortunately, these
schemes lack a systematic approach, and are difficult to
extend to the two-sided rotation required by the SVD. A
novel method is now presented for the two-sided rotation.

In the SVD processor, one CORDIC scale factor correction
can be performed for the complete two-sided vector rotation
instead of for each single vector rotation. Thus, the scale fac-
tor will be the square of the single rotation factor. From
(13),

n -1 1
K2= , (25)
T T+ 27E)

and the novel observation is made that each term resembles
the special scale factor iterations shown in (20). If the
CORDIC processor performns special iterations of the form

X —x—2"2iy (26)

similar to those of Haviland and Tuszynski, then the scale
factor correction constant will be

Kge= II G-27)=~2k2, @n

j €J
where C =2 and J = {1,3,5, -+, (2[n/4]-1)} for
n > 0. The scale factor is removed as in (17) and a final
shift will cancel the above factor of 2. A total of only
Y 4] extra iterations for the complete two-sided rotation

~2K,, (22)




are required since many terms cancel when the products are
formed. The systematic calculation of the scale factor
correction sequence for any value of n is also possible. This
new method greatly improves the performance of the two-
sided rotation module and results in a factor of two speedup
over two applications of Delosme’s single rotation method.

3.3. CORDIC Operation Modes

The CORDIC algorithms can be generalized to provide
the calculation of several functions. In order to facilitate
these operations, a third equation is added to the two rota-
tion equations to accumulate the choice of angle used at each
iteration:

Zip1 =2 + 8,6, . (28)

The variable, z;, contains the total rotation angle applied, 6,
is the current rotation angle increment, and §, = % 1.
Through the appropriate selection of each 8,, either the ini-
tial z, value can be reduced to zero (z -reduction) or the ini-
tial y, value can be reduced to zero (y -reduction).

3.3.1. Inverse Tangent

In the circular mode, the y-reduction will yield the
quantity tan"*(y o/ x 4). This can be shown as follows. Con-
sider the CORDIC equations:

x, = K, (xy+ yotant), (29)
Yo = K,(yg— x5tan ), (30)
z, = zg+ 6. 3n

If, after n iterations, y, =0, and if 2z5=0, then
tan 6 = (y,/ x) and

Yo
X

z = tan™!

n

(32)

Note that the scale factor X, cancels from the calculation.

3.3.2. Vector Rotation

In the circular mode, the z-reduction will yield a vec-
tor rotation or the sine and cosine of the original angle.
Again consider the CORDIC equations. If, after n iterations,
z, = 0, then the angle 6= z, and

x, = K, (xo+ yotan(z ), (33

. Yo = Kn (y 0o— X otan(z 0)) . (34)

This represents rotating (x o, y o) by the angle z,. The appli-
cation of vector rotations is an important step in the SVD.
Note, however, that the scale factor X, does remain in this
calculation.

3.4. Convergence Issues

Walther [7] has shown that the domain of convergence

of the CORDIC algorithms is limited by the sum of the series
of the n known rotation angles. Therefore, since 6, > 0, the

maximum angular rotation, &, is given by

n—l1
= X6. (35)
1=0
If a non-repetitive sequence of angles ( = 0,::+,n—1) is

used for the circular mode, then oy = 99°. Once the angle o
satisfies lor| > o, the CORDIC algorithms no longer converge.
The result remains the same as that for sign(a) ag.

The CORDIC convergence properties are related to the
behavior of the tangent function. For any i = 0,---,n—1,
it is required that

n—l1
- XL 6, <6,,. (36
A=1+1
In the circular mode, the inverse tangent function is used
and this relation holds since

tan™1 (27) < 2tan~!(2~¢+ Dy, €7))

A new extension to the inverse tangent algorithm is
proposed here to enable the CORDIC processor to determine
the principal value of the inverse tangent function. In the
SVD algorithm, it is desirable to limit rotations to *90°
based upon (5) and (6). However, the CORDIC processor con-
siders the entire unit circle in computing the inverse
tangent, although circular mode convergence is limited to
only +99°. Therefore x, and y, values with vector
representations in the second and third quadrants are
transformed into the fourth and first quadrants, respec-
tively. In this method, an initial test is performed to check
the signs of x, and y, If both x, and y, are negative
(third quadrant), then the signs of both x, and y, are
changed in order to move the angle into the first quadrant.
Similarly, if x is negative and y is positive (second qua-
drant), then the signs of both x, and y, are changed in
order to move the angle into the fourth quadrant. These
modifications to the CORDIC algorithm allow the computation
of the tan™'(y o/ x) for all x4 and y, except xo = yo = O.
This property makes the CORDIC module an excellent choice
for finding the rotation parameters for the SVD.

3.5. Area and Time Complexity of a Basic CORDIC Pro-
cessor

The VLSI model of computation concerns both the area
and the time needed to perform an operation. The best VLSI
architecture for the solution of a given problem has the least
area and time [111 The area, Aggyp, and time, Tagyps
complexity of the proposed CORDIC SVD architectures will
be compared and presented in terms of the area, Ac, and
time, T, complexity of a basic fully parallel CORDIC proces-
SOT.

The area complexity of an n bit CORDIC processor
which performs n iterations can be determined from the
fully parallel CORDIC processor design [8] shown in Figure 1.
The main substructures will be a programmable logic array
(PLA) for finite state control, a ROM for storage of the
angles used by the CORDIC algorithm, and hardware for the
x,y, and z variables, such as barrel shifters (SH), adders




(ADD), and registers (REG). Therefore, the total area of a
CORDIC processor, Ag, is

Ac = Appa+ Apopg +2Ag,

(38)
+ 3AA1)D + 31‘!KREG .

For a fixed-point implementation, the largest area in this
design will be used by the barrel shifters which have been
selected to multiply by 2~ in the least amount of time.
Since a constant time shift is desired, the area complexity of
an n-bit barrel shifter will be O(12), Although other
schemes exist which require less area, a constant time shift
would no longer be possible [11]. Therefore, the area oom-
plexity of an entire CORDIC module will be

Ac 245y = 0(n?), (39)
The internal structure of a parallel fixed point CORDIC

processor is based upon the form of a CORDIC rotation equa-
tion:

X; « x; + 8, SHIFT(y,). (40)
Therefore, the time for one CORDIC iteration, Tey,is
Teo = Tapp + Ty + Tp 40

where T4 pp, Tsy, Tp are, respectively, the time for addi-
tion, shifting, and the sign test that determines 5, =1
The total time for a complete CORDIC operation, 7, is

Tc = n(TADD + TSH EE TST ) » (42)

where n is the number of bits in the operands. For example,
the time to compute an inverse tangent, Taran 8Tc.

The relative complexity of the primitive operations can
be compared by making the following assumptions. First, if
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Figure 1. Parallel fixed-point CORDIC PToCessor.

o

TI'_

a barrel shifter design is used for the shifter implementation,
then all distance shifts occur in equal time, and the approxi-
mation can be made that T, << T App- In a two’s com-
plement fixed-point implementation, the sign test will deter-
mine whether addition or subtraction is to be performed,
and Tgp << T App- From these assumptions, the limiting
factor in a CORDIC SVD processor is the time needed to per-
form an addition, T app- The time for a CORDIC operation
depends linearly on the number of bits in the operands and

Te ®Tuppn = 0 ppn). (43)

If vector rotation is to be performed, then additional
scale factor correction iterations need to be performed. For a
one-sided vector rotation, an additional CORDIC scale factor
correction time, T'spc = 1/ 4T, is required using Delosme’s
method (10} For the two-sided rotation, the method intro-
duced here can be used and the scale factor correction time is
Tsrc = 1/8T¢ per rotation. Therefore the total time for a
CORDIC two-sided rotation, 7'y _, is

TT—S = 2(TC + TSFC)

=207 + %.Tc) =227, . W

4. CORDIC SVD Processor Architecture

Four. novel CORDIC architectures have been developed which
perform variations on this algorithm with different time and
area costs [121 A computer simulation has been done to ver-
ify the analysis of the methods. The first method, the Sym-
metrization Diagonalization Method, computes 6sya and 6,
and requires execution time Tesvp = 4T and  area
Acsvp = 3Ac. This can be reduced in the Approximation
method to time Toqy ), = 37 and area Acsvp = 3A.
The Semi-Parallel Method maintains the same time
Tesvp = 3Tc  but requires an increase in area to

*=—1 corpic M Shift
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b Module zel‘ 0
¢ 6SUM ! r
d
CORDIC
a > Rotation » \Vl
b —p| Module b
with 2
¢ = Scale —» supd
Factor
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t
AR !
c ——’ - .
d eDIFF [, 261 Shift

Figure 2. corbic SVD parallel diagonalization method.




4.1. Parallel Diagonalization Method.

The fourth method, the Parallel Diagonalization
Method [12] which is based upon determining 6g,,, and
GD srr directly, results in a reduction in the time and area
necessary for the 2X 2 processor. In this architecture,
shown in Figure 2, the calculation of f¢y,, is replaced by
the calculation of O,rr. Additionally, the entire sym-
metrization rotation is eliminated. These modifications allow
the area of the processor to be reduced while preserving the
time needed for computation. The algorithm can be sum-
marized as follows:

Algorithm CORDIC SVD Parallel ) :
begin
parallel do {6+c,c-~b,d—a,d+a};
parallel do begin
Find 6g;,, = (6,+6,.)
Find Op;cp = (9,— 6,
end;
parallel do Separate 9, 6,
Apply 6, 0, using CORDIC two-sided
rotation module;
end.

The time complexity of the complete CORDIC 2 X 2
"SVD processor cah be determined from the longest path. Ini-
tially, the sums afid differences of the matrix elements of M
need to be determined. These four additions can be done in
parallel. Therefore, the preprocess- time is TPRE = TADD

The dngles GSUM and 901 pp are computed in parallel
in Tyray = Te= napp + Tgq + Tgp) by two
CORDIC modules. The separation of § and 6. can be com-
puted in parallel using an adder followed by a. shifter,
Tsgp = (Tgpp + Tsy ) Finally, the two-sided CORDIC
rotation with the new scale factor corres tion method can. be
performed in Ty _g = 2.25T. The total time for a CORDIC
2X 28VD, Teeyp, is

Tesvp = Tpre+TarantTspp+Tr—s . (45
This expression can be dimplified to yield:
Tesvp = 325n T ppp+Tspy+Tsp)
~ 3-25TC = O(TAL)A!D n-) .

. The area requifed. by this architecture is approximately
twice that of a single CORDIC processor. The calculation of
05y pm and 8 pp uses two CORDIC modules, Also, these two
modules can perform the additions and shifts that are
required to prepare §, and 6, . Finally, these modules will be
available and can be reconfigured to compute the diagonali-

zation and scale factor correction of the 2 X 2 submatrix.
Therefore, this architecture requires an area

Acsvp = 2A¢ . 4n

S. Comparison with Traditional Arithmetic Tech-
niques

The SVD can also be computed using traditional multi-
plication, division, and square root. An algorithm to calculate
the rotation parameters is given in Brent, Luk, and Van Loan
[5]. This algorithm produces the sine and cosine pairs for the
diagonalization. An analysis of this algorithm shows that
the execution time, T'7¢g, is

Tres = ST app + 4T pypr + 3T pry + 2T sppr + (48)
a.nd the area, ATCS y is

Arcs = 4A pp H4ANMy LT+ Apry + Asgrr »+ (49)
if the maximum amount of parallelism is exploited.

A two-sided multiplication then follows to diagonalize
the matrix. With parallel hardware, this can be done in
time, TTT - equal to

Trr—s = 2T 017+ 2T app » (50
with area, Ary_g, equal to
ATT - = SAMULT +4AADD . (51)

The total execution time for a 2 X 2 SVD on "traditional”
hardware, T'rgyp, is

Trsyvp = TTapp+6T My 7+ 3T pry + 2T sogr - (52)

The total area required to support the parallelism In the
matrix multiplication, Aygyp, I8

Arsvp = 4App+B8Apy T+ Apry + Asgrr - (53)

i

5.1. Division, Square Root, and Multiplication Algo-
rithms

In order to oompzfré the area and time complexity ‘of the
traditxonal hardware with the CORDIC hmdware, the tradi-

are discussed.

- The non—restormg di¥ision afgorlthm [13] is an iterative
tzchmque that is similar to the CORDIC algorithm. For an n -
bit result, a.totdl of n addxtloﬂs/subtractxons and shifts must
be performed. .Thus, .the time! for division is
Tprv = nTapp-

A similar algorithm exxsts for the computation of
square roots [14] The basic algorithm requires two additions
and a shift at each of n iterations. However, if a hardware
enhancement is performed, this result can be reduced to a
single addition and shift at each iteration [15]1 Therefore the
time for square root is Tsgor = nT4pp .

For multiplication, the most basic "pencil and paper”
approach requires n shifts and n additions. With special
purpose multiplication arrays, such as Wallace trees, com-
posed of carry-save adders, fewer than n additions are per-
formed. The total multiplication time can be reduced to the
time for one full n-bit addition plus
F = (logyn —1)/ (log,3 —1) full-adder time steps [13]
However, 0(n?) full-adder cells are required for the Wal-

lace tree multiplier.




5.2. Area and Time Comparisons

A comparison can be made betwsen the CORDIC archi-
tectures and traditional high-speed arithmetic techniques.
The total time for the traditioral hardware can be related to
the number of n-bit additiors as in the CORDIC analysis.

Thus, the total traditional time for a2xX 2SVD is
(log,n —1)
T = 7T + + g
TSVD appt6]1 7log3 =10 7 ADD

+3nT spp+2nT 4pr (54)

= onT 4

for n ¥ 32. The speedup factor, sp, can be defined as the
ratio of the traditional 2 X 2 SVD time to the CORDIC 2 X 2
SVD time and is:

Trsvp o nTapp
Tesyp  325nT,

Thus, a CorpIC 2 X 2 SVD processor is approximately twice
as fast as one built from traditional ligh speed arithmetic
units,

The total traditional SVD area, Arsyp is determined
by the O(n?) full-adder cells needec. for the high-speed
Wallace multiplication tree. Therefore, the area of the
CORDIC SVD processor and the area of a traditional arith-
metic SVD processor are of the same order. The true area
benefit of the CORDIC architecture is the regular design
which eases VLSI implementation.

sp = =2. (55)

6. CORDIC SVD Diagonalization Module

In a prototype system, the CORDIC Parallel Diagonaliza-
tion Method would be used since the least time and area are
needed and the structure is regular. The basic floor-plan of a
VLSI implementation is shown in Figure 3. Three major sec-
tions are visible: two CORDIC processors, and an interconnec-
tion network.

6.1. Module Organization

The CORDIC processors are based upon the design shown
in Figure 1. The intra-module interconriection network will
allow the same chip to function as both an angle solver and
a rotation module, and will permit flexibility in designing,
constructing, and reconfiguring a large array.

Finite state control for the interconnection network and
for the SVD algorithm will be provided by a PLA. The
array will be connected in a mesh configuration [5). Each
module will possess the necessary control for systolic /0. A
basic layout for an SVD array composed. of CORDIC modules
is given in Figure 4.

6.2. Internal Data Representation

In a fixed-point implementation, the number of bits in
the internal data representation must be chosen to prevent
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Figure 3. CORDIC SVD diagonalization module.

loss of significance due to rounding and overflow. In a proto-
type implementation, all quantities will be considered to be
fractions.

In order to determine the number of bits necessary to
prevent overflow, the following analysis is presented. The
internal registers in an SVD processor must be able to store
the largest calculated singular value. Therefore, worst-case
bounds on the largest singular value of the input matrix are
necessary.

If the entire p X p matrix, M, is divided by the larg-
est value, m, ;» then all of the elements of M will be frac-
tions. In the worst case, all elements of M will remain
equal to unity, and rank (M )= 1. From the Frobenius
norm, the singular values can be determined since

IMIZ = of+of+ -+ +02= p2. (56)
Since rank (M)=1, the singular values are
0= " =0,=0 and o= p. In order to prevent

overflow, log,p extra bits will be needed to store the largest
singular value in both CORDIC and traditional hardware
implementations.

The CORDIC algorithms internally consist of a sequence
of shifts and additions. In order to prevent round-off errors
from contaminating the final result, at least logyn additional
low-order bits are necessary for intermediate values [7. In
traditional hardware implementations, the internal data
paths of multiplication, division, and square root units use
2n bits for the storage of internal intermediate values. The
internal intraprocessor data path should contain NV int Dits, to
preserve n bits of significance. For a fixed-point CORDIC
implementation, N, . will be

Niw=n+ logyn + logyp . 57

However, the external interprocessor data path will only
need to contain N ., = n + log,p bits to prevent overflow.

In order to reduce the execution time, attention must be
paid to addition techniques, since each CORDIC processor will
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Figure 4. CORDIC SVD array architecture.

perform O(n) additions for each 2 X 2 diagonalization.
Several alternative addition algorithms can be utilized
including ripple-carry, carry look-ahead, signed-digit [16]
and on-line addition [17} Efficient methods for addition
which ensure that the time for addition, T,p5, can be
minimized will be important for system implementation.
Additionally, the CORDIC data paths could be modified to
provide for a floating-point representation. Finally, methods
for fault detection and reconfiguration will become impor-
tant for large arrays of processors. All of these factors will
have an effect upon the integration density achievable in
VLSIL

7. Summary

The SVD is a computationally complex algorithm that
can benefit from special purpose arithmetic algorithms. The
CORDIC algorithms have been shown to efficiently produce a
2 X 2 8VD processor architecture which can be implemented
in VLSL The CORDIC processor has been enhanced through
improvements in the scale factor correction scheme for the
two-sided vector rotation. The novel architecture of the
CORDIC Parallel Diagonalization Method, which has been
presented, has area, Aggyp = 24¢, and  time,
Tegyp = 325T, where Ag and T are the area and time
for one CORDIC operation, respectively. The structure is sim-
ple and more regular than a design using standard multipli-
cation, division, and square root cells and results in a factor
of two speedup. A VLSI implementation of this architecture
is planned as part of a prototype system.
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