Parallel Multipliers Based on
Horizontal Compressors

Luigi Ciminiera

Dipartimento di Automatica e Informatica
Politecnico di Torino
corso Duca degli Abruzzi, 24
10129 Torino, Italy

ABSTRACT

Two new implementations of parallel multipliers, based on itera-
tive arrays of logic cells are presented in this paper. Both are able
to compute the product of two n bit numbers with a delay of n
cells, rather 2n-1 as in classical structures. The high speed opera-
tion is obtained by using pure horizontal compressors, to accelerate
the horizontal signal propagation, and by adopting a suitable array
structure, to shorten the vertical signal propagation. The cost and
performance advantages over similar structures based on vertical
compressors are discussed.

1 Introduction

The algorithms and the implementations for digital multipliers have
been one of the most important research topics in the field of com-
puter arithmetic in the last thirty years; the reason for the spe-
cial attention paid for multiplication is that this operation plays an
important role in almost all the arithmetic algorithms in different
scientific and engineering fields. In particular, signal and image pro-
cessing and algorithms of linear algebra all require the computation
of a lot of multiplications.

Different types of multipliers have been presented in the literature;
a possible classification may be based on whether the operands are
input into the arithmetic unit in parallel or in bit-serial form. Three
types of multipliers are obtained with this classification: fully serial
multipliers, receiving both operands in serial form [1)-[4]., serial-
parallel multipliers, where one operand is input in serial form and
the other in parallel {5]-[6], and parallel multiptiers, where both
operands are input in parallel form.

The latter class provides the fastest and most expensive solutions,
and it is the class of interest in this paper. Parallel multipliers are
composed by two distinct parts: an array of n2 AND gates generat-
ing the elementary products and a circuit to add all these bits. The
differences between the solutions presented in the literature are in
the latter part of the multiplier.

Multipliers with irregular structures have been presented in [7]-[9];
they are aimed at minimizing the number of active circuits required
for the implementation. Multipliers based on a regular array of iden-
tical cells have been introduced in [10}-[12]; full-adders are used as
cells and the whole multiplier requires O n2) cells, rather than
O (nlog n) cells used by irregular structures, however the iterative
interconnection pattern makes them better suited for VLSI imple-
mentation.

The delay of a multiplier is due to the time required to propagate
partial results both through the different weigths (carry propaga-

CH2419-0/87/0000/0063%01.00 © 1987 IEEE

63

tion) and through the different circuits processing bits of the same
weight. Owing to the usual representation adopted for the multi-
pliers, the first type of propagation will be referred to as horizontal,
and the second as vertical.

Attempts to reduce the overall multiplier delay have often been
based on the use of basic arithmetic circuits able to add at once
several bits arranged on different weights, and with more than one
bit per weight; if such cells can be implemented with a delay close
to the that of a full-adder, then the horizontal propagation delay is
divided by the number of weights processed and the vertical prop-
agation delay is divided by the number of bits per weight (approx-
imately}. These cells, called parallel counters have been proposed
to be used in both iterative and non-iterative multipliers {14}-[19).
Though several parallel counters, with different distributions of the
input bits, have been proposed, in general, the vertical compression
has always been privileged over the horizontal one; in a recent paper

{14], an iterative multiplier based on (5.3) counter, performing only
vertical compression, has been presented.

This paper argues that parallel counters performing horizontal com-
pression (with minimal vertical compression) can be used to build
iterative arrays, with cost and performance characteristics better
than their counterparts based on counters performing vertical com-
pression (with minimal horizontal compression). In order to support
this thesis, two arrays achieving a delay of n cells for a nxn bit multi-
plier are shown; both use horizontal compressors in order to shorten
the horizontal delay, while only a minimal vertical compression is
performed within each cell (the vertical propagation delay is de-
creased by using a suitable interconnection structure of the array).
The construction rule of the array, leading to a short vertical delay,
can be applied recursively several times, so that other multiplying
structures may be obtained, requiring even bigger horizontal com-
pressors in order to maintain the speed advantages achieved by the
array structure for the vertical delay.

The paper is organized as follows. In section 2, the basic cells con-
sidered are introduced, the construction rule allowing to shorten the
vertical propagation delay is derived and the first type of multiplier,
based on a single type of cell is presented. In section 3, a second
array based on classical full-adders and an addition circuit is pre-
sented. In section 4, the cost and performance characteristics of the
proposed iterative multipliers are compared with those of classical
and recent similar multiplying arrays; furthermore, the effect of the
introduction of larger horizontal compressors is discussed.

2 Horizontal compressor array

The term horizontal compressor is used in this paper to indicate an

arithmetic function able to add up several bits of different weight,
with only few bits for each weight. If this function is implemented
using a fast circuit, then it is possible to use them in order to shorten
the horizontal carry propagation in arithmetic arrays.

A pure horizontal compressor is represented by an m-bit full-adder
(mFA), that is an arithmetic function able to add two m-bit numbers
and a carry-in bit, producing the result on m bits and a carry-out.

In formulas, the mFA can be expressed as follows, where the inputs
are shown on the right hand and the outputs on the left:

m-1 m-1 .
cout2™+ D 52 =3 (aj +b;) 2 + ¢, (1)
i=0 i=0

It is possible to see that the mFA is the horizantal counterpart of
the p inputs- q outputs parallel counter, since the inputs of the
latter are arranged to add the maximum number of bits per weight,
with the minimal number of weights (only 1); viceversa, the inputs
of an mFA are arranged to cover the maximum number of weights,
with the minimum number of bits per weight to be added.

In the following, the attention will be focused on 2FA units. The
rationale behind this choice is that VLS| technology does not allow
the implementation of complex functions with the same speed as
simple ones, even if an expensive implementation is used. This
characteristic seems to be even more valid for (iaAs technology, as
noted in [20]. However, the use of horizontal cormpressor larger than
2FA will be also briefly discussed in this paper.

Go,2

Qo3 Qi1
0

Before illustrating a quasi iterative multiplying array based on 2FA,
it is necessary to set a little bit of terminology that will be used
throughout the paper.

Given two binary numbers expressed in the following form:

n-1) n-1 .
A=>"a2 B=Y b2 (2)
i=0 1=0
their product P is given by the following expression:
n-1 .on-1 . n-1n-1 .. 2n-1 .
AxB = Z ai2' * Z ijJ = Z Z qi“jzlﬂ = Z pi2| (3)
i=0 =0 =0 =0 i=0

where % = aibj.

Horizontal compression allows the fast propagation of the partial
results only along one dimension (horizontal) of a multiplying array:
hence a careful design of the array structure should be found, which
shortens the vertical propagation (i.e. propagation on the same
weight) through the cells.

To achieve this goal, the following transformation is applied to (3):

n-1n-1 . on-1i-1 .
AxB=3" 3 q;2H+ 3 5 g2 (4)
i':O J:I 5:0 Ji:O

The parallel multiplier implementation presented is based on equa-
tion (4). Hence, the array is constituted by two halves, each imple-
menting one of the nx(n/2) bit multiplications in (4), plus a final

Fig. 1. 8x8 bit unsigned multiplier based on 2FAs.

64

horizontal adder for summing the results produced by the other two
sub-arrays. Each nx(n/2) bit multiplier can be implemented so that
its vertical propagation delay is roughly equal to n/2, and the final
adder can also have a delay of n/2 cells, since 2FA are used that
haif the number of adder cells; it turns out that it is possible with
this implementation to obtain an overall delay of roughly n cells for
an nxn bit multiplier.

The structure of a whole 8x8 bit multiplier is shown in Fig. 1; it
is possible to recognize the final adder implemented by the central
row of the array. The two nx(n/2) multipliers are placed on the
two opposite sides of the final adder; it is possible to note that the
one below the central row is just a specular replication of the other
with a shift of one position right. The same scheme as in Fig. 1is
valid for values of n being an integer multiple of 4 {or n/2 even),
the structure for n/2 odd can be obtained by flipping the structure
of the array in Fig. 1.

Only 2FA cells are used, except for the extra circuit required to
add the least significant bit produced by the lower multiplier and
the corresponding bit produced by the upper multiplier; in this case,
only an half-adder is required, which is shown in Fig. 1 by separating
the carry (1 AND gate) and the sum generation circuits (1 EX-OR
gate).

The overall delay of a multiplier is n times the delay of a 2FA,
assuming that the delay of an AND gate is shorter than that of a
2FA. A whole nxn multiplier can be built using (n2/2) — 1 2FAs
and 1 half-adder.

The array of Fig. 1 is for unsigned operands, but its extension to

2's complement numbers is straightforward. According to [12] and
[13], the product of a pair of 2's complement numbers is given by:

n-2 . n-2 .
AxB=—ay 12" 14 N a0 _p a1y Y b2t =
=0 i=0

n-2
= (3,71by 1 + 3)220°24 3o, Bnti-1y
i=0
n-2n-2

n-2 Lo
2 baox@2™ L 3TN aibi2H 4 (ag_g +byg) 271 (5)
i=0 i=0 i=0

Hence the same transformation used to obtain (4) may also be
applied to (5), leading to :

n-1n-1 .. n-li-1 L.
_ Iy ‘ ! it
AxB=37 % g2+ 3" 3 qf 2y
i=0 _|=l i:Oj:O
(ap_1 + bn_1) (22"_2 + 2n—l) (6)
where
a'b_j fi=n—landj<n-1
ab fi<n—landj=n-1
G= { T oot o
aiby fi=n-landj=n-1
a; bj otherwise

n-1
n-1

Fig. 2. 8x8 bit 2's complement multiplier based on 2FAs.

In this case, the two nx (n/2) bit multipliers have a slightly different
distribution of elementary partial products to be added; neverthless,
their structure is still the same as shown in Fig. 2 for an 8x8 bit
multiplier. The additional half-adder shown in Fig. 2, in the form
of separated sum and carry functions, is required for the addition
of the term (a,_; + bn-1) an-1

The delay of the array for signed multiplication is increased by only
the delay of a single exclusive-or gate, respect to the multiplier
for unsigned numbers. The cost is increased only by 1 half-adder,
respect to the multiplier of Fig. 1.

3 Second multiplying array

The multiplier presented in section 2 achieves its high speed, by us-
ing two different techniques to speed up the vertical and horizontal
propagation of the partial results. Horizontal propagation is accel-
erated by the particular cell used, because it is able to produce only
one output carry 2 positions left of the input one, thus, if the 2FA is
implemented with the same delay as the 1FA, the carry propagation
speed is doubled compared to classical multipliers [11]-[12].
Viceversa, the vertical propagation of partial results does not depend
directly on the cell used, because it is achieved by halving the whole
multiplier and allowing the two parts tc work in parallel, finally the
two results are added by a fast adder circuit. It is important to note
that the vertical propagation delay of each half multiplier in Fig. 2
is equal to roughly n/2 cells; the same delay could be achieved
implementing the two nx (n/2) bit multipliers with 1FA.

The multiplying array presented in this section is based on the same
rationale introduced in section 2. However, in this case, the use of
2FA will be limted only to the implementation of the final adder,
required to sum the results produced by the two halves of the mul-
tiplier, because cells implementing a fast horizontal propagation for
the final addition cannot be avoided, if a fast array is needed. The
remainder of the array will be implemented by using 1FAs; since
most of the array complexity is due to the implementation of the
two nx(n/2) bit multipliers, the overall complexity of this second
array will be smaller than for the multiplier presented in section 2,
while retaining the same speed characteristics.

Though based on the same principle, this new array differs from
the first one in the method used to implement the two halves of
the whole array, In the multiplying structure presented in section 2,
the two nx(n/2) bit multipliers are implemented using a ripple carry
structure [21], since the fast horizontal propagation, guaranteed by
the 2FAs, allows us to achieve an horizontal delay of n — 1 cells,
no larger than the propagation delay of the final adder. If 1FAs
are used, the ripple carry structure would lead to a delay of 2n — 1
cells; hence, a carry save technique is adopted to implement the
two nx(n/2) bit multipliers.

It turns out that the final adder has an increased complexity, because
it should sum now the outputs of two pure carry save multipliers; in
other words, the final addition involves 4 numbers (2 for each carty
save multiplier) rather than only 2, as in the multiplier in section 2.
The general structure of the resulting array is shown in Fig. 3, for
n=38.

The final adder is implemented by 3 rows of 2FAs, organized as a
small tree of ripple carry adders used to reduce the four numbers
to only one. However, other solutions are possible for the final
addition; one of them consists in the implementation of a cell able
to perform the foliowing arithmetic operation at once:

3 4 4
2os?=2) %+ Yy (8)
=0

i=0 =0

66

Using the cells defined by the equation (8), the final adder can
be implemented as shown in Fig. 4. the structure of this second
version of the array is closer to the structure of the array in Fig. 2.
In the first version of the multiplier presented in this section, the
delay of the arrays is equal to n times the single cell delay while in
the second the delay is only n-1 times the cell delay.

The complexity of the two versions are different, because of the
different solutions adopted for the final adder: both versions require

(n - 3)2 — 1 1FAs to implement the two nx(n/2) bit multipliers.
The array of Fig. 3 includes 3n — § 2FAs, while the array in Fig. 4
needs n — 1 cells for the final addition.

4 Discussion

This section is devoted to the evaluation of costs and performances
of the solutions presented in the paper; furthermore the figures
obtained for the proposed solution will be compared with those
obtained for other parallel multipliers presented in the literature.
One of the problems in the assessment of costs and performances
for arithmetic units is to establish the method to compute the com-
plexity and delay of a given solution, in a general way. One method
used in [9]-[14] is based on the assumption that the array cells
are implemented by table look-up or ROM circuits: even when this
assumption does not hold, this method is supposed to give the rel-
ative complexity of different arithmetic circuits. Using this method,
the complexity of a given arithmetic unit is measured by the total
number of ROM bits required to implement the unit.

Assuming a ROM implementation of the cells, it is possible to obtain
the formulas, shown in Table l, for the complexity, and in Table ||
for the speed of the solutions presented in the previous sections (1st
and 2nd multiplier), the carry-save array [11] and the two parallef
multipliers presented in [14], one based on full adders and with
a large final addition circuit , (6.3.4)-counter multiplier, the other
based on (5,3) counters; for all the arrays considered, the complexity
is evaluated in terms of ROM bits for implementing the cells plus
the number of gates required to implement the extra logic.

The speed is computed in terms of cells and gate delays, because
ROM-based implementation of cells leads to a delay independent
of the cell size; however, both the multiplier in [14] based on (5,3)
counters, and the multiplier presented in section 2 employ additional
circuits. It is possible to merge the AND gates with the cell receiving
their outputs, but this would increase by one the inputs, doubling
the number of ROM bits.

The formulas in Table | and Table {| show that the classical carry-
save array is the simplest, but the slowest solution, among those
considered. Viceversa, the 1st multiplier, presented in section 2, is
faster and more expensive; furthermore, the cost is slightly lower
than for the array based on (5.3) counters, and the delay is im-
proved, because only 1 external AND gate, rather than n-1, con-
tributes to the overall delay. On the other hand, the multiplier of
section 2 is more expensive than both the solutions presented in
section 3 and the multiplier based on (6,3.4)-counters presented in
{14]; the reason for the lower cost is that the latter arrays use cells
bigger than 1FA only for the final adder, with only a relatively small
increase in the overal complexity, though the array is no longer
uniform, since both 1FAs and addition cells are used.

The cheapest array, except for the carry-save, is represented by
the 2nd multiplier with final adder implemented using 2FAs, while
the most expensive is the second version of the array presented
in section 3, with the final adder implemented with bigger cells;
anyway, the difference in cost is not large, because they differ aimost

PN by %4 c
% %) n
' 6.0 o Q S
Qe 4,2 0
: ‘ sz out 1
Q
| \ @ ‘0 2F A "i&g -
‘ 2.0
q c s
q ‘ q 6.1 out
‘ 3 s,s 714G 29,5 4<<0n-1
6.5 qzeq 0 n-1].F A
Y6 A 0N 74 A *?
66 © Q¢ 73940

Fi) .
1g. 3. 8x8 bit 2's complemnent multiplier based on 1FAs and 2FAs

UPPER MULTIPLIER

LOWER MULTIPLIER

pann-l

Fig. 4. it 2
ig Structure of the 8x8 bit 2's complement multiplier based on 1FAs and cells defined in eq. (8).

67

Table |

Cost breakdown for nxn bit 2's complement multipliers

~Multiplier ROM bits L EX-OR gates | AND gates | OR gates
carry-save 16n2 — 16n 0 0 0
(5,3) counters [14] 48n? n—-1 n—-1 1
(6.3,4) counters [14] 16n° +1968n — 1952 0o 0 0
1st multiplier (48n2/2 - 96) 2 2 0
2nd multiplier (Fig. 3) | 16 (n — 3)2 ~16+48(3n - 5) 2 2 0
2nd multiplier (Fig. 4) | 16(n — 3)2 — 16 -+ 4096(n — 1) 2 2 0
Table 1l
. ... Delay breakdown for nxn bit 2's complement ‘multipliers
... Multiplier | Cells | EX-OR gates | AND gates | OR gates
carry-save 2n — 2 0 0 0
(5.3) counters [14] n 0 n-1 1
(6.3,4) counters [14] n 0 0 0
1st multiplier n 1 0 0
2nd multiplier (Fig. 3) n 1 0 0
2nd multiplier (Fig. 4) | n ~1 1 0 0

only in the implementation of the final adder. However, it should
be considered that the solution with the final adder implemented by
2FAs can be easily implemented with other techniques than table
look-up, and with a short delay; while it is unlikely that complex
arithmetic functions, such as that performed by the (6,3,4) cells in
[14] or the cells of equation (8), would be implemented in VLS!
with the same delay as a 1FA; hence the 1st multiplier and the
first versiond of the 2nd multiplier are better suited for a fast VLS|
implementation using random logic.

Only 2FAs have been considered so far.as hcrizontal compressors;
however, it is possible to extend the array construction given in
section 2 to generic nFAs. The introduction of these new blocks is
strictly connected with the possibility to use the equation (6) more
than once during the multiplier definition; in other words, since
the multipliers of section 2 and section 3 are implemented by two
smaller multipliers and a final adder, it is possible to apply the same
splitting procedure further on, until the size of the basic multipliers
used reaches a given value.

Since each splitting of the multiplying array, as shown for the whole
multiplier, leads to half the vertical propagation delay, the split
implementation of the two halves of the whole multiplier will lead to
a vertical propagation delay of n/4. However, if only 2FAs are used,
the final addition could never be performed faster than for the arrays
in sections 2 and 3, resulting in an overall delay close to 3n/4; the
reason is that only vertical propagation delay has been improved.
a delay of nearly n/2 should be achieved, it is necessary that bigger
horizontal compressors would be used; in particular, 4FAs should
be introduced in order to speed up the final additions. It turns
out that the implementation of faster multiplying circuits using this
approach requires even bigger horizontal compressors.

5 Conclusion

This paper has presented several implementations of fast parallel
multipliers; all the solutions have the distinctive feature that the
speed increase is obtained by using only horizontal compression,
which allows to obtain a fast horizontal propagation of the partial
results.

Since the horizontal propagation is accelerated by using horizon-
tal compression, the structure of the array is designed to decrease
the vertical propagation delay, since both strongly affect the overall

performances. Hence the vertical delay is improved by implement-
ing an nxn bit muitiplier by adding the results of two nx(n/2) bit
multipliers.

Two types of multiplying arrays are obtained using this technique,
both with a delay of roughly n cells. The implementation of the
first solution requires only 2FAs and a little extra logic arranged
according to a regular structure. For the second, two versions have
been shown: the first is based on 1FAs and 2FAs and achieves a
delay of n cells with a low cost, while the second has almost the
same delay, a larger cost, but a more regular structure.

ft has also been shown that the solutions presented compare favor-
ably with similar multipliers presented in the literature, since they
achieve better performances at lower costs: furthermore, since two
of the arrays presented are based on simple arithmetic functions,
they can be easily used to implement VSLI multipliers.

References

[1} E.E. Swartzlander Jr., "The quasi-serial multiplier”, |EEE
Trans. on Computers, vol. C-22, n. 4, Apr. 1973, pp. 317-321.

[2] I..N. Chen and R. Willoner, "An O(n) parallel multiplier with
bit sequential input and output”, IEEE Trans. on Computers,
vol. C-28, n. 10, Oct. 1979, pp.721-727.

[3] NR Strader and V.T. Rhyne, "A canonical bit sequential mul-
tiplier”, IEEE Trans. on Computers, vol. C-31, n. 8, Aug. 1982,
pp. 791-795.

[4] R Gnanasekaran, "On a bit-serial input bit-serial output mul-
tiplier”, IEEE Trans. on Computers, vol. C-32, n. 9, Sep. 1983,
pp. 878-880.

[5] L. Dadda nad D. Ferrari, " Digital multipliers a unified ap-

proach”, Alta Frequenza, vol. 37, n. 11, Nov. 1968, pp. 1079-
1089.

(6]

7]

(8]

9]

[10]

[11]

(12]

[13]

R. Gnanasekaran, "A fast serail-parallel binary multiplier”,

IEEE Trans. on Computers, vol. C-34, n. 8, Aug. 1985, pp.741-
744.

C.S. Wallace, "A suggetsion for a fast multiplier”, IEEE Trans.
on Electronic Computers, vol. EC-13, n. 1, Feb. 1964, pp. 14-
17.

L. Dadda, "Some schemes for parallel multipliers”, Alta Fre-
quenza, vol. 8, n. 5, May 1965, pp. 349-356. Reprinted in:
Bencjmark papers in Computer Arithmetic (E.E. Swartzlander
Jr. ed.), Dowden-Hutchinson, 1980.

W.J. Stenzel, W.J. Kubitz and G.H. Garcia, A compact high-
speed parallel muitiplication scheme”, IEEE Trans. on Com-
puters, vol. C-26, n.10, Oct. 1977, pp. 948-957.

S. Bandyopadhay, S. Basu and A.K. Choudhury, " An iterative
array for multiplication of signed binary numbers”, IEEE Trans.
on Computers, vol. C-21, n. 8, Aug. 1972, pp. 921-922.

K. Hwang, "Global and modular two’s complement multipli-
ers”. IEEE Trans. on Computers, vol. C-28, n. 4, Apr. 1979,
pp. 300-306.

C.R. Baugh and B.A. Wooley, "A two’s complement parallel
array multiplication algorithm”, IEEE Trans. on Computers,
vol. C-22, n. 12, Dec. 1973.

P.E. Blankeship, " Comments on 'A two's complement parallel
array multiplication algorithm”, IEEE Trans. on Computers,
vol C-23, n. 12, Dec. 1974, pag. 1327.

69

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21)

S. Nakamura, "Algorithms for iterative array multiplication”
IEEE Trans. on Computers, vol. C-35, n. 8, Aug. 1986, pp.713-
719.

A.R. Meo, "Arithmetic networks and their minimization using
a new line of elementary units”, IEEE Trans. on Computers,
vol. C-24, n. 3, Mar. 1975, pp. 281-190.

D.D. Gaijski, " Parallel compressors”, IEEE trans. on Comput-
ers, vol. C-29, n. 5, May 1980, pp. 393-398.

E.E. Swartzlander Jr., "Parallel counters”, IEEE Trans. on
Computers, vol. C-22, n. 11, Nov. 1973, pp. 1021-1024.

L. Dadda, "Composite parallel counters’, IEEE Trans. on
Computers, vol. C-29, n.10, Oct. 1980, pp.942-946.

L. Ciminiera and A. Serra, " Fast iterative multiplying arrays”,
Proc. 6th Sym. on Computer Arithmetic, Aarhus (Denmark),
Jun. 1983, pp. 60-66.

V. Milutinovic, D. Fura and W. Helbig, " An introduction to
GaAs microprocessor architecture for VLSI”, Computer, vol.
18, n. 3, Mar. 1986, pp. 30-42.

H.H. Guild, "Fully iterative fast array for binary multiplication
and fast addition”, Electronics Letters, vol. 5, May 1969, pag.
263.

