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ABSTRACT

This paper presents a new algorithmic
approach to cope with the problems related
to the generation and the manipulation of
the pseudo-Hensel~codes in the p-adic
arithmetic.

After reviewing some classical properties
and the results of the Hensel code
arithmetic, a new algorithm to manipulate
pseudo-Hensel-codes is presented,
discussed and compared with two existing
methods. The lower cost of the proposed
new algorithm will result from the
comparison.

1. INTRODUCTION

of exact raticnal number
has received a wide attention
years. Several successful
approaches have been followed with
relevant results [GRE80, H&H79, HOR77,
KOM81, K&M81, MAT75].

One of the most significant techniques
that has been applied is based on the p-
adic construction proposed by Hensel
[BACG4, KOB77, MAH73] and on the
consequent use of the truncated
representation known as Hensel~-code
arithmetic [GRE80, G&K84, MIO83, MIO84].
In this arithmetic each rational number is

The problem
arithmetic
from many

represented by its p-adic form, with
respect to a given prime p, using only a
fixed number r of its p-adic digits. The

set of Hensel-codes, for given p and r, is
referred as H(p,r).

Any problem involving rational number
computations can be approached by using
this Hensel-code arithmetic, according to

the following classical schema:

a) convert the rationals, which represent
the input in the given problem,into the
corresponding Hensel-codes (i.e. go from Q
to H(prr) );

b) perform the requested computations

using Hensel codes arithmetic {i.e.
operate in H(p,r));
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c) convert back the result from the
Hensel-code representation to the usual
rational representation (i.e. go back from
H(p,r) to Q).

Since H(p,r) is a finite set,
is an infinite one, some obvious problems
could rise during the execution of step
(c). However it has been shown that there
exists a biunivocal corrispondence between
a proper subset of H(p,r) and a subset of
Q, namely the set of the Farey's fractions
F , the fractions which have their
N(r)

numerator and denominator limited by an
integer N(r) depending on p and .
According to this result when the inputs
to a computation belong to F , 1if the

N(r)

image of the result in H(p,r) exists in
F » then such image is the exact result
N(r)

over the rationals [G&K84].

A problem still open is related to the
manipulation of the so called pseudo-~
Hensel-codes. These codes are those which,
being generated during a computation in
H(p,r}), for instance during an addition of
Hensel-codes, suffer from a lack of
normalization, (i.e. having leading zeroes

whereas Q

in their sequence of p-adic digits). The
possible ways to attach this problem are
either to normalize to non-zeroes leading

digits, by shifting the given code and
proceeding with a smaller number of digits
(i.e. the computation proceeds in H(p,s)
with s < r), or te restore non-zeroes
leading digits by shifting the given code
and filling the code up to the r-th
position by new significant digits.

The latter of these approaches, followed
by Gregory and Krishnamurthy {G&K84],
presents some errors and certainly fails
in effective calculations, as shown in
[DIT85].

The former approach, presented by
Dittenberger in his thesis [DIT85], gives
a complete solution to the problem, but it
generates high computational complexity in
those cases when the number of non-zeroes
digits tends to reduce to zero and the
entire computation is restarted from the

-




very beginning in H(p,2r), (i.e. with a
number of digits double than r).
A new approach is proposed in this paper

to
real

and it will be shown to be preferable
the previous ones in many practical
situations.

2. APPROXIMATE P-ADIC ARITHMETIC:
OPERATING WITH HENSEL-CODES.

In the Hensel-code
rational number c/d,
expressed by its
namely the triple:

(1)

arithmetic, each
with gecd(e,d)=1, is
Hensel-code [GRES8Q],

(a,p,r)
where:

P e N is a prime, r € N, r>0,
a = (mant,exp),

with:
mant = .a )

r-1

(.@aa .....
01

ae2, ats#0;
i p 0
exp € 2, defined as:
- if ged(e,p) = ged(d,p) =1 then:
-1 r
mant = (c(d mod p))mod p
exp = 0;

= if gcd(c,p)#1 or ged(d,p)#1 then:

e
e/d = (¢'/d') p ,

-1 r
mant = (¢'(d' mod p))mod p

exp = e.

Then the Hensel-codes are actually
normalized Hensel-codes.The set H(p,r)
actually refers to the set of normalized
Hensel-codes.

Computations with rational numbers can be
performed applying the method proposed by
Gregory and Krishnamurty [G&K84] with the
following sequence of steps:

a) map the rationals from Q to H(p,r)
(direct mapping};

b) perform computations in H(p,r);

¢} map the results
(inverse mapping).

from H(p,r) to @

It 1is relevant to note the fact that the
direct mapping always produces an unique
image from Q to H(p,r), while the inverse
mapping could produce more than an image
from H(p,r) to Q, this being essentially
due to the different structures of Q and
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cof H(p,r).
However, it has been shown that
considering the set of Farey's fractions
F , which consists of all the
N(r)
rationals c/d with:
c < N(r), 4d < N(r)
where
r
N(r) < (p - 1)/2
there exists a biunivocal corrispondence
between F and a proper subset of

N(r)
H(p,r) [G&K84].
Under the hypothesis that the final result
of the calculation belongs to F , the

N{(r)
Hensel-code arithmetic guarantees the
exactness of the results even if during
the calculation some overflow occurs (i.e.
when intermediate elements belong to F
N(s)

with s>r are generated) [GRES80].

Because of that, when the inputs to a

computation belong to F ,1f the images
N(r)

of the results obtained in H(p,r) exist in

F ,then such

N(r)

results over the rationals.

images are the exact

3. OPERATING WITH PSEUDO-HENSEL-CODES.

Let us now discuss the problem of the
generation and the manipulation of the so
called pseudo-Hensel-codes.

When adding two elements of H(p,r) the
result could happen to be in the following
form:

w=(.0...0¢c ...c ,eXp).
k r-1
This code 1is called pseudo-Hensel-code

and, because of its lack of normalization,

it should be normalized before proceeding
with further computations.

The problem related to the treatement
of pseudo Hensel~codes has already
received two solutions by Gregory and
Krishnamurty [G&K84] and by Dittenberger
(DIT85].

Given the problem of executing a set
of arithmetic operations over a set
(s ;,e¢evev..,8 ) of rationals numbers, let

1 n
us now describe, more formally, the




algorithms proposed by
Krishnamurty (Algorithm
Dittenberger (Algorithm D).
Let Dir(t,r), for = €& Q, and Inv(a,r), for
a € H(p,r), denote respectively the direct
and the inverse mappings. The Algorithm GK
operates in the following way: delete all
of the k leading zerces of the given
pseudo-Hensel-code obtaining a Hensel-code
of size r-k, apply the inverse mapping and
then the direct mapping, obtaining a
Hensel code of size r.

Gregory and
GK) and by

Algorithm GK:

1. dir(s ,r) =---> o , for i=1,...,n;
i i
2. perform a computation between Hensel-
codes;

3. if during the computation in step 2 a
pseudo Hensel-code
u=(.0...0 ¢ ...

4 r-1
has been generated, then perform
step 4, else perform step 5;

,exp), k>0,

4. (normalization step)

(.c ....c ,exXp+k) -=--> §,
k r-1
Inv(6,zr) ---> u,
Dir(u,r) =--»
5. if 4 is the final result then stop,

else continue from step 2.
The algorithm L' simply consists of
deleting all the leading zerces of the
given pseudo-Hensel-code obtaining a
Hensel-code of size r-k. When the size of
the Hensel code becomes no longer
significative, the computation needs to

restart from the very beginning with
Hensel codes of size 2r.
Algorithm D:
1. Dir(s ,r)---> a , for i=1,...,n;
i i
2. perform a computation between Hensel
codes;

3. if during the computation
pseudo Hensel code
u=(0...0c ...c ,exp), k>0,

k r-1
has been generated,then perform step 4,
else perform step 5;

in step 2 a

4. if r-k =0
else let
(.c ....cC
k r-1
5. if 4 1is the final result then
else continue from step 2;

then perform step 6,
r€XPHR) =-=> U
stop,

6. 2r ---> r,
continue from step 1.

It is important to note how the algorithm
GK sometimes fails, as ‘shown by
Dittenberger [DIT85]. An example of such a

failure, proposed by Dittenberger, is the
following.
Let p=5, r=4 be the fixed parameters and

let a = 13/15, b = 13/10 be the inputs to
perform a+b (=13/6).

Because:
(13/15) ~-=-> (.1413,-1) +
(13/10) =--> (.4322,-1) =
(.0340,-1)
the result is a pseudo-Hensel-code (i.e.
a =0).
0
The Algorithm GK at the step 4 furnishes

the following values:

(.340,0) --=> 6
Inv(8,4) ---> 3/11
Dir(3/11,4) ---> (.3403,0).

This result is clearly wrong because the
correct result is 13/6 which corrisponds
to (.3404,0) in H(S5,4).

On the same case study the
furnishes a correct answer, even if this
is correct only in H(5,3). In fact at the
step 4, because k#r (in fact k=1 and r=4),
algorithm D sets (.340,0)--->p then it
continues the computation from step 2.

Let us underline that because of the shift
in the step 4, algorithm D causes a loss
of precision going from H(p,r) to H(p,r-k)
everytime a pseudo-Hensel-code occurs.
Consequently, algorithm D needs to restart
the entire process, as described in step
6, in the following two cases:

algorithm D

a) when a pseudc-Hensel-code is generated
with a number of significative digits less
than a previously fixed value (in the
proposed version of the algorithm D such a
value is specified to be equal to zero, as
in the step 4);

b) when a result in H(p,r-k) is
which has not an image in F

obtained

N(r-k)

4. A NEW ALGORITHM TO NORMALIZE

PSEUDO-HENSEL-CODES .

In order to avoid the loss of precision
induced by the algorithm D, let us present
a new algorithmic solution to the posed
problem. The proposed Algorithm CM is
based on the consideration that a pseudo-
Hensel-code 1is generated by a sum. The
first step consists in mapping both the
operands of the sum over F and then
N(r)
over H(p,r+k). The second step consists in
recomputing the sum over H(p,r+k).
Finally, deleting k leading zeroes we have
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the right Hensel code over H(p,r).

Algorithm CM:

1. Dir(s ,r)---> a , for i=1,...,n;
i i
2. perform a
codes;

computation between Hensel

3. if during the ccmputation in step 2 a
pseudo Hensel code
L= (0...0¢c ...c

K r-1
has been generated, then
step 4, else perform step 7;

,exp), k>0,

perform

4. (note that w=a+B , where a,B e H(p,r))
Inv(a,r) ==->u , :
a
Inv(B,r) ---> u ,

5. (test on the existence of the inverses)

if u and u exist in F R
a g N(r)
then perform step 6,
else stop;
6. Dir{(u ,r+k) ---> o,
a
Dir(u ,r+k) =---> 1,
o+1--->(.0...0 ¢ ...c VAR ,€Xp)
k r-1 r r+k-1
(.Cc ...C M oooold ,eXptK) ===>:u;-
K r-1r r+k-1
7. if u is the final result then stop,

else continue from step 2.

In order to show how the algorithm CM
works, let us apply it to  the
Dittenberger's example: oo
from p=5 and r=4 we have N(4)=17,and the
Algorithm proceed as following:

1. 13/15 -==> a = (.1413,-1)
13/10 ---> B = (.4322,-1)
2. a+f ---> (.0340,-1)
3. a pseudo-Hensel-code has been
generated
4. Inv(a,r) ---> 13/15
Inv(R,r) ---> 13/10 P TH
5. the inverses exist in F ;
17
6. Dir(13/15,r+1) ---> (.14131,-1)
Dir(13/10,r+1) ---> (.43222,-1)
(.0...0 ¢ ...c (VR V) ,eXp) ==~=>
K r-1r r+k-1
----> (.03404,-1)
H ==-=> (.3404,0)
7. stop.
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5. REMARKS AND COMPARATIVE ANALYSIS.

Let us compare now the Dittenberger's
algorithm D with the new CM algorithm.
Such an analysis will also define what
situations provide the best performance
for each algorithm.

Hypotheses.

Given a problem with n values as inputs,
let us assume for the parameters involved
in the analysis the following values:

n:= size of the input;

D(r)=I(r):= cost of Dir(u,r) and Inv(a,r);
the cost of both algorithms is

assumed to be the same, since
they are both essentially
based on the extended

euclidean algorithm [MIO841];

M(r):= cost of an arithmetical operation
between two elements of H(p,r);

m:= number of pseudo Hensel codes
generated during the entire
computation;

q:= number of operations performed
between the generation of two

consecutive pseudo Hensel codes.

Furthmore it is assumed that each pseudo
Hensel code generated has only one leading
digit equal to zero.

Theorem.

Under these hypotheses, if C(A) indicates
the cost of an algorithm A, then:

1) when m < r and the result belongs to
F , it is C(D) < C{CM);
N(r-m)

2) when m < r and the result belongs to
F but it doesn't belong to P ,
N(r) N(r-m)
it is C(CM) < C(D) for every value of n

if g > 2logr;

3) whenm > r, it is C(CM) < C(D) in the
same case as the point 2).

Proof.
Because both the algorithms D

perform the step 1,
considered for the

and CM
its cost won't be
comparison. Furthmore

the cost of shifting and testing
operations won't be considered too.
Case 1), namely m < r and the result

belonging to F .
N(xr-m)

The algorithm D performs q times the step
2 for each of the m pseudo Hensel codes




generated, then the cost of D is:
mgM(x)

The algorithm CM perform q times the step
2 then perform the steps 4,5,6 and repeats
this loop for m times; then the cost of CM
is:

m(gM(r) + 2I(r) + 2D{r) + M(1)).

The assertion follows immediatelly.

Case 2), namely m < r and the result

belonging to F but not to F .
N(r) N(r-m)

The cost of the algorithm D increases with

respect to the case 1) because it must

restart the computation from the beginning

with mantissas of size 2r (step 6).

Then the cost of D is:

mgM(r) + nD(2r) + mgM(2r)
By the assumed hypotheses, the cost of CM
is:

mgM(r) + 4mD(r) + mM(1)
Being in this case the cost of the
Extended Euclidean Algorithm rlogr, CM
will have a lower cost than D when:

mgM(r) + 4dmrlogr + mM(1l) <
< maM(r) + n(2rlog2x) + mgM(2r)

If we assume M(r) be at most r, we have:

m ( 4rlogr - 2qr + 1)

(2) N > —eemecce e e
2rlogr
For m = r it is:
r 1
n > ------- ( 2logr - g ) + ==--mee-
log2r 2log2r

i.e. C(CM) < C(D) when q > 2logr.

Because for m = r the right member of (2)
has an upper limit, the assertion follows.

Case 3. In this case the algorithm D must
restart the computaticn with mantissas of
2r as length, then the same considerations
as in 2) can be develaoped.

It c¢an be remarked that the algorithm M
at the step 6 doesn't need to apply the
direct mapping because it is sufficient to
compute only k more digits for ¢ and <.
It has to be noted, however, that the
algorithm CM needs to perform inverse
mappings for each pseudo Hensel code
generated, and it should be guaranted the
feasibility of such inverse mappings (see
step 5 of algorithm CM).

However, one can obviously think to a sort
of mixed approach: try to apply the <M
algorithm and in case of stop at the step
5, apply the algorithm D.
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