THE FELIN ARITHMETIC COPROCESSOR CHIP

M. Cospard, A. Guyot, B. Hochet, J.-M. Muller, H. Quacuicha, P. Paul and E. Zysman

CNRS, Leb. TIM3, INPG, 46 Av. Félix-Viallet, 38031 Grencble Cedex,

FRANCE.

ABSTRACT

We describe a general VLSI architecture for
the computation of arithmetic expressions
including floating-point trancendental func~
tions. This architecture is divided in three
parts a communication machine, the control
part of a computation machine and the opera-
tive part of this computation machine. 1In
order to compute the most usual trancendental
functions, we introduced some general alge-
rithms, presented briefly here, including as a
particular case the CORDIC scheme. Our major
architecture goals were regularity, parametri-
zation and automatic design. The final chip is
designed in a 2-Alu CMOS techrology, and its
name is FELIN (“"Fonctions ELémentaires INté-
grées is the french for "integrated elementary
functions”).

This work was supported in part by the GRECO 3
and the GCIS of the French CNRS.

INTRODUCTION.

The FELIN chip is composed of two machines : a
communication machine and a computation mach-
ine. The computation machine stores the opera-
tors and the corresponding operands of the
arithmetic expressions to be computed. It then
generates an execution profile, sends an math-
ematical function and its arguments to the
computation machine and stores intermediate
results. The computation machine is divided in
two parts. The control part decomposes the
mathematical function into a secuence of seve-
ral functions of an elementary level, and then
generates the corresponding procedure chain
and for each procedure the asscciated algori~-
thm. The operative part executass the program
generated by the control part.

FELIN contains a directcry of 25 elementary
functions, that includes trigonometric and
hyperbolic sine, cosine and tangent with their
reverse, logarithm and exponential in base 2,
e and 10, square root, x to the power y, and
of course add, substract, multiply, divide,
and remainder as defined by the IEEE standard.
The chip handles single (32b), double (64b)
and extended precision (80b) floating point
numbers. It supports neither in-egers nor de-
cimal. All trancendental instructions are com-
puted with unlimited argument range.

CH2419-0/87/0000/0107$01.00 © 1987 IEEE

107

The circuit is designed for a 2)l gate double
metal CMOS process and packed in a 40 pin dil.
It measures 7.1 x 5.9 mm and contains over
90,000 transistors.

I - Algorithms.

The computation of an elementary function f
needs generally 3 steps. In the first step,
the given argument is reduced to a related ar-
gument in a restricted domain this step is
called the range reduction. In the second
step the function value (or a related one) is
computed for the reduced argument. In the thi-
rd step, the function value for the original
argument is deduced from the result of the
second step.

Example Let us suppose that we want to
compute sin (10000), with an algorithm which
works on the interval [-n/2 , ®/2].

first step. we compute N (integer) and

Y € [-®/2 , ©/2) such that 10000 = N + y.
We obtain N = 3183
Y = 0.3105836...

second step. We compute sin (y) = 0.305614..

third step. we have sin (x)

= - sin (y).

Since N is odd,

Here, we shall present only the algorithms
used to compute functions values for the redu-
ced arguments. For range reduction, FELIN uses
an algorithm introduced in (6], [7].

Some hardware algorithms for computating the
elementary functions have been previously pro-
posed. 300 years ago, Briggs, a contemporary
of Neper, introduced an algorithm for compu-
ting the logarithmic function. In 1959, J.
Volder (8] introduced the CORDIC scheme (COor-
dinate Rotations on a DIgital Computer), which
enables us to compute the trigonometric func-
tions using only additions and shifts. In
1971, J. Walther [9) showed that CORDIC can be
extended to the hyperbolic and arithmetic fun-

ctions. The CORDIC scheme is based upon the
following iteration
X, = x, - md 2n
n+l n n¥Yn
Yn+l = Yo * dpxp2 7"

Zn+1 = 2pn - dpep

Where the choices of m, d, and e, are presen-
ted in figl.

x zx-mdy 2"
f N g

«
K= TC Cose. i
i=0 -1
Vo uh+ ix2
© na
€= 1 cpe M
i=0 i T =z2-4¢
n+l nohn
function initisl values Im | e, d, results
X K - X — c08
sine/cosine I prelg2 7} signz " i
ye 0 | n Y sm‘.o
. n
Arch = seen oy z
4 zo 0 1 iy p Aty sy
** x =K N X —¢h2
sh/ch 0 - 1iArgth2 " sign2 " °
ga- 0 n 4, shzo
4
Argth z°= 0 -1 Signy, [z o ergthy /x
n ¢ 0
N . -0 | s
pultipication | 9= 0 f 0| 270 | SN2) XL
divisi o |of 27
ivision = -31gn p
sio 2, oy, = Uof %

N.B. The symbol *# means that in the iteration and in the infinite product
theterms 4,13, 40, 121, ...,k , 3k+ 1 have to be repested.

Fig. 1 The CORDIC algorithm.

The algorithms of Briggs, Volder and Walther
are particular cases of a cLass of algorithms
which can be build using a new mathematical
tool which generalizes the numeration basis
the discrete basis (5], [6). We shall now
describe briefly this notion.

Tg? 2 following theorems have been proved in

Definition 1 : let B = (e,) be a ‘decreasing
infinite sequence of positive reals such that

29n<+oo
nx=0

B is called a discrete basis of ordexr p if
the set

2 de,, de{o1,...p
n=0
is an interval.

For instance, the sequence (1071) is a dis-
crete basis of order 9 since each number x
included in the interval [0 , 10] can be writ-
ten

-n

x= 2, d,10
n=0

the d; are the digits of the classical radix

10 decomposition of x. This example shows that
the notion of discrete basis generalizes that
of numeration basis.

Theoxem 1. B is a discrete basis if and only
if for any integer n

oo

e, <p. 2 o,

k=n+t

This result shows that, for instance, the se-
quences (a~M), (Arctg (a~™)) and 1ln(l+a™h),
a > 1, are discrete basis of order [a-1], where
[ul is the lowest integer greater or equal than

u. for instance, since the sequence (*™?) is a
discrete basis of order 3, one can write in
"base ®" :

"1/2 = 0.11211202.."
since

1 = I
§=Z d;n' with dy=0,d,=d,=1, ...
n=0

Theorem 2 : if B = (e,) is a discrete basis

of order p, then the two following algorithms
give

t=2de, = limt,
n=0

N —ee

l-unidirectional algorithm.
to =0
dn = max {j S p, ty, + jey St}
th+l = ty + dpey
2-bidirectional algorithm.
tg =0
if ty St
then dy = max {1<jSp , t + (j-l)ey < t})
else dj = min {-p<is-1 , t, + (j+lle, 2 t}
tn+1 = tp + dpey

Example of application computation of

the exponential function.

Let us suppose that we want to compute the ex-
ponential function, with a computing system of
numeration basis B. Since the sequence (ep)=

(In (1 + B™P)) is a discrete basis of order
B-1 , using the unidirectional algorithm, one
can write any number x included in [0,%e,] in

the form

x=2, d In(1+B")
n=0

and obtain
oo

¢ = [T +")™

Nu
This last result is
ce, in a radix-B system,
(1 + B™™) reduces to a shift and an addition.
The infinite sums and product are truncated to
an order N, according to the desired accuracy.
Thus, we obtain the following algorithm :

easily computable sin-
a multiplication by

input the argument t ; output : exp.
en = ln (1+B™7) are precomputed and stored
constants.
Begin
x =0 ;
exp := 1 ;
For k := 0 to N do
begin
d :=0 ;
u =0 ;
while (u<t) and (d<B-l1) do
begin
u = x + eq ;
if u < t then
begin
X (= g ;
exp := exp + exp.B~k
end ;
d:=d + 1
end
end
End.

The relative error on the result exp is appro-
ximately BN,

If we decompose a number x using the discrete

basis of order 1 (Arctg 2") in order to
compute the trigonometric functions of x on a
radix 2 computer, we find the CORDIC algorithm
of Volder (see (6] for instance). Some other
functions (hyperbolic functicns, exponential
and logarithmic functions, square root..) can
be computed using that notion of discrete ba-
sis and a similar notion, defined in (5] :
that of multiplicative discrete basis,
which enables us to write numbers as products
of precomputed constants.

For example, any number x included in a given
interval can be written as

. d:
-G
x=I(1+8%)" deqo,.., B1
i=0
and thus we can obtain the logarithm of x as

-
In(x)=2 din(1+B")
i=0
We use radix 2 to implement these algorithms
on a chip, in order to get reliability with
IEEE flocating-point standards. In [7) we show
that the range reduction can be effected effi-
ciently using an algorithm very similar to the
bidirectional algorithm.

II - The FELIN chip.

The floor plan of the machine is given by
fig. 2.

Pads
1st& 2nd interpretation levels (5000 500)
€xponents
dala path ROM (3800 x§00)
(1700 x §00)
electrical interface (6000 x 1000)
/ 3
RAM 3
2
mantissas data path v
[
‘Ef / (6000 x 2500)
€ Y
0 f
/
/
/
7000 pm
Fig. 2 Floor plan of FELIN

II - 1 Operative part of the computa-~
tional machine,.

For regularity reasons, we use an internal fi-
xed point format of 128 bits, with 22 bits of
integer part and 106 bits of frational part

64 of them will be given after the computa-~
tion. Such a format simplifies the computa-
tion, because it avoids the normalizations
needed by floating point formats. A little 16
bits operative part is associated to it in or-
der to keep and treat the exponents of the
arguments, for some functions. The operative
part owns some registers and a ROM for the
constants of the algorithms, and an adder and
a shifter, supplied by two busses. Both opera-
tors may work independently for simple compu-
tations, which only need addition or shift.
But a third local bus allows pipelining betwe-
en the shifter and the adder, thus performing

efficiently the computation A+3-2‘i, since the
algorithms derived from the discrete basis
theory are all based on this primitive. The
synoptics is given as follows (fig. 3).

H {ROM

WV

Reg.| |ROM

Figure 3

The busses are sequenced in four phases : pre-
charge, read, compute and write. We give in
fig. 4 the sequencing of the computation of
the well-known CORDIC scheme. Hotice that both
main busses are used independently during the
read phase, and are used together to write
back the registers.

CORDIC| Readphase

eycle| x, —otams
1 Xn —BR3

Operation phase Vrite phase

o2 | Xev.2"

2™ —yor2 | Shift (X, n) %}Redztu
Yn —=(=R! -n
cycle E: —porz| OM2" Ya®Xn2

2 1Tn2™)—yR2 | Shift Epp) —’B‘-mmw

In —=3R1 . -h
cgc]e In®En2 n 1 ®En2

TE2™) =782 | Shift Bpupnet) |~ Regiter

@ means ekher+ or- depending onthe sign of Zn

Fig. 4

For topological efficiency, the operative part
is divided in two subparts, each one contain-
ing 64 bits, and communicating through the
shifter. The input/ output access is made with
the Most Significant 64-bits part. The criti-
cal component is the 128 bits adder. A two-
level "carry-skip" speed~-up chain has been
implemented with variable length blocks. Theo-
ritical bases and detailed implementation are
given in [4). The two-level carry skip techni-
que is very efficient for large adders, and
few space-consuming. Electrical simulations
give a computation time less than 30 ns.

Ir - 2
machinae.

Control part of the computing

The implementation of the control part takes
into account the following specifications

The operative part is designed to execute some
elementary functions, derived from the dis-
crete basis theory. The-computation of these
functions also requires some preparing and
formating operations, such as operand transla-
tions, detection of exceptions, ..etc, which
primitives are additions and/or shifts.

For a given kernel of elementary functions
directly executable using our algorithms, we
decided to implement composed functions, which
can be decomposed in elementary functions. For
example :

¥X = exp(X-LogY) is be decomposed in :

computation of LogY

then computation of X-LogY

then exponentiation of the preceding
result.

The algorithms are straightforward decomposed
in three interpretation levels :

1) The first level decomposes the general
function into a sequence of one or several
directly executable functions.

2) The second level will generate a list of
procedure calls (that we shall call "procedure
chain™) in the third level, that includes
range reduction, exceptinns detection,
computation,

3) All the algorithms executed by the
operative part are stored in a ROM that
implements the 34 level.

All the "procedure chains" we must deal with
belong to the same family. Thus, in order to
simplify the interpretation of the functions,
we introduce a high parametrization degree.

Both first levels are implemented in a 6-bits
wide bit-slice machine with 10 registers, in-
crementers and 2 PLAs. The first one selects
some of the registers, the second computes the
parameters and sequences the machine itself
(see fig.5)

11T _TT17

parameters B

[]]]
JITIMYTTTT

—PLA—

1

o — control

o LTI
Level| Iertpllane decoder nght;l)lane
Figure 5

Such a structure is very versatile because its
architecture is totally transparent to any
evolution of the specifications. Registers may
be added or removed and the PLA may be repro-
grammed. On the other hand, the parametri-
zation and the regularity of zhis block make
procedural generation possible.

The third level is implemented in a multi-
plexed ROM. The main advantage of multiplexing
it lies in the fact that each microinstruction
links up with several others. 3o the good one
may be choosen by tests at the latest moment.
Thus feedback loops are of short (1 clock cy-
cle) and the velocity of the algorithms is
enhanced. This architecture is efficient,
because it suits perfectly with the topology
of the whole circuit. Its regularity allows
also an easy procedural generation.

The computing machine of FELIN is able to eva-
luate directly

- addition, substraction, multiplication,
division
- sine, cosine, arctangent

111

- logarithm and exponential functions
= square root

and by decomposition

- arcsin, arcos, tangent
- sh, ch, argsh, argch, th, argth
- y¥ , square

Details of computation and range reduction are
given in [6], and details of implementation
are given in {[3}.

II - 3 The communication machine.

FELIN evaluates expressions in reverse polish
notation. An input file for operands, an out-
put file for results and an evaluation stack
all take place in a 16 words 83 bits double
access RAM. This RAM is adressed through chai-
ning controlled by a specific 4 bits data
path.

In order to increase speed and eliminate ini-
tialisation problems, an hardwired garbage
collector has been designed. Two other files
hold instructions (13 bits) and status
(Sbits) .

CONCLUSION AND PERFORMANCES.

We have build a general class of algorithms
and a general architecture designed in order
to implement them. The basic difference betwe-
en FELIN and other co-processors like the
INTEL 8087 or the MOTOROLA 68881 is FELIN's
ability to evaluate expressions. We are cur-
rently testing a first run of FELIN. Tests and
electrical simulations enable us to give some
approximate performances of FELIN with a
16 MHz clock. In Fig. 6, these performances
are compared with those of two commercially
available arithmetic co-processors, the MOTO-
OLA 68881 and the INTEL 8087.

FELIN [MC68881]| 8087

Multiplication 6pus 3.1ps 18.1us

Division 8.7us 3.8us 25.4us

SinelCosine 14.2us 23us ?

Square root 11.2ps ? 23.3us
Fig. 6

In order to facilitate testing, we chosed to
run separately the different parts of FELIN.
Fig. 7 presents a photomicrograph of the ope-
rative part of the computing machine.

REFERENCES

{1) J.J. Coonen, "An implementation guide to a
proposed standard for floating-point arith-
metic", COMPUTER , Jan. 1980.

[2] M. Cosnard, A. Guyot, B. Hochet, J.M. Mul-
ler, H. Ouaouicha and E. 2Zysman, "FELIN, an
elementary function cruncher", Future trends
on computing , Dec. 85, Edited by J. Wiley &
sons, 1986,

[3] B. Hochet, "Conception de VLSI et applica-
tions au calcul numérique"™, Thése de doctorat,
Institut National Polytechnique de Grenoble,
Grenoble, France, Jan. 1987.

[4] B. Hochet and J.M. Muller, "A way to build
efficient carry-skip adders", RR. No 583,
Institut IMAG, Grenoble, France, 1986,

{51 J.M. Muller, "Discrete basis and computa-
tion of elementary functions" , IEEE Transac-
tions on computers , Sept. 1985.

(6] J.M. Muller, "Méthodologies du calcul des
fonctions élémentaires™ , Thése de doctorat,
Institut National Polytechnique de Grenoble,
Grenoble, France, Sept. 1985.

[7) J.M. Muller, "Hardware computation of

Fig. 7 elementary functions including range reduc-
tion", to appear in IEEE Transactions on
computers.

[8) J. Volder, "The CORDIC computing tech-
nique™, IRE Trans. on Computers , Sept. 1959.

[9] J. Walther, "A unified algorithm for ele-~
mentary functions®, Spring joint computer
~— conference proc. , Vol. 38, Sept. 1971.

