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Abstract

An integrated radix-2 on-line algorithm for comput-
ing rotation factors for matrix transformations is presented.
The inputs and outputs are in parallel form, conventional 2’s
complement, floating-point representation. The exponents are
computed using conventional arithmetic while the
significands are processed using on-line algorithms. The con-
ventional result is obtained by using an on-the-fly conversion
scheme. The rotation factors are computed in 9+n clock cy-
cles for n-bit significands. The clock period is kept small by
the use of carry-save adder schemes. The implementation
and performance of the algorithm are discussed.

1. Introduction

The rotation factors that we propose to compute are
an essential part of matrix triangularization methods
[GOL83] and the QR-decomposition [LUK86]. In particular,
in systolic arrays in which the rotations are done in parallel,
the time of computation of the rotation factors is critical
since it determines the step time of the array. We present an
implementation using on-line arithmetic [ERC84], since this
approach is potentially advantageous in evaluating arithmetic
expressions consisting of sequentially-dependent operations
[ERC81]. The on-line scheme for the computation of rotation
factors was proposed previou sly in [CIM81], where it is
shown that it can produce a significant speed-up with respect
to the use of conventional algorithms. However, the descrip-
tion is given at high-level and using previously developed al-
gorithms for the operations of multiplication, division, and
square root [TRI77, ERC78]. In this paper we develop an in-
tegrated algorithm for the rotation factors, which consists of
modifications of the algorithms of the primitive operations to
provide for suitable interfaces with their predecessors and
successors in the computation. In this way, both the on-line
delay and the complexity of the implementation are reduced.
The clock period is kept low by the use of carry-save adder
techniques and the conversion of the result from redundant to
conventional representation is done using an on-the-fly
scheme [ERC85]. Moreover, the scheme is for floating-point
representations.
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We propose to compute the rotation factors of the

Givens matrix transformation [GOLS83], defined as
—— X _—

= “_—(x2+y2)1"2 (1.1)

and

§= (x2+y2)“2_

We assume that x = fx-2%, y = fy 29 >0 (due to
the characteristics of the transformation  [GOLS3]),
c=fc2* and s =fs2° are normalized floating-point
numbers with n-bit fractions in two’s complement bit-
parallel form. The exponents are represented and processed
in a conventional, bit-parallel manner and on-line representa-

tions and algorithms are used internally to compute the frac-
tions.

The scheme, shown in Figure 1, performs the follow-
ing functions:

1. Alignment of operands x and y
2. Computation of z = x2 + y?
3. Computation of d = z /2
4. Computation of ¢ = x/d and § = ylid
We now describe cach component separately and then

comment on the whole system.

2. Alignment

The alignment of the input operands is performed in
on-line manner during the parallel-to-serial conversion ac-
cording to following algorithm:

Algorithm Align

/* Get exponent difference and set common exponent */
ed =ex —ey; e= max (ex ey);
xo=sign(x); yo=0; /* since y >0 */

/* Delay operand with smaller exponent */
fori =12,...n




{
t,,

if ed > 0 then
{x[ =fxi;
ifi <ed theny; =0;
else y; = fyi_ieq15 )

else
i = fi;
ifi < led! then x; = sign(x);
else X; =fx,~_‘,_,d|; }
end Align

The alignment scheme is shown in Figure 2. The ex-
ponent difference is obtained in one clock cycle. Thereafter,
the bits of the aligned operands are obtained one per cycle.
The on-line delay Paiign = 1.
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Figure 1. General Scheme

3. On-line Sum of Squares Algorithm

In this section we present the algorithm and imple-
mentation for on-line sum of squares to be used in the com-
putation of the rotation factors. The algorithm computes the
fraction and the exponent of the result. The exponent is com-
puted in a conventional, bit-parallel manner (see Section 6).
Consequently, the following discussion deals with the com-
putation of the fraction.

To incorporate a possible on-line delay we compute

2t =27, =2P(x2+y? G.1)
If the on-line forms of x,y, and z* are
XU1=X[j-11+x27, X[0]=-x, 62)

(since x is in 2’s complement)
Y[l=Y[j-11+y;27, Y[0]=0 (since y>0)

Z1=Z[j-11+z;27, Z[0]=0
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Figure 2. Alignment Scheme

then we can define the residual function
wlil=2 @PX[j2+27Y (12 - Z1j)) (33)

From this residual expression we get the recurrence
wlil=2w[j-1]1- z; (35)
+ (X [j-1]x; +xf27)2P
+ QY [-1ly; +y27)27
with the initial condition
w[0] = X [0]? + Y [0]%)27 =x27 3.6)

To keep w(j] bounded we make the selection
zj = integer Qw([j-11) 3.7

which transforms the recurrence into
wljl= fraction 2w{j—-1]) (3.8)
+ (2X [j-11x; +x2)2P

+QY[j-1ly; +yf2)27

Since we want to implement this with a carry-save
adder, the exact integer and fraction parts cannot be deter-
mined (without propagating carries). Consequently, the pre-
vious expressions are transformed into




z; = csint2wlj-1]) (3.9
wljl=csfrac 2w[j-1]) (3.10)
+ (X [j-1]x; +x727)2P

+ QY [j-1ly, +yf27)2P

Since x; =0 and y; = 0 for i >n, we have
wln+l4pl<1
so that
12 +yY) ~Z[n+14p]l <27

The corresponding carry-save operation is shown in
Figure 3. From it we see that the bounds on z; are (for
ixl,lyl<1 and y=0)

—4<z; <10 if p=0 (3.11)

—2<z; <6 if p=1

These values of z j are over-redundant (that is, they
are larger than 1 for a radix-2 representation). We choose
this alternative because it simplifies the selection, reduces the
on-line delay, and is suitable for the interface with the square
root. We choose to implement the case with Pp=1 to minimize
the overall on-line delay.

The algorithm is summarized next:

Algorithm Sum of Squares

/* Initialization */
wl0] & xgx27} 2« 0;
X[0] & —xg; Y[0] « O;

/* Recurrence */
for j=12,...,n+1
{ wlj] & csfract @wlj-1D)
+ (X [j~1x; 27
HY [-14y;27 Yy
Z; & csint Qw[j-1));
X[j] e concat (X [j-1].x;);
Y[j] & concar YLj-11y;) }

end Sum of Squares

The exponent of the result is 2 and the fraction is in
the range 0.25 < 22 <2,

Implementation

The scheme is shown in Figure 4. Note that its imple-
mentation complexity is similar to that of the on-line multi-
plier. The on-line delay is p,, =1. The critical path consists
of two multiplexers, one 4-to-2 carry-save adder, and a 4-bit
CPA. The internal arithmetic is in 2's complement,
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Figure 3. CSA Operation in Sum of Squares
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Figure 4. Sum of Squares Scheme

4. On-Line Square Root

We now describe an on-line square-root algorithm to
interface with the sum of squares and the division, for the
computation of rotation factors. This algorithm allows an
over-redundant input digit set, differing in this respect from
previous on-line square root algorithms [ERC78, OKL82].

Let the on-line forms of the argument z and of the
square root d be
Z[)=Zi-1]+ 227" -b <z <q @.1)

(where, according to the sum of squares implementation,
b=2 and a=6)

Dl1=D[i-11+d;27" d; e {-1,0,1}

To bound the error of the computation we make
D127 +b2P~ <Z[i+p] < (D [iH+27%)2 - g2

where p is the on-line delay to be determined later and, as
indicated, the argument digits satisfy z; € {-b,...,0,....a}.




We can define a residual R {i ] such that

R[[)=2@[i+p)-D[i1> R[0)=D[p] w2
satisfying the bounds C_;[i ] <R[i] < C 1li] where
Colil=(2D[i1+27 +b27P) @3)

Cilil=(@D[i]1+27 —q27P)
The resulting recurrence is
R[1=2R[i-1142;,,,2P - 24;D[i-1] - 422~

A selection function for d; is derived in Appendix A.
Assuming ¢23 fractional bits in the estimate of the remainder
and the on-line delay Psgr =4, we obtain for the selection
constants

k01=1/8 and kT0==—3/8

The corresponding algorithm for on-line square root
is summarized next.

Algorithm Sgrt
/* Initialization */
R[-4] < 0;D[0] « O; dg+—0;
/* Accumulate 4 input digits */
for i=-3,-2,-1,0
{RIi] & 2R[i-11+24,;27%)
/*Recurrence*/
fori=1,2,...,n+4
(R [i)=Rli-1] 424,275 :
1 if B'[i]1> 18

0 if 1/82K"[i]>-3/8
-1 if R [i]<-3/8

d;

RU) & 2R[i-1]+24,;,27* - 24;D [i-1] - d 227,
D[i] & (D[i-1),d;);)

end Sgrt

The result significand is in the range [1/2,212] and
the exponent is e.

Implementation

The square root scheme is shown in Figure 5. The
internal arithmetic is performed in 2’s complement system.
The signed-digit operands are converted to 2’s complement
using the on-the-fly conversion method [ERC85]. To avoid
costly sign-extension to subtract d,-22", we assume a

borrow-save subtractor. The critical path, shown in Figure 6,
consists of a 5-bit CPA, one multiplexer , and a 3-to-2
borrow-save subtractor.
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Figure 5. Square Root Scheme
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Figure 6. Critical Paths (Square Root)

5. On-line Division Algorithm and Implementation

We now present the algorithm for the division opera-
tion. We consider the computation of s (that of ¢ is similar).

To incorporate the necessary on-line delay p we
redefine the division operation as

s =2‘P% ye[12,1) de[122"7 5D
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where s is obtained without delay. The real quotient is ob-

,tained by shifting s by p positions, that is eliminating the
leading 0’s. Consequently, the real quotient is obtained with
an on-line delay of p .

Since we are developing an algorithm that is
specifically suited for the computation of the rotation factors,
we assume that y (the dividend) is known in parallel form
(not on-line), while d is on-line and s is obtained also on-
line (but converted on-the-fly to conventional representa-
tion). This formulation leads to the following recurrence.
Let

Pj1=2 @7y - S[jIxD[j)) 52)
be a partial remainder, satisfying the bound by
IPjII < ID[j
The corresponding recurrence is
Plj1=2P[j-1]1-5[j-11d; - DIjls; 5.4
with
P[0)1=27Py (5.5

To determine the actual bounds on P[] we calculate
the interval [L;,U;] of 2P [j-1] such that sj=k is a valid
choice. From the recurrence we get

Ly —2P —kD[JISPjJk)SU, +2P —kD[f]

since IS[j]l $277.

To keep the remainder bounded we make

L U
c_1=—3— SP[jls 2 =04 (5.6)
Consequently,
U,=2D[j]-27P* 6.7
L_y=-2D[j]+ 277" 59
and
cy=~c_1=c¢=D[j]-27 (5.10)

The quotient selection function, as shown in Appen-
dix B, is suitably defined using an on-line delay p,;, = 3, the
precision of #=2 fractional bits in the estimate of the partial
remainder, and the selection constants 1/8 and -3/8.

The corresponding algorithm is given next.
Algorithm Division

/* Initialization */
P[0] « yx27%; D[0] « 0; S[0] « 0; 54 < O;

/* Recurrence */
for j=1,2,....,n+3:

(Wljl=2P[j-11-S[j-11d;;
/* Note that S[j-1] <2 P =273 %/

WIj1= @P[j-11) - (1-sign (d;)* 27>

-1 W[j1s-38
5; =40 -38<W[j1<1/8
+1 Wijlz 18

D[jl«D[j-1]+d;27;
Pljl1<W[j1-D[jls;;
SL1eS[j-11+s;273)

end Divide
(A )4 means the four most significant bits of A .

Implementation

The implementation is shown in Figure 7. Note that
the additions/subtractions are done using carry-save adders
in 2’s complement system; for this reason, the divisor and
the quotient are converted on-the-fly [ERC85] into conven-
tional form to be used as operands for the additions.

The critical path is shown in Figure 8. We estimate
that its delay corresponds to two multiplexers, one 4-bit CPA
and one CSA.
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Figure 7. Division Scheme

6. Processing of Exponents

The exponents of the result can be obtained directly,
instead of going through the intermediate steps. Since the se-
quence is sum of squares, square root, and division, we get

e =ex —e es=ey—e




where e = max (ex ey ). Therefore, if ed = ex — ey we get

0 if ed=20
€C =ed otherwise

—ed if ed>0
€ =10 otherwise

P[j-1]
(CsA dj

Select sj
L 5i)

2
{-1,0,1)"DIj] ’ '

Siil

Csn)

Plil
Figure 8. Critical Paths (Division)

7. Summary

An integrated scheme for computing rotation factors
using on-line arithmetic algorithms has been presented. The
scheme has the following characteristics:

- The inputs and outputs are in a conventional
floating-point, bit-parallel format, 2’s complement;

- The on-line delay of the scheme, including the on-
the-fly conversion delay p.,,., , is

Drot = Dalign + Dss +psqr + DPdiv + Peony

= 1+1+4+3+1 =10

- The latency is T =p,,, +n —1=9+n for n-bit
significands;

- The cycle time is determined roughly by one carry-
save adder, two multiplexers, and a 5-bit carry-propagate
adder.

- The on-line algorithms operate internally on 2’s
complement representations so that efficient carry-save and
borrow-save structures can be used.
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Appendix A
Selection Function for Square Root

We determine here a selection function for 4; so that
the bounds on the residual R[i] are satisfied. For this, we
compute the intervals [L;,U;] of R[i—1] so that the value
d;=k (k=—1,0,1) can be selected and R[i] is inside the al-
lowed interval of bounds defined by (4.3). The expression
forR[i-1]is

R[i-11=27'R[i1~ 24, 2P 1 + 4, D [i~1] + d?271
The intervals are

For di = l,
Ly=-D[i]+27 +p2P 1=z, 277

+D[i-1]+271
=p2P1_ Ziep !
Uy=D[i]+27% 1 —q2P-1 214277
+D[i-1]+ 271
=2D[i-1]+27* - q2P 1~ g, 2771
Ford; =0,
Lo=-D[1+27 1 +b277 =g 2777
=-Di-1]+27 14+ p2P 7, 277!
Uo=D[i-1]+ 271 - g2 -z, 277"
and for d; = -1,
L_;=-D[i]1+2% 4 p2P1_ 2i4p2P"!
-D[i-1]+ 271
==2D[i-1]+ 27" 4 p2P1 g 2P~
U,=D[]+27 " —q2? -z 2]
-D[i-1]+ 27
=—q2P-1_ Zisp 2-p-1

Since (~z;,,277 ~1) appears in all the expressions, we
will base the selection on

R[i-1]=R[i-1]+2;,,277 (A1)
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Consequently,

L} =b2P"1 (A2
Ui =2D[i-1]+2_;,,—a2P!
Ly =-D[i-1]+27 1 4 p27-1
Ug=D[i-1]1+27"1 - g7
LY =-2D[i-1]+ 27+ 4 p2r-l
Ul =—a2?}
The containment conditions, U, <C,[i-1] and
L_y £C_4[i-1], require that -b <z; <a which is satisfied
by selecting a and b according to (3.11).
The continuity of the selection intervals and the use

of carry-save adders require that the interval overlaps satisfy
the following conditions:

Apy=Ug ~L] (A3)
=D[i-1]+ 21— (a+b)2 P13 2
Ajp=UZ; ~Lg

=D[i-1]-27"1_(@+b)2P 122

where ¢ is the precision of the assimilated remainder.

Since z > 272 (from the sum of squares), the smallest
possible value of d=27!, Therefore, for a=6 and b=2 (as
produced by the sum of squares), we get

Agimin =271 - 427 > 2 (A4

Ajgmin =271 = 27171 _ 4.2 > 2

Since d 2 1/2, the first negative digit cannot happen
for i <3. Therefore, the positive overlaps imply p >4 and 122.

We now determine the selection constants kg, and
k7o, assuming p =4, =6 and b=2. The overlap region for the
selection of 0 or 1 is bounded by

Li(max)=b2P1=2"4 (AS)
Ug(min) =D[i-1]+ 271 - g7
>21-625=5/16
Since the error in the remainder estimate is always
positive (because of the use of carry-save adders and the 2’s

complement representation), we can choose kg = 1/16. For
this choice we require £>2.

The overlap region for choosing between 0 and -1 is
Lo(max)=-D[i-1]+ 271 + p2P- (A6)




$-214 23104 38
UZy (min)=-a2? == _3/16

which leads to choice of k1o =-3/8 with £23, Taking into
account both cases, a suitable chnice is

ko1=1/8 and kyy=-3/8 with r>3 A

Appendix B
Quotient Selection Function

Since we want to perform the additions/subtractions
in carry-save form and the quotient selections using a
limited-precision rernainder (with precision of 27 ), it is
necessary that the selection regions for k and k—1 overlap by
at least 27*. We base the selection on

Wlj1=2P[j-1]1-S(j-11d; =P[j]1+D Uls; @b

The selection interval for 5 Ji =k is

Ak =-=C +kD! SWJ S(3'+ij =Bk 3.2
and the overlap is
A(k,k—l) = Bk—l - Ak (B.3)

=c +(k=-DD[j]+c - kD[j]
=2¢ - D[j]

Replacing the value of ¢, we get

D[j]-27* 22 ®.4)
so that
t1 _ A=t
2P < M__z__ ®5)
2
For D[j]12 172 we get
1_2—1-!-1
2’ — 6)
< n ®.6)
A possible solution to this inequality is
p23 and 22 ®.7)

We now determine suitable selection constants. For
P =3, we have the following intervals:

fors; =-1:[-2D[j]+273 | 23
fors; =0 :[-D[j]+27 , Dj]-27

fors;=1:[23 | 2p[j]-2)

To have a selection that is independent of the value of
D] we look at the values of D [/1 that produce the smallest
intervals. This occurs in all cases for D [/1 = 1/2. The result-
ing intervals are;

forsj =-1:[-7/8 , -1/8)
for $5;=0 :[-3/8 , +3/8)
for s;=1 :[+1/8 , +7/8)

Since in 2’s complement we have

W=W-¢ 1:%5)

with 0 S £ <27, we get as selection constants
fort=2: +1/8 and -3/8

fort=3: +1/4 and -1/4.




