Systolic solution of linear systems over GF(p)
with partial pivoting

Bertrand HOCHET™, Patrice QUINTON** and Yves ROBERTH++

++
+++

Abstract : We propose two systolic architectures for the
Gaussian triangularization and the Gauss-Jordin diagonalization
of large dense nxn matrices over GF(p), where p is a prime
number. The solution of large dense linear systems over GF(p)
is the major computational step in various algorithms issued
from arithmetic number theory and computer algebra. The two
proposed architectures implement the elimination with partial
pivoting, although the operation of the array remains purely
systolic. The last section is devoted to the desizn and layout of a
CMOS 8 by 8 Gauss-Jordan diagonalization systolic chip over
GF(Q2).

1. Introduction

The solution of large dense linear systems of algebraic
equations in finite fields appears to be the computational kernel
of many important algorithms. Let us mention three
representative applications:

« the large integer factoring routines, wher: the final stage
necessitates performing Gaussian elimination on a large dense
matrix over GF(2) ([12] [13] [15]).)

* the factorization of polynomials over GF(p), where p is a
prime number, via Berlekamp's algorithm ([10]). :

+ linear prediction in the analysis of discreie signals ([11]).

In some of these applications, matrices of several
thousands of rows and columns are required, and there are a
large number of matrices to triangularize. Parallel processing
therefore offers an interesting perspective for .such
computations. Indeed, Parkinson and Wunderlich report in [13]
the implementation of Gaussian elimination cver GF(2) on the
ICL DAP (which has 4096 processors), and Pcet [15] considers
the use of special-pupose hardware to factor 140 digit numbers
using the same algorithm.

In this paper, we introduce systolic architectures for the
Gauss triangularization algorithm and the Gauss-Jordan
diagonalization algorithm of general dense matrices over a finite
field GF(p), where p is prime. Systolic arrays for Gaussian
triangularization of dense real matrices are well known (see [1],
[6] among others). However, partial pivoting has never been
implemented in such arrays, due to the fact that the search for a
pivot in a whole row or column would break cown the locality
and the regularity of the systolic design. Hence systolic arrays

for Gaussian elimination over R only apply to symmetric
positive definite or diagonally dominan: matrices. To
triangularize general matrices, one must use an orthogonal

This work has been supported by the Coordinated Research
Program C3 of CNRS and Ministere de la Recherche et de la
Technologie

CH2419-0/87/0000/0161%01.00 © 1987 IEEE

161

+ CNRS, Laboratoire TIM3, BP 68, 38402 St Martin d'Heres Cedex, France
CNRS, IRISA, 35242 Rennes Cedex, France
CNRS, LaboratoireTIM3 and IBM ECSEC, Via Giorgione 159, 00147 Roma, Italy

factorization via Givens rotations (see the systolic
implementations of [1], [4], [6], [17] among others).

In a finite field GF(p), partial pivoting can not be
avoided, since in average every other p element is zero. But it

turns out that it can be solved much more efficently than in R,
since any non-zero element in a given row or column can be
chosen as the pivot. This simple consideration will be very
important in our implementations.

The paper is organized as follows. First we concentrate
on GF(2), and we defer the implementation over GF(p) for any
prime p up to section 4. Section 2 is devoted to the design of a
systolic array for Gaussian elimination over GF(2) of an n by
(n+1) matrix (A,b).

When there are q linear systems Ax; = b; to be solved,

the previous array requires n2/2+qn cells and 3n+q time-steps.
There still remains q triangular systems to solve. Another
srategy is to directly implement the Gauss-Jordan
diagonalization algorithm with partial pivoting. We show in
section 3 that the solution matrix A"1B (where B =(by,b, ...,
bq) can be computed within 4n+q time-steps on a systolic array

of n? cells. In particular, the inverse of A can be computed
within 5n time-steps.

We show in section 4 how to modify the operation of the
elementary processors to deal with an implementation over
GF(p), p prime number. Finally, we detail in section 5 the
layout of a CMOS 8 by 8 Gauss-Jordan diagonalization systolic
chip over GF(2) which has been designed using the system
LUCIE [14] and which has been fabricated through the French
Multi-Project Chip [2].

2. Gaussian elimination over GF(2)

Let A be a dense nxn matrix and b a n-vector. To solve

the system
(1) Ax=b

we transform it into an equivalent triangular system
2)Tx=b'

The transformation of the system (1) into the system (2)
is done by triangularizing the matrix A, using Gaussian
elimination with partial pivoting.

We briefly recall the operation of Gentleman and Kung's
two-dimensional triangular array of orthogonally connected

processors to triangularize a real dense n x (n+1) matrix (A,b)
without pivoting. This array is depicted in figure 1. The total

R

number of cells in the array is n[(n+1)/2+1]. The array is
composed of n rows, each row k including n+2-k Pprocessors
numbered from left to right Py | , ..., Py 1,5 y. The matrix

(A,b) is fed into the array column by column. More specifically,
column j of the matrix is input to processor Py j» one new
element each time-step, beginning at time t=j. This input format
is depicted in figure 1.

n
N F T

44
43 Ay
%2 Bz By Db
‘ir]
1|y}>
i

)
Figure 1 : The systolic array for Gaussian elimination (n=4)

The first row of (A,b) is stored in the upper row of the
array, and, as any row numbered i1 is read by the array, it is
combined with the first one in order to zero out element aj1; this

combination corresponds to a transformation of the form

a,, ... a,b a,.. a,.»b 1

[11 In 1]:=M11[1 ln.l] ’ Mu=[0]

2 ... a, bi a; ... a, bi -ail/all 1
The 2x2 matrix M is computed by Py attime t =i, and

sent to the other cells of the first row; more precisely, cell Pk
(k22) performs the transformation

@1 21" =M. (g, ag)|
at time t = i+k-1.

Let
(3 &) 1 &)
a(l l) vee a, t“l

k
A® p®y - afy ... 2l t

0
k) &) 1.k
WU Mg bn

denote the matrix obtained from (A,b) after the elimination of

the elements at positions (11)]) _such that §:>j, j=1, .. k-1. Then
(akk(k), wves akn(k), bk() is stored in the k-th row of the
array. When (23, &), ..., a;, &), by, i>k, is read by this row
of cells, it is combined with (2, &), ..., 3, &), by) using a
2x2 matrix My, in order to set a-ik(k) 10 zero.

2.1. General description of the array

The key-idea to include partial pivoting in the algorithm is
to generate matrices M; whose structure depends on the values
of akk(k) and aik(k). For sake of simplicity, let us consider the
case k=1, i=2, that is, when the first matrix M, is generated by
processor Pp1. Element ag | = a; 1(1) is stored in Py, and ayo
= alz(l) is being input to Py 1. Two cases must be considered:

-{a)if aj] = 1, row 1 will be chosen as the pivoting row,
and the elimination of a5, a31, ..., a1 Will be done using

usual Gaussian elimination. In our example:
- (a1) if apq =0, there is nothing to do, My is equal

to I, the identity matrix of order 2.
-(a2) if ay1 = 1, add row 1 to row 2 to zero out a1,
that is

My =[1 1]

Note that addition denotes here the addition in GF(2), i.e.
the exclusive or operation XOR.

- (b) if ay; = 0, we have to find out a pivoting row. Two
cases occur:

- (bl) if a3y = 0, we do nothing, and choose My =
)

- (b2) if ap1 = 1, we exchange rows 1 and 2, and
My is the permutation matrix

1 1
My = [1 o]
Row 2 is then stored in the first row of the array and acts as
the pivoting row for phase 1, which consists in zeroing out

all the elements but one of the first column of the matrix
(A,b).

Note that in the case (b1), row 2 will not be modified
during the first phase of the algorithm. Assume that aj1,1>2, is

the first non-zero element that we find out: row i will be used as
a pivoting row for phase 1, but since we already know that ar,
31, - 8j_1,1 are all zero, we do not have to combine row i
with row 1, 2, ..., i-1.

We can give an informal description of the algorithm as
follows:

fork:=1 ton-1do
{phase k of the algorithm }
begin s
1. find out the first j 2 k such that ay 0 = 1

2. exchange row k and row j (if j#k), that is, choose
row j as pivoting row

3. zero out the elements aik(k) such that i>j and
aik(k)=1 by adding row j to row i
(here addition denotes the addit.on in GF(2), that

is, the XOR operation)
end

& 0P ot

Stept Step t+1

if init then {store a;,}
begin r:=a;, ; init := false end

else {generate instruction }
case (a;, , 1) of

(0,0) : 0pgy, := id {identity - still looking for pivot};
(0,1) : opgyy :=id {element already zero);

(1,0) : 0pgyyy = perm {exchange rows ;
(1,1) : opgye = add {XOR operation)
end,
) Operation of the circular cells
a,
in

‘ !

°pin —> —> — —» %P out
Aout
Stept Step t+1

if init then {store a;,,}
begin r:=a;, ; init := false end

else {update a;, (andrif a permutation is re:quired)}
begin
case op;,, of

id: agy = aj, {risnot modified};
add: agy = ajp XORr{r is not modified};
perm: ag,, :=T; T:=aj, {exchange a;, and 1)

end;
OPout = “Pin
end
Figure 2 : Gaussian elimination over GF(2) - Operation of the
processors

For a given k, note that the steps 2 and 3 are not executed
if we can not find a j such that j2k and = {: in this case, the

matrix A is rank deficient.

163

2.2. Operation of the processors

There are two types of processors in the array, respectively
represented as circular and square processors in the figure 1. In
the k-th row of the array:

- the processor Py 1 is a circular processor, which generates the

matrices M;y, i>k.

- all the other processors are square processors, which apply the
transformation relative to M.

The operation of these two types of processors is detailed

in the figure 2. The operation of a given processor depends on
whether it is the first time it operates. In the description of the
figure 2, we assume for simplicity that there is a boolean called
init (for "initialization") stored in every processor which is set to
"true" at the beginning of the computation. This boolean
controls the operation of the processors. In an actual
implementation, the instruction to start the computation would
be input to processor Py together with the first coefficient aj ;

and systolically propagated through the whole array (it can be
easily checked that processor ij operates for the first time at

step 3k+j-3).

The first time they operate, circular processors store their
input in their internal register. Afterwards, they compute the
matrices M;, and send them rightwards to the square

processors.
Rather than directly generating the matrices M;y, the

circular processors transmit rightwards one of the following
three instructions:
- id, which stands for the identity matrix
- perm, which requires a permutation of rows
- add, which requires an addition of rows.

This allows the instructions generated by the circular
processors to be encoded using only two bits.

Square processors

Again, square processors store their input in their internal
register the first time they operate. Afterwards, they update their
vertical input and possibly their internal register, according to
the instruction they receive from the left. See figure 2 for a
complete description.

2.3. Unloading the array

At the end, the matrix (T,b") is stored in the array as
follows (assuming n=4):

t14 by
thg b
t34 b3
t44 b'4

1 12 43
122 123
t33

There remains to unload the array. According to the general
philosophy of the model, this must be done systolically, by
propagating special boolean control instructions. Moreover, we
would like to pipeline the unloading of the array with the
computation phase, so that n additional steps are not necessary.
Various schemes are possible. We outline a scheme where each
processor sends the content of its register to the right when it
has finished to operate. Let t; .1 = b'; for convenience.

At time t=4 in our exemple, P operates for the last time.
It remains idle for one step and then sends tyq rightwards. Py,
finishes to work at time t=5. It transmits ty1 to the right at t=6,
and then sends t{; at time t=7. The proczss goes on, and t1iis
output by P| 5 at time t=9+i , for 1<i<n--1. Similarly, we start
unloading the second row at time t=8. We see that the first rows

of the array are unloaded, while the last rows still operate, thus
achieving the pipelining that is sought.

Indeed, in the general case, the last computation occurs in
Pp,n41 attime 3n-1, and t; ; 4 (1<i<n, Oks<n+1-i) is output
from the array at time 2n+i+k+1. The total computation time is
3n+2.

We point out that the unloading of the array can not be

simplified as in the case of Gaussian elimination over R without
pivoting: in the real case, the coefficients t; ; i are not modified

after being stored in the array, hence they can be sent
downwards immediately. Here on the contrary, the t; ;.1 can be

modified by any following permutation of rows.
2.5. General remarks

We have described here an array for matrix
triangularization using Gaussian elimination. There still rernains
a triangular system to be solved. Assuming the matrix A is
non-singular, we can use another systolic array, the triangular
system solver of Kung and Leiserson [9], which requires 2n
additional steps to solve the system T x = b'. However, this
would require the triangular matrix to be stored in the host and
reordered by diagonals before being fed in Kung and
Leiserson's array. Rather, it is more efficient to use the Jordan
elimination scheme depicted in [5] [16] which can be
implemented on the same array and requires only n additional
steps to provide the solution x, leading to a very efficient
scheme of only n2/2 cells and 4n time steps to completely solve
the system A x = b.

We point out that checking for the non-singularity of the
matrix can be done on the fly very easily, simply by testing the
content of the registers of the circular processors at the end of
the triangularization phase.

3. The Gauss-Jordan diagonalization algorithm
with partial pivoting over GF(2)

The systolic array presented in section 2 allows general
dense systems of equations Ax = b to be solved: first
triangularize the matrix (A,b), then solve the triangular system.

Assume now that there are q systems Ax; = b; to solve,
1<i<q, and let B be the nxq matrix B=(by, b, ..., bq). To
triangularize (A,B), we can simply extend the triangularization
array by adding q-1 columns on the right, leading to a total
number of n[(n+1)/2+q] cells. If PA= LT, where P is a
permutation matrix, L is lower triangular with unit diagonal, and
T is upper triangular, we obtain the marix (T,L'IPB) within
3n+q steps. There remains q triangular systems to be solved.
This can be done within 2n+q steps using an array of qn cells
(simply concatenate q triangular systems solvers of [9]). Hence
we need a total number of n“/2 + 2qn + o(n) cells and of 5n+2q
time-steps to solve the q linear sysiems. However, this
evaluation does not take into account the fact that the matrix

(T,L'IPB) has to be stored in the host and reordered by
diagonals before entering the second systolic array. '

We concentrate in this section on the defign of a systolic
array which directly computes the product A™* B, where A is a
dense (nonsingular) nxn matrix and B is a dense nxq matrix.
The inverse of A is computed via the Gauss-Jordan
diagonalization algorithm with partial pivoting. The pfrformance
of the new array is much better for large q: only n“ cells and
4n+q time-steps are required by the architecture that we are
going to describe. First we briefly recall the well-known
Gauss-Jordan diagonalization algorithm.

3.1. The Gauss-Jordan diagonalization algorithm

Let C denote the n by n+q matrix C = (A,B). We want to
reduce C to the matrix (I,A'IB). When no pivoting is needed,
the usual way to proceed is to pre-multiply C by n elementary
nxn matrices JI{, Jo, ..., J;, in order to obtain after n steps

Iy J21; C= (@A 1B)
Therefore, define Cy = Jy. Cy_j, starting with Cy = C. We
choose Ji so that the first k columns of Cy are those of I, the
identity matrix of order n. Thus Cy has the following structure:

Ce= [thefirstkcolumns of I, | G°]

where C ° denotes the nx(n+q-k) matrix built up with the last
n+g-k columns of Cy.

In particular, C° is the desired matrix A"1B. The matrix
Ji only differs from I, by its k-th column, which we denote for
convenience as

[Clk(k) an(k)] t

The coefficients of Ck° are denoted (cij(k)), 1<i<n,
k+1<j<n+q. Therefore cik(k) refers to the k-th column of T
while cij(k) with k<j refers to the matrix Cj.°. The values of the
cij(k), 1<i<n, k<j<n+q, 1<k<n, are computed recursively by
the following algorithm, starting from cij(0)=cij:

{ Gauss-Jordan diagonalization algorithm }
fork:=1ton
begin

{ compute J; }

ckk(k) =1 /ckk(k'l)

fori:=1ton,izk _
clk(k) = - cik(k'-l) * Ckk(k)
{ compute Cy.° }
for j:=k+1ton+q
begin
fori:= l(ltco n, i#k) . 1
y Cij) ;=kc,i-(k') _,.lcik() * ij(-1) ;
ij():: ckk()* ckj(k);
end ;
end;

The matrix Ji can be viewed as the (commutative)

product of n elementary matrices. The first n-1 ones apply the
transformations M of section 2, and are chosen so as to

-

Figure 3 : The systolic array for computing A'lB (=4, q=2)

annihilate the elements in position (i,k), is*k. The n-th matrix
only differs from I, by its element in position (k,k) chosen so

as to divide row k by the pivot ¢ k1),

Contrarily to the case of Gaussian elimnination, gvery row
of the matrix has to be combined with the pivoting row at each
step. Provided that the organization of the array allows to do so,
partial pivoting can be introduced just as before. During step k,
column k is scanned out until a non-zero ¢lement in position
(i,k), say, is found. M is still a permutation matrix, and row i

is used as pivoting row and combined with all the rows of the
matrix whose k-th element is non-zero.

We can give an informal description of the algorithm as
follows:

fork:=1 tondo

{phase k of the algorithm }

begin
1. find out the first j € {k, k+1, ..., n, 1, 2, ..., k-1}
such that ajk(k) =1

2. if j#k, exchange row k and row j, that is, choose
row j as pivoting row
3. zero out the elements aik(k) such that i»j and

aik(k)=1by adding row j to row i
(here addition denotes the adcition in GF(2), that
is, the XOR operation)
end

For a given k, note that statements 2, and 3. are not
executed if we can not find a non-zero element in column k, that

165

is, statement 1. does not succeed. In this case, the matrix A is
singular. This leads to the systolic implementation which is now
presented.

3.2. Systolic implementation

As we already mentioned, every row of the matrix must
be combined with the pivoting row at each phase of the
algorithm. That is the reason why we choose an implementation
which is "dual" of that of the previous section. Rather than
storing a coefficient of the matrix in the internal register of each
cell, we store (an encoding of) the transformation matrix M.

Moreover, the matrix is input in a transposed fashion, so that
each row can meet all the other rows while moving through the
array.

Figure 3 depicts the Gauss-Jordan diagonalization array.
It is a two-dimensional array of orthogonally connected
processors with n rows. Each row k comprises n processors
numbered from left to right Pk,l y ey Pk,n* There is a

one-step delay cell at the left of each row, named Pyq for

convenience. There are also two delay cells at the right of each
row, as shown in figure 3. The operation of each processor is
detailed in figure 4. There are two types of processors,
represented as square cells (type 1) and double square cells
(type 2). In the k-th row of the array, the rightmost processor
Pk,n is of type 2. All the other processors Pk,l’ ey Pk,n-l are

of type 1. The cells operate as follows:

11
Square cells first initialize their internal register by storing
the operation to be performed on all the subsequent coefficients
of the two rows. Just as in the previous section, the operation is
to be chosen in the set { id, perm, add } according to the value
of the first inputs. Once initialized, the cells update their inputs
as indicated in figure 4.

Double square cells
Double-square cells first test for the non-singularity of
the matrix: if the first input of cell Pk;,n is zero, then all the

elements of column k after the first k-1 phases of the algorithm
are zero, and the matrix is singular. To test this condition, a
boolean variable, called test , is initialized to false and moves
through all the double square cells. When it is output from Py, ,

at the end of the computation, its value is true if and only if the
algorithm has failed, that is, if the matrix is singular. Once
initialized, double square cells simply transmit their input (see
figure 4).

The operation of a given processor in the array depends
on whether it is the first data item it receives. As shown in
figure 4, each processor has a control boolean init initialized to
true. This boolean specifies the operation to be performed and
the line along which the data is to be sent out. In an actual
implementation, the instruction to start the computation would
be input to the top-left corner of the array and systolically
propagated to all the processors. It can be easily checked that
processor ij operates for the first time at step 3k+j-2, so that

the start signal would move at full speed to the right and at
one-third speed downwards.

The matrix A, followed by the matrix B, is fed into the
array row by row. More specifically, row k of the matrix C =
(A,B) is input to processor Pl,k-l’ one new element each
time-step, beginning at time t=k. This input scheme is depicted
in figure 3.

ain L
b, — — —P —> bout
in
qout
Step ¢ Step t+1

if init then {generate instruction and store it in internal register}

init := false;
case (a;;, , b)) of

{0,0) : op :=id ; by := by, {identity - still looking
for pivot};
(0,1) :0p :=id ; by, := by, {element already zero};
(1,0) : op := perm ; by, = a;, {exchange rows};
(1,1) : op := add ; byy¢ := by, {XOR operation}
d
else {lf;:date &, (and by, if a permutation is required }
case op of
id: gyt = ajn ; boyy = bjy 5
add : agy, := ajy XOR by, 5 by =2 by
perm : ag,y = bip 5 boyy = ajy 5

end;
2) Operation of the square cells
test in
b — > —p —ptest
& out
Stept Stept+1
if init then

{test for non singularity : b;;=0 means that column is 0}

init := false ;
testayg == testi; OR not (by,) { testy,, = 1 means that the
matrix is already known to be singular}
end

else {transmit b;, }

2oyt == bin

b) Operation of the double squars cells

Figure 4 ; Gauss-Jordan diagonalization, ()peration of the
processors

The k-th row of the array is devoted to the computation
Cx® = Ik C1®
Recall that Jy. is the product of n elementary matrices, some of

which possibly being permutation matrices. The leftmost delay
cell Py transmits the input data arriving from the top to the

right. Square cells of the row use the first data value arriving
from the top to compute the instruction which they store in their
internal register. Then they pass downwards all the following
data after modification. Similarly the rightmost processor Pk,n
modifies and stores the first input data arriving from the left and
passes downwards all the following data after modification.
Thus after a row of n+q input data flows through the whole
array, its length is shortened by n to become a row of q output
data. The n by n+q matrix Cg = Co° = C is input to the first row
of the array, the n by n+q-1 matrix C;° is input to the second,
-, and the n by q+1 matrix C;,_{° is input to the n-th row;

finally the array outputs the n by q matrix C,° = A"IB.

It is important to note that the rows of the matrix are
“reordered” in some sense when moving through the array: the
input of the processsors Pyg, Py, ..., Py n in the k-th row of
the array are respectively the rows k, k+1, ..., n, 1, ..., k-1 of
Ck-1° The matrices My, i#k, are computed and stored in the

processors Pk,l’ ey Pk,n-l' More precisely, My is stored in
Pk,(i-k) mod n- Note that My is always the identity in GF(2):
cither the matrix is singular, or there is already a 1 on the
diagonal. After the processors are initialized, they perform the
multiplication C ° = Jx Ck-1°. The matrix Cy° is output from the
k-th row of the array in row order, the leftmost row of the
matrix being now row k+1,

We can state the following: given a dense nonsingular n x
n matrix A and a dense n x q matrix B, the orthogonal systolic
array of n“ processors can compute A™'B within 4n+q-2
time-steps. In particular, we can compute the inverse Alofa
dense nxn matrix within 5n-2 steps.

3.3. A detailed example (n=4, q=3)

Letn=4, q = 3, and A, B be the following matrices over
GF(2):

0
1
A=
1

0
0
1
1

[

1
0
1
0

it O b s
OO - O

0
1
0
1 0

We want to describe the operation of the first row of the
array, which is responsible for the first phase of the algorithm.
For sake of clarity, assume that the columns of the matrix C =
(A,B) are input sequentially (rather than pipelined) to the array.

First a;1=0is transmitted to the right by the delay cell
P1p- When Py receives a21=1 and a; =0, it generates the
instruction perm, so that agy replaces aj; and moves

rightwards: row 2 will be chosen as the pivoting row for phase
1 of the algorithm. When P4 receives az1=1 and a3;=0, it

generates the instruction id. When P 3 receives ay1=1 and
a41=1, it generates the instruction add. When a5 =1 is input to
processor Py 4, the control boolean test remains equal to false.

|
i

b
;
!

Once initialized, the processors P |, P15 and P|3 perform the
instruction sored in their internal registers.

The operation of the first row of processors can be
summarized as follows:

Pir Pz P3Py
Internal registers perm id add -
! \ l {
- - - 0
Outputs - - 0 1
- 1 1 1
1 1 0 1
0 1 1 1
1 0 0 0
0 0 1 -
1 1 - -
0) - -

In other words, the first row of the array outputs the matrix :

011110
o 01010 1
Cl“100111
101010

Therefore, during phase 2, row 3 is chosen as pivoting row:
P31, Py and Py3 generate respectively the instructions perm,

add and id, so that :

Ce =

S = O -

1
0
0
1

— e

10
11
01
01
During phase 3, row 3 is the pivoting row; P31, P39 and P33
generate respectively the instructions id, add, and id, so that :

1 01 17
s 10 1 11
C3‘0101
11 0 1.

Finally, during phase 4, row 4 is the pivoting row; P41, P4o
and P43 generate respectively the instructions add, id, and id,

so that at the end of the computation, the matrix AlBis output
from the array :

0
1

o _
Cye =]
1

1
1
0
0

— ek e s

Since the first input to all the processors Pyy Poy, P34 and
P44 was a 1, the final value of the boolean test is false. This

guarantees that the algorithm has not failed, that isI that the
matrix A is non-singular. The first column of A™"Bis x =
(1,1,1,1)4, the sSlution vector of section 2.3.

167

4. Extension to GF(p), p prime number

The two previous arrays can be easily extended to deal
with computations over a finite field GF(p), where p is any
prime number. The key idea is the same: the first non-zero
element found out during the search is chosen as pivot.

The only modification in the operation of the processors
is to replace the add instruction by the appropriate combination
factor. Hence the processors now generate an instruction

op € { id, perm, comb }

Whenever op=comb, an appropriate combination factor is also
generated, and transmitted or stored according to the program of
the cell.

The arithmetic requirements are more complex in GF(p)
for general p than in GF(2). A possible way to implement the
inverse computation is a table look-up, whereas the
multiplication can be done using the MMA Modular
Multiplication Algorithm of [3], which consists of reducing each
partial summation modulo p before going on: this prevents to
perform a division by p at the end. Finally, the cost of an

addition is twice that in R (for the same number of bits) because
a+b mod p requires the computation of a+b and a+b-p.

5. A 8 x 8 implementation over GF(2)

We briefly describe the design and layout of a systolic
chip which implements the Gauss-Jordan diagonalization
algorithm over GF(2). The chip has been designed using the
system LUCIE [14]. The technology is CMOS double
metallisation with a 2 um grid. The chip is currently being
fabricated via the French Multi-Project Chip [2]. We have
designed a 8 by 8 array, but of course the modularity of systolic
arrays would permit to design larger arrays without any
difficulty.

The only modification to the description of section 3.2. is
the initialization of the array. As we already mentioned, there is
a control boolean moving systolically through the whole array
together with the coefficients of the matrix. The number of input
pads is 13, distributed as follows: 8 pads for the rows of the
matrix, 1 port for the initialization boolean, 2 pads for the
alimentation and the ground, and 2 pads for the two
non-overlapping clocks (the operation of the array is totally
synchronous). We have 9 outputs pads, 8 for the rows of the
solution matrix, and 1 for the boolean indicating whether the
algorithm has failed or not.

More generally, the design of an n x n array will require
2n+6 pads. As usual in two-dimensional systolic arrays
implementations, the main limitation to the size of the array is
due to the number of input/output pins rather than to area
considerations.

The dimensions of a square cell are 380 x %00 umz, and
those of a doubls square cell are 170 x 200 um<. The chip is
3100 x 2800 um=<.

6. Conclusion

We have introduced two systolic arrays for solving dense
linear systems over GF(p), p prime number. These two arrays
implement elimination algorithms with partial pivoting, although
the operation of the array remains purely systolic.

Moreover, there is no feedback cycles in our arrays. The
importance of designing arrays without feedback cycles is

emphasized in Kung and Lam [§): acyclic implementations
usually exhibit more favorable characteristics with respect to
fault-tolerance, two-level pipelining, and problem
decomposition (see Hwang and Cheng [7]) in general.

Using massive parallelism and pipelining, the systolic
array concept allows a system implementor to design extremely
efficient machines for specific computations. The suitability of
the systolic model to chip design is wel illustrated by the
prototype array that we have designed within only a few weeks.

References

(1] HM. AHMED, JM. DELOSME, M. MORF, "Highly
concurrent computing structures for matrix arithmetic and signal
processing,” IEEE Computer 15, 1, 65-82 (1982)

[2] C. ANTONINO, B. BOSC, H. DELOF, A. GUYOT, IF.
PAILLOTIN, The French MPC 84-85, Internal Report,
TIM3/INPG Grenoble, February 1986

(31 G.R. BLAKLEY, "A computer algorith:n for computing the
product AB modulo M," JIEEE Trans. Compur. 32, 4 (1983),
497-500

[4] A. BOJANCZYK, R.P. BRENT, H.T. KUNG,
Numerically stable solution of dense systems of linear equations
using mesh-connected processors, Technical Report, Carnegie
Mellon University, 1981

[5] M. COSNARD, Y. ROBERT, M. TCHUENTE, Matching
parallel algorithms with architectures: & case study, IFIP
Working Conference on Highly Parallel Computers, Nice,
France, 24-26 March 1986

[6] W.M. GENTLEMAN, H.T. KUNG, Matrix
triangularisation by systolic arrays, Proc SPIE 298, Real-time
Signal Processing IV, San Diego, Californiz, 1981, 19-26

[7] K. HWANG, Y.H. CHENG, "Partitioned matrix algorithm
for VLSI arithmetic systems," IEEE Trans. Computers 31, 12
(1982), 1215-1224

[8] H.T. KUNG, M.S. LAM, "Fault-tolerance and two-level
pipelining in VLSI systolic arrays," J. of Parallel & Distributed
Compuring 1, 1 (1984), 32-63

{91 H.T. KUNG, CE. LEISERSON, "Systolic arrays for
(VLSI)," in Proc. of the Symposium on Sparse Matrices
Computations, 1.S. Duff et al. eds, Knoxville, Tenn. (1978),
256-282

{10] D.E. KNUTH, Tke art of computer programming, vol. 2,
chap. 4.6.2., Addison WWesley (1969)

{11] J. MAKHOUL, "Linear prediction: a tutorial review,"
Proc. IEEE 63, 4 (1975), 561-580

[12] M.A. MORRISON, J. BRILLHART, "A method of
factoring and the factorization of F4," Math. of Comput. 29,

129 (1975), 183-205
[13] D. PARKINSON, M. WUNDERLICH, "A compact

algorithm for Gaussian elimination over GF(}2) implemented on
highly parallel computers, "Parallel Computing 1 (1984), 65-73

[14] J.F. PAILLOTIN, Le systme LUCIEZ, Internal Report,
TIM3/INPG Grenoble, July 1985

[15] R. POET, "The design of special purpose hardware to
factor large integers,” Comput. Physics Communications 37
(1985), 337-341

[16] Y. ROBERT, M. TCHUENTE, "Résolution systolique de
systemes lin€aires denses," RAIRO Modélisation et Analyse
Numérique 19, 2 (1985), 315-326

[17] R. SCHREIBER, P. KUEKES, "Systolic linear algebra
machines in digital signal processing,” in VLSI and Modern
Signal Processing, S. Y. Kung et al. eds, Prentice Hall,
Englewood Cliffs, NJ, 1985

