TOWARD AN IDEAL COMPUTER ARITHMETIC

T.E Rull and 1.5, Cohen*

Department of Computer Science
University of Toronto
Toronto, Canada M5S 1A4

Abstract

A new computer arithmetic is described. Closely
related built-in functions are included. A user’s
point of view is taken, so that the emphasis is on
what language features are available to a user. The
main new feature is flexible precision control of
decimal floating-point arithmetic. It is intended
that the language facilities be sufficient for describ-
ing numerical processes one might want to imple-
ment, while at-the same time being simple to use,
and implementable in a reasonably eficient manner.
llustrative examples are based on experience with
an existing software implementation.

1. Introduction

Our purpose is to describe a ew computer
arithmetic, for which we have develcped prototype
implementations (both in hardware [2.3] and
software [7]) and which we believe provides
significant advantages over what is currently avail-
able, especially for anyone interested in numerical
computation. We call it CADAC arithmetic because
CADAC is the acronym we used for the original
hardware implementation (frem Clean Arithmetic
with Decimal base And Controlled precision).

We take a user’s point of view, and so we
describe the arithmetic (along with its related
built-in functions) in terms of programming
language facilities. Qur goal is to have language
facilities which are near to ideal, in some reason-
able sense, from a user's point of view. Above all,
the facilities should therefore be sufficient, in that
they should enable a user to describe any numerical
process that the user might wish to implement. But
they should otherwise be as simple as possible, and
they should be implementable in soine reasonably
efficient manner.

The facilities described in this paper are
intended to be one example of an arithmetic system
which is bolh sufficient and simple. Our implemen-
tations have so far not been particularly efficient,
although we believe that reasonable 2fficiency will
eventually be possible (for example, with the
development of an appropriate co-processor). How-
ever, the question of efficiency is a complicated one,

This work was supported by the Natural Sciences and Engineering
Fesearch Council of Canada.

¢ Present address: 141 North Meadow Crescent, Thornhill, Ontario, Ca-
nada, L4J 3C4,

CH2419-0/87/0000/0131%01.00 © 1987 [EE=

131

and we will postpone further discussion of it until
the last section. In any event, we believe it is a use-
ful exercise to explore what kinds of language facili-
ties would be especially convenient from a user'’s
point of view. Quite a few features of currently
available language facilities are a result of decisions
which were convenient from the point of view of
hardware designers or compiler writers. This of
course is not surprising, especially since the users
have not, as a whole, made great efforts to agree on
what would be ideal.

The main new feature of CADAC arithmetic is
Precision control. Precision can be declared at any
point in a program and, within the scope of that
declaration, subsequent floating-point variable
declarations, or any operations involving floating-
point values, are executed in the declared precision.
The precision so specified can be any integer
expression, and can be changed dynamically. As will
be shown, increasing precision for critical stages of
a calculation can often be exactly what is needed to
provide a specified accuracy in the final resuli, or to
get around a special difficulty. Being able to
increase precision dynamically, so that a problem
(such as a system of equations) is solved in higher
and higher precision, until some error criterion is
satisfled, can sometimes make it possible to solve a
problem that would otherwise be virtually impossi-
ble.

The arithmetic is decimal, because that is con-
venient for the user, not only in understanding the
arithmetic itself, but also in knowing that input-
output is done exactly and program constants are
represented exactly. Normally the arithmetic is
properly rounded (i.e., to nearest, or to nearest
even in case of a tie), but directed roundings are
also available. The related built-in functions
(including functions for getting and setting
exponents, as well as the more usual functions such
as those for finding quotients and remainders) are
very carefully specified. Other required functions
(including the elementary functions for calculating
Square roots, exponentials, sines, cosines, etc.) can
be written in terms of the built-ins, and often take
advantage of the precision control capability.

Fxception handling is also a part of the new
facilities, but this feature is the subject of a

separate paper [8]. We do not need to discuss this
tapic any further in what follows excepl to specify
the circumstances under which exceptions are
raised by the various operators we describe. Only
three exceptions can be raised by the arithmetic
operators, namely overflow, underflow and
domainerror.

The next two sections are preliminary to the
precise specifications of the arithmetic and the
related built-in functions. The purpose of section 2
is to provide an overview of the new language facili-
ties and to illustrate with a few exemples. It is not
intended that all the details are explained, but
rather that a general idea of the new facilities is
presented and that some motivation is provided for
the specifications that are to follow. Section 3 cov-
ers specifications for integers and integer arith-
metic. We need to make these precise before
presenting the floating-point specifirations.

Sections 4, 5 and 6 are then devoted, respec-
tively, to floating-point arithmetic, the related
built-in functions, and a brief discussion of other
required functions that can be derived from the
built-in arithmetic and related functions.

Finally, in section 7, we return %o the efficiency
question mentioned earlier.

2. Overview and Examples

Our purpose in this section is to give a brief
indication of how the new language facilities can be
used, especially with regard to precision control,
and to thereby provide some motivation for the
detailed specifications presented in later sections.
The examples are intended to show what a wide
variety of situations can arise, some requiring dou-
ble precision, some only a small increase, some
more than double, some in which precision has to be
increased repeatedly, and so on.

The examples are written in Numerical Turing
[7], which is an extension of Turing [4], a Pascal-like
language that has been widely used at the Univer-
sity of Toronto since 1983.

Floating-point variables (which we will often
refer to as float variables) are declared with the
keyword real, and this keyword maeay optionally be
followed by an integer expression in parentheses, as
in

var a : real(18)
var b : array 1..100 of real(10)
var ¢ : real(2*i + 2)

The integer expression is the precision. If the pre-
cision is not specified (and it normally is not), the
precision defaults to the current precision (which is
explained below).

The precision of float operations is declared
separately from the precision of the operands.
Such precision declarations are of the form

precision intFrpn

where intErpn is any integer expression.

The execution of any operation governed by
such a declaration is carried out in the precision

specified. The scope of such a declaration extends
from just after the declaration to the end of the
construct in which the declaration is made. Unless
explicitly overruled by a subsequent precision
declaration, it covers all float operations appearing
in that scope, including any that appear in nested
subconstructs (begin-end, loops, etc., and the inte-
riors of functions or procedures invoked within that
scope).

This rule determines the current precision at
any particular poeint in a program, except when no
precision declaration has been made, in which case
the current precision defaults to 10. The current
precision can be determined whenever required — it
is the value returned by the built-in function
currentprecision,

As a first example, suppose that we wish to gen-
erate pseudo-random numbers uniformly distri-
buted in the interval [0,1). If we decide to carry 10
digits after the decimal place, so that the numbers
are of the form

0Ocdddddddddd |,

1234586 78 9 10
where the d_'s are decimal digits, we can choose a
multiplier m and an additive constant ¢ so that the
generator suggested by the congruence

L =(m xr, tec) mod 1
will sequence through all numbers of the above
form before repeating. {See Knuth [9, pp. 155-158]
for criteria to be satisfied by m and ¢ D

Then, once r has been declared to be of preci-
sion 10, as in

var r : real(10)

and initialized to some value of the above form in
the interval [0,1), subsequent values of r can be
obtained by executing

begin

precision 20

T = (*r + ¢) rod 1.0
end

In practice we would incorporate this generator in a
procedure, which could then be used with any of
several sequences of random numbers (differing
only in their initializations), but we want to avoid
introducing more language constructs here than
are needed to illustrate the basic ideas aboutl preci-
sion control.

As a second example, we consider the dot pro-
duct of two vectors, say a and b, which is of the
form

ab +ab + - +a b

1 1 2 2 n on
The effect of rounding errors can be reduced by
accumulating this dot product in higher precision.
Suppose the accurnulation is done in extended pre-

cision, say zp, while the current precision is
denoted by cp . Then, if the additions are performed

from left to right, the usual backward
analysis shows that the final result is exactly

error

b + " +ab n

(a1](1 Em) a, 2(1+s.zp)

+ta b (1+g YT
i1 xp

P1+e)

+ - +a b (1+¢
n n zp cp

where the ¢ 's are relative roundoff errors in
zp. , .

extended precision (the ¢ 's are not necessarily

zp -
the same), and therefore satisfy |&¢ | =<5
- . . . zp .

x 107 *! while ¢ is a relative roundoff error in
. .

current precision and therefore satisfies |e& | <

5x107F °

The point is that the final result is the exact
dotproduct of two vectors that differ very little
from the original two vectors. In fact, their indivi-
dual components do not differ by rnore than the fac-
tor

m = ;
(1+ezp) (1+scp) 1+n£zp +ch'
For the extended precision cortribution to the
error in this expression to be roughly negligible
compared to the maximum that can be expected
from the current precision contribution — say 1o
more than 10% of the latter — we can choose

nx5x107P g 1 x 5% 107P
which reduces to
zp =cp + logm(n)+ 1.

This enables us to choose an appropriate extended
precision for accumulating dotproducts, with the
help of the getexp function, since, as we later define
the built-in function getexp for getting the exponent
of a floating-point number, getexp(n) is an upper
bound for log_(n). (The integer n is converted to a
normalized floating-point form before the getexp
function is evaluated.) Thus, once the vectors a and
b have been declared and the valies of their com-
ponents have been determined, their dot product
can be accurately evaluated with

var dotproduct real
begin
precision currentprecision + getexp(n) + 1
var tarp : real = 0.0
for i : 1..n
tarp = tearp + a(i)*b(i)
end for
dotproduct := temp

end

Here the precision of dotproduct is the precision
that is current when its declaration is made. (We
are assuming that a and & are a’so in this preci-
sion.) The precision of temp is the extended preci-
sion, and femnp is initialized to the value 0.0. All the
arithmetic is done in extended precision, so that
the final value of temp is the result of accumulating
the dot product in extended precision. Then this
final value of temp is rounded to the precision of
dolproduct, before being assigned to dotproduct.

133

With other programming languages, dot pro-
ducts are usually not accumulated in higher preci-
sion.* If they are, the accumulation would normally
be done in double precision, but that may be impos-
sible, or at least quite awkward to do. In any event,
the analysis given above shows that only a rather
modest increase in precision is needed to produce a
satisfactory increase in accuracy, and the facilities
presented in this paper enable us to describe the
process in a straightforward manner.

Another example occurs in the evaluation of the
exponential function. One program developed for
this purpose [6] is based on the identity

(ex./k)k :ezl

where k is chosen sothat |z /k | < 1. The/program
uses a polynomial approximation to e*“*. This
polynomial is evaluated in higher precision, and
then raised to the power k in the same higher pre-
cision, before being rounded down to the current
precision of the environment in which the function
is invoked. To return a value which is guaranteed to
differ from the true value of e * by less than 1 unit
in the last place (which is required of all the ele-
mentary functions in Numerical Turing), the
required higher precision turns out to be

currentprecision + mex(getexp(x),0) + 2

where currentprecision is the precision of the
environment in which exp(z) is invoked.

As a fourth example, we consider a process
involving Newton’s method. Newton's method is
often the basis for solving non-linear equations, and
it is well known that the iterations can usually be
started in quite low precision, and then approxi-
mately doubled with each iteration. For example, to
calculate an approximation to the square root of f ,
it can be shown that precisions 2°' +2, for
i =12, up to currentprecision +2, are
sufficient to ensure an approximation, after the final
rounding to the current precision of the calling
environment, that is in error by less than 1 unit in
the last place, provided an initial approximation
within 10% has been obtained [5]. If this initial
value is assigned to approz, the iterations can be
implemented as in the following [5, p. 231]:

var p = 3
const maxp
loop
P :=min{2*p - 2, maxp)
%Zp=4, 8, 10,
precision p
approx := .5*(approx + f /approx)
exit when p = maxp
end loop

'= currentprecision + 2

. ITRXp

Another example in which precision has to be
changed dynamically is in a program for solving a
system of linear equations to within a prescribed
accuracy. Such a program can solve the system in a

* With language extensions that suppart ACRITH, dot pro-
ducts are accumulated exactly (e.g., see [10]).

particular precision, and then calculate an estimate
or a bound on the error in the computed solution. If
the estimate or bound is less than what was
prescribed, the program is finished. If not, it can
simply redo the solution in higher precision, and
repeat the process if necessary until the estimate
or bound is small enough. Meeting such a require-
ment without such a flexible precision control would
be virtually impossible.

In each of the examples described so far, preci-
sion has been controlled in order to provide
sufficient accuracy. However, in CADAC arithmetic,
the exponent range changes with tte precision (it P
is the precision, the exponent must be in [-10p,
10p]), and we sometimes increase the precision in
order to increase the exponent range as well as
increasing the accuracy.

One such situation occurs in a procedure for
solving quadratic equations. If the equation is of the
form

az? + bz +c =0,

the well-known difficulty is in evaluating the
discriminant &° - 4ac . The probleras to be avoided
are the possible overflow or underflow. With CADAC
arithmetic, the solution is very straightforward. It
turns out to be sufficient to evaluate this expression
in precision

2*currentprecision
+ ceil(currentprecision/s)

(Here ceil(u) is the smallest integer =« .) We need
the detailed specifications in sections 3 and 4 to
make this precise and to prove that it is correct.
For our purposes here, it is enough to note that we
need to roughly double the current precision in
order to obtain sufficient accuracy and, because the
exponent range is then roughly doubled as well, to
avoid overflow and underflow in the evaluation of &2
and 4ac . But we have to increase the precision
somewhat more to also avoid any possibility of
underflow in the subtraction. It can be shown that
the precision given above is the smallest possible
precision with all these properties. The resulting
approximation to b2 —4ac will suffer at most one
rounding error in the final subtraction.

As a final example, consider evaluating the
Euclidean norm of the vector a , namely

@?+a?+ ..
1 2

+a 2)11/2_

n
Here it is easily shown that no overfow or underflow
can occur if the precision is

Q*currentprecision + getexp(n) div 10 + 1.

Of course the rounding of the final result back to
the calling precision can still cause an overflow, but
this is as it should be — it means that the Euclidean
norm of e cannot be represerited in the precision of
a . The high precision has ensured that no unneces-
sary intermediate overflow or underiiow can occur.

In practice it would be better, if possible, to
avoid using such high precision for calculating

every Euclidean norm. Such high accuracy is gen-
erally not needed, and the chances of intermediate
overflow or underflow are very small. A better stra-
tegy is to leave the precision unchanged, at the
current precision, but to see that the calculations
are redone in higher precision if any overflow or
underflow should occur in the course of the calcula-
tion in current precision. This strategy is also
easily implemented, but requires the use of excep-
tion handlers. This particular example is discussed
in [8]. The point to be made with this example is
that precision control can sometimes be helpful in
handling exceptions.

3. Integer Arithmetic

It is convenient to consider integer arithmetic
before getting into the details of floating-point
arithmetic. The two arithmetics have some points
of contact, so that you cannot specify one com-
pletely without the other. We do not have anything
very unusual to say about integer arithmetic and we
will therefore only sketch the specifications rather
briefly, but there are a few points that need to be
attended to, especially to make sure that the arith-
metic is not only completely specified but also is as
simple as is reasonably possible.

We begin by requiring a function, marint, which
returns a positive integer value, and we require all
legal integer values to be in the closed interval [-
maxint, maxint]. By not allowing a function minint,
which can return a value that might not be equal to
-mazxini, we avoid the possibility of overflow with
expressions of the form —i and abs(i), where i is
an integer variable. With the current implementa-
tionalof Numerical Turing, mazint returns the value
of 2°° — 1.

The prefix operators + and - and the infix opera-
tors +, - and * are defined as one would expect.
Overflow can occur with any one of the three infix
operators.

There is no division operator for integers. If an
expression of the form /3 occurs in a program,
where i1 and j are integers (or integer expres-
sions), the values of i and j are converted to
floating-point form before the division is carried
out (as described in the next section).

The power operator ** is also defined as one
would expect, as long as, in expressions of the form
i ** j,wherei and j are integer expressions, it is
not the case that ¢ = ; =0 or that 5 <0. Of course
an overflow exception can occur. i i =5 =0, a
domain error exception occurs. If j <0, the value
of i is converted to floating-point form before the
power operation is carried out; this case is
described in the next section.

Two infix operators, denoted by div and mod,
provide truncated division and remainder, respec-
tively. A domain error exception occurs if J =0in
either i div § ori mod j . The two operators satisfy
the relation

imodj =1 —(i divj)* j

as long as j # 0.

To complete the specificaticn of expressions
involving integers, we would now need to specify
operator priorities, the order of evaluation when
priorities are equal (as, for example, ini +3j +k),
the comparison operators, and so on. But this
paper is mainly concerned with the basic arith-
metic and closely related operalors, and we will
therefore not go further into a discussion of expres-
sions in general.

4. Floating-Point Arithmetic

We require a function, maaprecision, which
returns a positive integer value. We also require
10 x mazprecision < marint. This last requirement
is a very modest one, but, as we will see later, it
helps make the system simple, especially in the
definition of the getezp function. (In the current
implementation of Numerical Turing mazprecision
is 200.)

Any legal floating-point value can be
represented either by zero, or as a normalized, p -
digit, decimal, floating-point number with an
exponent in the closed interval [-10p, 10p]. A
floating-point number is normalized if its
significand is'in the half-closed interval [.1, 1). The
precision p must be in the closed interval [1, maz-
precision). '

A particular floating-point value can of course
be represented in different ways. For example, the
value 12.34 can be represented as 1.234 x 10! or
1234 x 1072 or .1234 x 102, but only tae last of these is
normalized, according to the convention we use for
normalization.

The keyword reel is used in the declaration of
floating-point variables, as in

var a, b : real
or

var x, y : real(p)

In the first case, which is the usual case, a and b
will have the current precision of the environment
in which they are declared. In the second case, z
and y will have precision equal o the value of p,
where p is any integer expressicn (provided that
value is in {1, mazprecision]).

Within the scope of any precision declaration,
all expressions will be in the specified precision or,
if not already, they will be coerced into that preci-
sion. In particular, any constant or variable that
appears as an expression or part of an expression
will be rounded to a lower precision, if necessary,
before it is used. (Rounding means "proper round-
ing"”, i.e., to nearest, or to nearest even in case ¢f a
tie.) For example, in the following

precision 2
var y : real
precision 8
var x @ real

x = 3.14159
precision 4
y = x*xX + 1.2

the value of each z in the last line will be rounded
to 3.142 before the multiplication is carried out, in

135

precision 4, followed by the addition of 1.2, also in
precision 4. Then the resulting value is rounded to
precision 2 before being assigned toy .

Neither overflow nor underflow can occur in
this example, but it should be noted that such
roundings could, in general, cause overflow or
underflow to occur, because the lower precision has
a smaller exponent range. However, for the pur-
poses of this paper, the more important point to
notice is that, for the specification of any operator
(such as the multiply operator in this case), we can
assume that any argurnents are always in the same
precision and that the result of the operation is also
to be delivered in that precision. A final assignment
may involve another coercion (such as the assign-
ment to ¥y in this case), and could therefore cause
overflow or underflow Lo occur (although not in this
particular case).

The prefix operators + and - in floating-point
arithmetic are as one would expect. However, some
care is needed in specifying the infix operators +, -,
*and /. Our specifications are given in Figure 1.

if op is /7 and b = 0.0 then
result is darein error exception
else
m := rmathamtically exact value
corresponding to a op b
if m= 0.0 then
result is 0.0
else
r = m properly rounded to
p digits and normalized
it exponent of r > 10p then
result is overflow exception
elsif exponent of r < -10p then
result is underflow exception
else
result is r
end if
end if
end if

Figure 1. Specification of a op b where op is
one of +, -, * and /. It is assumed that a and
b are in precision p, where p is in [1, maz-
precision], and that the result is to be
delivered in precision p. (Note that the
exponent range in precision p is [-10p, 10p],
and that "properly rounded” means ‘''to
nearest, or nearest even in case of a tie’.)

The inflx power operator ** was defined in the
previous section for the cases when both arguments
are integers. One of those cases required conver-
sion to one of the cases that are now about to be
considered.

When the first argument has a floating-point
value and the second (the power) is an integer, we
use the notation a**n , and distinguish various cases
in the following way

if both a and n are zero then
result is darain error exception
elsif only n is zero then
result is 1.0
elsif n > 0 then
a**n is (...{(((a)*a)*a)...)*a
% n-1 multiplications
or, withr := 1/a,
a**(-n) is (... (((r)*r)*r)...)*r
% n-1 multiplications
end if

(The result is an overflow or underflow exception if
any multiplication, or the division to evaluate r,
causes overflow or underflow, respectively, to
occur.) Approximations for large values of n can of
course be obtained with fewer multiplications but
derived functions can be developed to exploit such
possibilities. We prefer the more straightforward
specification given here because of its simplicity.
Such derived functions are not more accurate. In
fact, for even larger values of n, approximations
based on the use of logarithm-and exponential func-
tions are both more accurate and more efficient.
This is the approach used when both arguments of
the power operator are floating-point values, and is
therefore included in section 5 alorg with the ele-
mentary and other derived functions.

The quotient and remainder operators, div and
mod, were specified with integer arguments in the
preceding section. If only one of the arguments is
an integer, it is converted to floating-point form
before the operation is carried out. We therefore
have left only to specify these operalions when both
arguments are in floating-point form, and this is
done in Figures 2 and 3. {Note that Lhere can be no
rounding error with mod.)

Directed roundings can be very useful in
scientific computing. The “round up” operations
are specified in Figure 4 and the "round down”
operations are specified in Figure 5. The “‘round
towards zero” operations are closely related (like
“round up” when the result is negative, but like
"round down'’ when the result is positive), but, in
any event, do not appear to be as useful, so they are
not given here in any more detail. The present.
implementation is in terms of functions (e.g.,
addru(e ,b) produces the ‘rounded up” sum of a
and &), but we plan to change to infix operators, at
least for “round up” and ‘“round down”, probably
something like a +'4 for addru(a,b) and a '+ &
for addrd(a ,b), and similarly for -, * und /.

As with the integers, further specification of
expressions involving floating-point numbers would
require a description of operator priorities, rela-
tional operators, and so on, but our main interest
here is in the basic arithmetic operations them-
selves, along with the closely related div, mod,
directed roundings, and some cases related to the
power operator.

if b = 0.0 then
result is darain error exception
else
m := the mathemtically exact value
of a + b rounded to the nearest
integer in the direction of zero
if |m| > maxint then
result is overflow exception
else
result ism
end if
end if

Figure 2. Specification of o div &, where a
and b are in floating-point form.

if b= 0.0 then

result is darmin error exception
else

m :

]

the metheratically exact value
of a + b rounded to the nearest
integer in lhe direction of zero
r := the mathamtically exact value of a-tm
if r = 0.0 then
result is 0.0
else
nr := normaelized formof r
if exponent of nr < -10p then
result is underflow exception
else
result is nr
end if
end if
end if

Figure 3. Specification of ¢ mod b, where a
and b are in floating-point form, and p is
the precision.

5. Other Built-in Functions

The abs function is specified as one would
expect. The type of its result is the same as the
type of its argument. Because of the way in which
integers and floating-point numbers have been
specified (especially that integers must be in the
interval [-maxint, maxint]), no exception can occur
with abs.

The min and maz functions must each have
exactly two arguments, and the type of the result in
each case is the same as the type of its arguments,
if the arguments are of the same type. If the argu-
ments are of different types, the integer argument
is converted to foating-point form before the
minimum or maximutn is determined.

if the "‘round up'’ operation is /
and b = 0.¢ then
result is damin error exception
else
m := the mathamtically exact value
corresponding to a op b
if m= 0.0 then
result is 0.0
elsif m> (1-107) x 10'® then
result is overflow exception
else
result is the algebraically smallest
representable nurber = m
end if
end if

Figure 4. Specification of ¢ ¢p & for the
“round up” versions of +, -, * ard / in preci-
sionp . Arepresentable number in precision
P is zero, or its p -digit normalized form has
an exponent in {-10p , 10z]. The larﬁgst such
number has the value (1-107") » 101" |

if the ''round down'’' operation is /
and b = 0.0 then
result is domin error exception
else
m := the matherantically exact value
corresponding to a op b
if rn= 0.0 then
result is 0.0
elsif m< ~(1-107) x 10'® then
result is overflow exception
else
result is the algebraically largest
representable nurber < m
end if
end if

Figure 5. Specification of a op b for the
“round down’’ versions of +, -, * and / in pre-
cision p. A representable number is as
defined in the caption for Figure 4. The alge-
braically smallest such numter has the
value —(1-107") x 10!% |

Four funclions are available for conversion.
The jloor, ceil and round functiors convert from
float to integer, to “greatest lower bound”, “least
upper bound” and “properly rounded”, respectively.
In each case an overflow exception can occur. The
fourth function, inireal, converts nteger to float.
The resulting float value will be in the current pre-
cision, and, depending on this precision, a rounding
error may have cccurred — but, if so, the result will
be properly rounded. In principle, it is also possible
for overflow Lo occur, but this cannot happen with
the present implementation, sinee the largest
inleger vaiue (231 —-1) is less than the largest
representable float, even in precision 1 (namely
9% 10'%). The intreal function is invoked implicitly
whenever an integer value appears in an expression

137

where a floal is expected, such as with a divide
operator, or in one case with the power operator, or
with assignment to a float variable.

Conversion between floal values of different
precisions is done implicitly when a value in one
precision is used in an expression when the current
precision is different, or when assignment is rnade
to a variable wlose precision differs from the
current precision. If the conversion is from a
higher precision to a lower one, overflow or
underflow may occur.

Two funclions, gefexp and setezp, have proven
to be extremely useful. The result of getexp(a),
where o is a float, is the integer exponent of a if
a #0.0 (and a is in normalized form), but 0 if
a =00. The result of selexp(nx m), where n is any
integer, or integer cxpression, is the normalized
float valuc of a, except that o 's exponent has been
replaced by the value of » if & # 0.0, or 0.0if o = 0.0.
Overflow or underflow occurs if n > 10p or < -—10p,
respectively, where p is the current precision.

We also need a function, precisionof, for deter-
mining the precision of a variable. This function is
normally used in the body of a function or pro-
cedure to determine the precision of one of the
parameters being passed to that function or pro-
cedure. It is necessary to allow (read-only) refer-
ence paramelers, even with functions, to be able to
take advantage of this possibility. Such parameters
are allowed in Numerical Turing, but not in Turing.
There are other siluations in which it is convenient
to use refercnce parameters, and one important
one will be indicated in the next section.

6. Derived Functions

Two properties of “ideal” language facilities
which we identlified in the introduction to this paper
were that the facilities be swfficient for describing
the processes we want to implenient, and that they
also be simple. We hope that the examples men-
tioned so far, along with the specifications
described in the preceding three sections, have pro-
vided good support for our claim that the facilities
described in this paper do satisfy these criteria
reasonably well.

In further support of this claim we will mention
a few of the functions that have been developed with
these facilitics. To begin with, the elementary func-
tions for Numerical Turing were written in Numeri-
cal Turing. 'lThey include sqrt, In, exp, sin, cos,
arctan and the power function, and are based on the
thesis by Abrham [1]. Sce also [5,8]. In each case
they deliver an approxiration that is in error by
less than one unit in the last place, in the precision
of the calling environment, over an appropriate
range of the arguraent. The programs are relatively
slraightforward, mainly becausc it is possible to
change precision when necessary to attain Lhe
desired accuracy, but also because geteap and
setexp arc available.

A function for determining an approximation to
m, to within aboul one unit in the last place. in Lthe
precision of lhe calling cnvironment, is also avail-
able.

A number of functions have been developed for
working with the digits of n number, such as for
determining the next larger number, for determin-
ing the size of a unit in the last place, and so on.
One function that has proven to be quite useful is
realr, where the value of rea'r(a, p) is the same as
the value of a , except that o has been rounded top
digits. (Here @ must be a reference parameter.)

We have also experimernted successfully with
functions for doing complex arithmetic and interval
arithmetic. But, eventually, we plan that at least
complex arithmetic will use the same operators as
are used with float arithmetic, and perhaps interval
arithmetic will use these as well.

7. Concluding Remarks

The third criterion for ‘ideal” language facili-
ties which we identified in the introduction was that
the facilities be implementatle in some reasonably
efficient manner.

Our hardware implementation [2,3] has
recently been retired. Our software implementa-
tion has been improved over what was described in
[7], but a floating-point intenuive subprogram, such
as a subprogram for approximating the sine func-
tion, is still quite slow, as one would expect.

For efficiency, we plan .to develop a co-
processor to support CADAC erithmetic. The actual
add and multiply times for a particular precision,
say 14 or 15 decimal digits, will be somewhat longer
than for a corresponding fixed precision implemen-
tation — perhaps about one und one half times as
long, depending on design details.

But these times are only one factor in deter-
mining the overall efficiency of a system. We must
also, for example, consider memory access times,
and the extent to which these times might overlap
with add and multiply times. And we must consider
the advantages in being able to control the preci-
sion, not just to get more accuracy at critical points
in a program, but also for case of pProgramming
(which will sometimes thereby be more efficient),
and proving programs correcl.. In some cases, one
can even solve problems which would otherwise be
practically impossible to solve.

There can of course be no single measure of
efficiency for all purposes. But, for some purposes,
we believe a reasonably efficient implementation of
CADAC arithmetic is possible, and would be capable
of supporting language facilities which are very con-
venient (sufficient and simple) for numerical com-
puting.

Bibliography

1. Abrham, A. Variable Precision Elementary
Functions. M.Sc. thesis, Department of Com-
puter Science, University of Toronto, Toronto,
18856.

2. Cohen, M.S., Hamacher, V.C. and Hull, TE.
CADAC: An Arithmetic Unit for Clean Decimal
Arithmetic and Controlled Precision. Proceed-
ings 5th Symposium on Computer Arithmetic
(IEEE Computer Society, Ann Arbor, Michigan,
1981}, 106-112.

10.

Cohen, M.S., Hull, T.E. and Hamacher, V.C.
CADAC: A Controlled-Precision Decimal Arith-
metic Unit, JEEE Transactions on Computers,
vol. C-32, 4 (1983), 370-377.

Holt, R.C. and Cordy, J.R. The Turing Language
Report. Technical Report CSRI-153, Department
of Computer Science, University of Toronto
(revised July 1985). (An earlier version of this
report also appears as an appendix in a text by
Holt, R.C. and Hume, J.N.P. 4n Mmtroduction to
Computer Science Using the Turing Program-
ming Language. Reston, Reston, Va. (1984).)

Hull, TE. and Abrham, A. Properly Rounded
Variable Precision Square Root. ACM Trans.
Moth. Softw. 11, 3 (Sept. 1985), 229-237.

Hull, TE. and Abrham, A. Variable Precision
Exponential Function. ACM Prans. Math. Softw.
12, 2 (June 1988), to appear.

Hull, TE, Abrham, A, Cohen, M.S., Curley, AF X,
Hall, CB., Penny, D.A. and Sawchuk, J.T.M.
Numerical Turing. ACM SIGNUM Newsletter 20,
3 (July 1985), 26-34.

Hull, T.E,, Cohen, M.S,, Sawchuk, J.T.M. and Wort-
man, D.B. Exception Handling in Scientific Com-
puting. In preparation.

Knuth, D.E. The Art of Computer Programming,
vol.2: Seminumerical Algorithms. Addison-
Wesley, Reading, Mass. (1969).

Kulisch, Ulrich W. and Miranker, Willard L.
[Eds.]. A New Approach to Scientific Computa-
tion. Academic Press, New York (1983).

