Evaluating Elementary Functions With
Chebyshev Polynomials On Pipeline Nets*

Kai Hwang, H.C. Wang, and Z. Xu

Department of Electrical Engineering-Systems

University of Southern California
Los Angeles, CA 90089, U.S.A.

Abstract: Fast evaluation of vector-valued elementary
functions plays a vital role in many real-time applica-
tions. In this paper, we present a pipeline networking
approach to designing a Chebyshev polynomial evalua-
tor for the fast evaluation of elementary functions over
a string of arguments. In particular, pipeline nets are
employed to perform the preprocessing and postprocess-
ing of various elementary functions to boost the overall
system performance. Design tradeoffs are analyzed
among representational accuracy, prccessing speed and
hardware complexity.

1. Introduction

Numerical approximation of elementary functions is
often performed via table lookup operations on approxi-
mated values stored in ROMs4]. Another approach is
to use CORDIC[14] or convergence transformations|2).
The third approach is to use polynomial evaluators such
as Taylor's series or Chebyshev polynomials[3,14].
Agarwal et al. described a method which is based on a
table lookup technique combined with polynomial
approximation[l]. Tung and Avizienis[13] have
presented a combinational arithmetic design for the
approximation of functions. Their design is linearly
pipelined. Our design, being quite difierent from theirs,
is based on a dynamic systolization approach, called
pipeline networking[9]. Pipeline nets ure programmable
and they support both linear and nonlinear interconnec-
tions among multiple arithmetic units,

The pipelined polynomial evaluator being presented
can be used for fast evaluation of wvarious elementary
functions. Such functional pipelines ae needed for vec-
tor processing of elementary functicns, especially in
real-time signal processing and control applications[17].
The quality of numerical approximation of elementary
functions is assessed by accuracy, speed, and cost.
Speed is determined by the rate at which the caleculated
value converges to the true value. It is important to
have faster convergence rate in approximation

an

* This research was supported in part by an NSF grant DMC-84-
21022 and in part by an AFOSR grant. 86-0008.

CH2419-0/87/0000/0121%01.00 ® 1987 IEEE

121

process, which leads to a saving in both computation
time and hardware complexity. Accuracy is measured
by the error incurred in the approximation scheme.
Speed and accuracy are usually two conflicting goals and
in many situations it is necessary to sacrifice one for the
other. Approximation schemes based on Chebyshev
polynomials are found to embrace both accuracy and
efficiency.

Elementary functions are categorized into exponen-
Hial, logarithmic, trigonometric, inverse trigonometric
and other transcendental functions. Exponential func-
tion, Ezp(z)=e®, assumes valid values on the entire real
axis and contains no singularity. Hyperbolic functions
are defined in terms of exponential functions, such as
Cosh(z)=(e*+e~*)/2. The logarithmic function, Ln(z),
is the inverse of the exponential function. Tri-
gonometric functions are either even or odd functions
and contain only either even or odd powers of z in their
respective power series expansions. Since trigonometric
functions are periodie, inverse trigonometric functions
are all multi-valued. While Sin~Y(z) and Cos™(z) are
defined over the interval [-1,1], Tan(z), Cot™Y(z),
Sec™Y(z) and Csc™Y(z) are defined over the entire real
axis. In digital arithmetic, we are mainly interested in
"bounded" elementary functions that have finite values
within machine representable ranges.

The rest of this paper is organized as follows. In
Section 2, Chebyshev polynomials are reviewed for our
purpose. Section 3 presents a hardware design for the
evaluation of scalar elementary functions. A pipeline
network conversion technique is developed using cut sets
in Section 4. The design of an integrated system for the
evaluation of vector-valued elementary functions is
presented in Section 5. Section 6 elaborates on applica-
tion and other related issues.

2. Chebyshev Polynomials Revisited

A Chebyshev polynomial T,(z) of the n-th order is
defined as:

T, (z)=Cos(nCos™'z), —1<z<I.

{1

Obviously, |T,(z)}<1. It is easy to obtain the first

few low-order Chebyshev polynomials, such as
To(z)=Cos(0)=1 and T,(z)=Cos(Cos~'z)=z . For
higher-order Chebyshev polynomials, the following
recurrence formula is used:

T"+1($)=2IT"(I)—-T"_1(I), n 2l (2)

The above recurrence relation enables us to derive higher
order polynomials recursively and provides z convenient
way to sum up such polynomials, although other
methods exist that allow for more direct expansion of
T,(z) [3]- By applying the formula, it can also be shown
that the leading coefficient of T,(z) expressed in terms
of z is equal to 2”71,

The orthogonality property bears a strong relation
with the zeros of a Chebyshev polynomialli]. Let z; be

the zeros of T,(z). It is easy to show that
2;=Cos{(2i+1)7/(2n)) for i=0, - - - ,n-1. For any nonne-
gative integers & and | with k+! <2n, we have:

n 0 k;‘gl

> Te(z:) Tu(=;) ={(" +1)/2 k=1:£0 3)

i=0 n+l1 k=1:=0

Chebyshev polynomials also satisfy the minimaz
property {3]. Suppose P,(z)is defined over the interval
[-1,1] as a polynomial of order n with leading coefficient
being 1. Then max |P,(z)[>2'"". Moreover, the equal-
ity holds, if and only if P,(z) = 2" T, ().

Chebyshev polynomials have been used in both
polynomial and rational numerical approximations.
Chebyshev interpolation technique will be used in the
ensuing discussion. Consider a function f(r) defined in
the interval [-1,1] that is to be approximated by a poly-
nomial P,(z) of degree <n. One way to determine P,(z)
is to choose a set of n+1 distinct points zg,zy,29 - - 2,,
at which f(z) and P,(z) have the same values. These
nodes constitute a net. By Lagrange interpolation
theorem, P,(z) is uniquely determined by the z’s.
Furthermore, if f(z) has a bounded (n+1)-5t derivative
7®+(z) in the range [-1,1}, then the alsolute error
between f(z) and P,{z) can be written as:

|Po(z)—f (z) |=n(z)f "*&)/(n+1) |, (4)

n
where n(z)=[](z—2;) is an (n+1)-order polvnomial with
im0
leading coefficient equal to 1, and ¢ ¢ [-1,1] is a number
dependent on z. The error (remainder) is zero at the
selected points where f(z) and P,(z) coincide. We wish
to minimize the absolute error. By the minimax pro-
perty, the magnitude of #(z) is minimized, if and only if
it equals 27" T, ,,(z). mz) is made equal to 27" T, (z)
by taking z;’s to be the zeros of T,,(z); that is,
z;=Cos((2¢+1)7/(2(n+1))), for i=0,---,n. Then we
have:

[P, (2)—f (z) |= 1 Tpia(2)f /2" (n+1))] (5)

Assume the absolute value of f(**1)(z) in [-1,1] is upper
bounded by M. Then the absolute error incurred in
approximating f(z) by P,(z) in [-1,1] is bounded by the
following relation:

[f (2)=Pn(2) IS M /(2" (n+1))) (6)
From this, the bound on relative error can be derived.
In a truncated Chebyshev series,

P,(2)=1/2 cote Ty(z)+ -+ +c, To(z), the coefficients,
¢'s, are obtained using the orthogomality property as
follows:

=2 }"%f (@) Ty (z:)/(n+1), 0<k<n, (7)

where z;’s are the zeros of T, (z).

Chebyshev interpolation possesses several attractive
features. In a truncated Taylor series of order n, the
error is roughly proportional to 1/(n+1)!, whereas the
error incurred by Chebyshev interpolation is asymptoti-
cally 1/2"(n-+1)l. Another distinction is that Chebyshev
interpolation tends to distribute the errors evenly across
the entire interval; whereas the error grows monotoni-
cally in a truncated Taylor series.

Chebyshev approximation method can be applied
to functions defined in any arbitrary interval [a,b]. A
simple linear transformation will convert a variable, y,
in the interval [a,b] to a corresponding variable, z, in
the interval [-1,1}. The transformation is specified by

the relation y=(b—a)z/2-Hb+a)/2 or
z=(2y—{(b+a))/(6—a). The error incurred in using
Chebyshev interpolation is found to be

2M((b—a)/4)"*'/(n+1)! for interval [a,b]. Chebyshev
polynomials defined over [0,1] are called shifted Che-
byshev polynomials, denoted as T'*(z) =T (2z—1).

3. Evaluation of Scalar Elementary Functions

A scalar function evaluator using Chebyshev
approximation consists of three components as illus-
trated in Fig. 1. The preprocessing unit performs range
reduction on the incoming data arguments; the Che-
byshev approzimator evaluates the truncated Chebyshev
series and the postprocessing unit restores the function
values with respect to the original arguments. The
preprocessing and postprocessing tasks are complemen-
tary and closely interrelated. They are also function
dependent.

The primary objective of range reduction is to
reduce the number of terms in the approximating Che-
byshev series. This is very important for the method to
be practical. By performing range reduction, we usually
get a sharper contraction of the Chebyshev coefficients

2

Preprocessing Unit

{ P
Multiplier
o
% /
g der
g
& .
<
: O
E
)
P
] X

@&@i plier
Adder

7 --DAccumulator \:)

Postprocessing Unit

4 (@)

Figure 1. A scalar evaluator of eleme ntary functions

and thus faster convergence rate. This means
equivalently that the number of terms needed to achieve
a prescribed precision is diminished. Another motiva-
tion for range reduction is to avoid singularity in a
given interval. For example, one of tlhe singular points
of Tan(z) occurs at /2 and it would be very difficult to
evaluate the function in a range which contains the
singular point.

Range reduction is aided by taking advantage of
such properties as periodicity, symmetry, and
recurrence relations of elementary functions. This is
clarified below with an example. Typically, a floating
point number is represented by the triple <s,m,e> ==
< sign, mantissa, exponent> with an implicit base of
2. We adopt the convention that for regative numbers
s=1 and for positive numbers s=0. Also, the sign
component of a number z is referred as z,, and similarly
for magnitude and exponent components. The program
graph in Fig. 2 illustrates a systematis way to reduce

the range of z in y=Sin(z). By the intrinsic property of

sine function, z can be any machine representable

number. The reduction procedure consists of the follow-
ing four major steps:

Step 1. Compute u=(2/n)z.

Step 2. Compute v=u—4| (u+1)/4 |

Step 3. Set z=v if v<1; set 2=2—v otherwise.

Step 4. Using Sin(~z)=—Sin(z) to reduce the range
of z to [0,1]. Set the sign bit y,=1 if z<0;
set y,=0 otherwise.

After the above range reduction, Sin(z) is evaluated as
Sin(7/2)z, which is approximated by shifted Chebyshev
polynomials. The sign bit y, is sent to the postprocess-
ing unit which ensures that the final result is correct in
sign with respect to the quadrant the original argument
Basically, range reduction in this case
amounts to folding the entire real axis into a relatively
small interval by exploiting the periodicity property of
the function in question.

z lies in.

z 2/
N /

EPY
1

Sin z=(—1)"Sin (1/2)z
z ((~00,00), 2 €(0,1);

where
v=d|(2z/m+1)/4
v if v<1
22— ifu>1
0 if 220
%= if 2<0
z=]|z]
“ 0 1
ABS
> wex]
2
Ys

Figure 2. Program graph showing the preprocessing

of the Sin(x) function

The number of terms used in the sruncated Che
byshev series is dictated by the accuracy demand in the
elementary functions being approximated. The IEEE
floating-point standard [10] has four formats with
mantissa lengths of 24, 32, 53 and 64 “its. These are
recommended for single, single extended, Jouble and dou-
ble extended precisions, respectively. The numbers of
terms needed for several representative functions are
summarized in Table 1. Relative error is used as the
metric as it is more relevant. Of course, the value n also
depends on the interval of approximation. After n is
determined, the coefficients can be precaleilated for vari-
ous functions and stored in ROMs for later use. We
recommend that n ==4, 5, 8 and 10 approximation
terms be used for the mantissa lengths of 24, 32, 53, and
64 bits, respectively.

Table 1. Number of Terms Needed in Approximating
Various Elementary Functions.

) Mantissa length (in bits)
Function Range
24 32 53 64
e* [0,1/16] 3 4 6 8
Ln z [1/2,1] 3 4 6 8
Sin z [0,7r/2] 4 5 8 9
Cos z [0,7/2] 4 5 8 9
Tan z [0,7/8] 4 5 8 |10
Tan"z [0,Tanm/12] 3 5 8 10

The Chebyshev approximator shown in the middle
portion realizes the recurrence relation to generate Che-
byshev polynomials of increasing orders, which are then
summed up iteratively in the adder-accumulator pair.

The value n is loaded into a counter and subsequently
decremented until it becomes zero. For evaluation of
scalar functions, this unit often appears as a coprocessor
attached to a processor chip.

4. Pipeline Network Conversion Technique

When vector elementary functions are to be
evaluated, the scalar function evaluator does not provide
satisfactory performance. In this section, the concept of
pipeline networking is introduced together with the dis-
cussion of a network conversion technique. The method
will be used in the design of a pipelined elementary
function evaluator.

Figure 3 shows the basic structure of a pipeline net.
Multiple functional pipelines are interconnected through
two crossbar networks to form a pipeline net (Fig. 3.a).
The pipelines are multifunctional; that is, different
arithmetic or logical operations can be performed at
different times. The registers are used to hold operands
and intermediate or final results. The buffered crossbar
networks are used to provide dynamic connecting paths
among the functional pipelines and the data registers.
Programmable delays are inserted at all crosspoints in
the crossbar network under instruction control (Fig.
3.b). Pipeline nets can be viewed as a programmable
systolic array, which can be dynamically reconfigured to
evaluate different algorithms. The reconfigurability of a
pipeline net provides the necessary flexibility in imple-
menting most Livermore loops, matrix algebra, complex
arithmetic, polynomial evaluation, and signal/image
processing algorithms as detailed in 8]

To start with, a computation process is represented
as a program graph G = <V\E,f, f,>, where V is the

Registers Functicnal Pipelines

)

Q FP I

e —y ® | 5 ?g L] 5

g 2 i

£ . 2+ ’ 23

g Oz . Ok
3] B

£ . £z 5 <

2 o «

& = - =l

5 o R A FP 5

<

&

e
r?“—‘ -
12

—~— —
S —
A
]
'
Programmable delays

(a) Schematic of a pipeline net

(b)The structure of 4x4 buffered crossbar network

Figure 3. The architecture of a pipeline net

set of nodes (operators), E is the set of directed arcs
showing the data dependency relationships among the
operators, and f; and f, are two mapping functions
that associate nonnegative delays with ares and nodes,
respectively. A program graph in which each node has a
delay no greater than k is called a k—graph. Thus, a 0-
graph is a graph where each node has a delay of 0.
Data are input to the program graph via the node Vi
and results are output via v,,. The interval between
successive data inputs is called data spacing. A node
delay of ¢ means that the function pipeline which carries
out the operation is composed of ¢ pipeline stages,
whereas delays on arcs are inserted to ensure that data
arrive at the individual function pipelines in a systolic
fashion.

A cut set of a program graph is the minimum set of
arcs, the removal of which separates the graph into
two subgraphs, with the left one containing vy, and the
right subgraph containing v,,. Righibound ares are
those running from the left subgraph "o the right sub-
graph and those running in the reverse direction are left-
bound. A series of operations can be upplied to a pro-
gram graph to translate it into an equivalent graph- a
graph that delivers exactly the same octput when given
the same input. Two equivalent graphs may have
different arc delays and node delays. Listed below are
four graph transformations which facilitate the deriva-
tion of equivalent graphs:

(1) Shifting several units of delays from a node to
all incoming arcs or all outgoing arcs, or vice
versa;

Multiplying all arc and node delays and data
spacing by the same positive factor;

(2)
(3) For any cut set, shifting the same amount of
delays from all rightbound ares to all leftbound
arcs, or vice versa;

Splitting any node in a O-graph into a cascade
of 0-delay nodes connected by (-delay ares.

(4)

Intuitively, each of the above graph transformations
involves moving or scaling delays on the ares or nodes
while preserving the data dependency relationships in
the original program graph.

Network conversion technique refers to a method
which makes use of the above graph transformations to
convert a given program graph into a pipeline net
configuration corresponding to a k-graph. This is illus-
trated below by an example. Consider the program
graph in Fig. 4.a, with delays associated with each node
and arc. We want to convert it into a 4-graph with
delays 2, 3, 3, 4 for nodes v1,22,03 and u4, respectively.

The first step is to delete some of the arcs from the
original graph to obtain an acyclic grapl, which is then

125

topologically sorted to get a linear ordering of the nodes
(Fig. 4.b). After that, those arcs previously removed are
reattached. Node delays are moved to incoming arcs
using transformation (1) to obtain a O-graph (Fig. 4.c).
Cut sets are drawn between neighboring nodes in the 0-
graph. Transformation (2) is used as appropriate to
scale up the delays on each arc by a factor of 2 (Fig.
4.d). Application of transformation (3) to the successive
cut sets makes the delays of all incoming arcs at least as
large as the required node delays. Finally, delays on all
incoming arcs of a node are shifted to the node by the
designated amount. The result is a 4-graph (Fig. 4.e),
from which the pipeline net is constructed (Fig. 4.f). The
four pipelines, corresponding to v1 through v4, have 2,
3, 3, and 4 stages, respectively. Note that the arc delays
among the pipelines are different from those shown in
Fig. 4.a. However, the resulting pipeline net performs
exactly what the program graph dictates.

5. Evaluation of Vector Elementary Functions

In this section, an integrated system for fast
evaluation of vector elementary functions is presented.
This type of processing is characterized by the repeated
evaluations of the same function on a large number of
arguments. We first address the issue of designing the
preprocessing and postprocessing units. This will be fol-
lowed by a description of the design of a pipelined Che-
byshev approximator.

A. Design of the Preprocessing and Postprocessing Units

Because preprocessing and postprocessing are both
function dependent, it is essential that these units be
dynamically reconfigurable to best match with the
different processing requirements. As discussed in the
previous section, pipeline net provides very flexible inter-
connection patterns among functional pipelines and thus
can satisfy the fundamental requirement easily.

Figure 2 shows the preprocessing program graph of
Sin{z). From the graph, the network conversion tech-
nique can be applied to derive the final pipeline net
configuration. First, cut sets are used to divide the
graph into several sections as illustrated in Fig. 5 by
dashed lines. In order to achieve the highest efficiency,
all the path delays across sections must be the same,
counting both node delays and arc delays. This means
that the operands needed for an operation will reach the
node at the same time.

Assume that addition/subtraction, multiplication,
floor and MPX operations each take 2, 4, 2, and 1 pipe-
line clock periods, respectively, as shown in the figure.
(In fact, the multiplications in this example can be done
by left or right shifting the arguments and the time

(a) A program graph is shown with delays associated
with each node and arc. We want to convert it
into a 4-graph with delays 2, 3, 3, 4 for nodes
v1,v2,v3 and v4, respectively.

(b} Some ares are deleted from ihe original graph to
obtain an acyclic graph, which is then topologi-
cally sorted to get a linear ordering of the nodes.

(¢) Those arcs previously removed are reattached.
Node delays are moved to incomingz arcs using
transformation (1) to obtain a O-graph.

(d) Cut sets are drawn between neighboring nodes in
the O-graph. Transformation (2) is used to scale
up the delays on each arc by a factor of 2.

{(e) Application of transformation (3) to the succes-
sive cut sets makes the delays of all incoming arcs
of a node at least as large as thé desired node
delay. Then delays on all incoming arcs of a node
are shifted to the node by the designated amount
to obtain a 4-graph.

(f) The final pipeline net is constructed from Fig.4.e.

Figure 4. An example illustrating the network conversion technique

required may be reduced.) Arc delays are Jeduced based
on an "equal-path-delay" principle and irserted on the
proper data paths. Fig. 6 depicts the final pipeline net
configuration for the preprocessing of the Sin(z) fune-
tion.

The pipeline net configuration obtainad in Fig. 6 is
specially tailored to the preprocessing operations for the
Sin(z) function. As mentioned before, since the pipeline
net is reconfigurable, it can also implement the prepro-
cessing unit for other elementary functions. The
reconfigurability is mainly supported by the buffered
crossbar network, which dynamically establishes the
connecting paths among the functional pipelines. The
postprocessing unit can be similarly constructed using
another pipeline net.

B. Design of the Chebyshev Approzimator

A pipelined evaluator of the truncated Chebyshev
series results from the unrolling of the DO loops implied
in the summation process. In Fig. 7.a, we present a
linear pipeline implementation. The design is composed
of several identical segments. The functional design of
each segment and the connection between segments are
shown in Fig. 7.b. This linear pipeline is fixed for all
elementary functions, as long as the number of pipeline
segments is adequate for the prescribed accuracy. The
number of pipeline segments used is equal to the number
of approximating terms used, which is different for
different functions. We select the largest value in each
column of Table 1. For example, based on Table 1, at
most 10 segments are sufficient for the listed functions

ADD

Figure 5. Cut sets for transforming the program graph in

Figure 2 into a pipeline net configuration

(Numbers in nodes correspond to delays
except

and all edges have zero delays,
edge a, b, and c have 12, 2,
delays respectively).

and 2

in IEEE double extended floating point data format
over the specified intervals.

There are two separate data paths along the pipe-
line. One path is used to compute the Chebyshev terms
and the other path computes their sumnmation. Because
these two paths are independent and consist of essen-
tially the same amount of hardware (multipliers,
adders/subtractors, and latches), they can proceed in
parallel synchronously. While the first path is comput-
ing Ty, the second path is accumulaling partial sum

y.~<z)=co/2+z'3 ¢ T;(2)
P2

the last segment, a simple mulsiplier-adder is used to
add ¢, T, to produce the final summation.

up to term T; in segment i. In

The arithmetic operators in each segment can be
implemented by several pipeline stagss, just as the
operators in the preprocessing and postprocessing units.

2/« MPY FLR
: —9 | T
i 1/4- L1,
L T T T I TITTIT]
Delay
z
ABS

Figure 8. A pipeline net realization for the preprocessing

of the Sin(x) function

2z ‘0/22 1
31 ——C 5
:. : l Vi-1 ¢ 1,22 Tia
P
€51 ——t K
Multi | | Multi-
plier plier
[—L &
Adder Adder
Ci+1 —E S
y
(a) (b)

Figure 7. A pipelined Chebyshev approximator

127

(a) The pipeline structure
(b) Functional design of each pipeline segment

Each stage works on a different data argument at the
same time. Such overlapped evaluations is essential in
maintaining a streamlined processing as needed in many
real-time applications. By using pipeline nets for the
preprocessing and postprocessing units, a balance in pro-
cessing speeds is achieved among these three units.
Moreover, pipeline stages in all three units can operate
at the same clock rate.

As is obvious from the above discussion, the pipe-
lined elementary function evaluator as a whole is a cas-
cade of three pipeline conglomerates. The time required
to set up the two pipeline nets for the preprocessor and
postprocessor imposes some overhead in execution time.
Denote the total number of pipeline stages in the overall
system by M and the clock period by 7. Also let v be
the setup time for the pipeline nets and 8 the network
delay through the buffered crossbar networks. Both -~
and £ are multiples of 7. For a vector of length N for

the same function to be evaluated, “he throughput 4 is
found to be =MN /((y+B+M+{(N~1)]7).

The system described above is most efficient in pro-
cessing long vectors. In fact, the maximum throughput,
M/7, is obtained when N>>~+8+M. This peak perfor-
mance is intuitively correct, because 1/7 represents the
maximum throughput (frequency) of each stage and
there are M stages connected in the cascade.

6. Conclusions

We have streamlined the the numerical approxima-
tion using Chebyshev polynomials and presented an
innovative arithmetic pipeline design for fast evaluation
of vector-valued elementary functions. The rapid con-
vergence rate of Chebyshev polynomials appeals very
much to the IEEE floating point standard. In practice,
this design of the elementary function evaluator can be
expanded into a multifunctional arithmetic processor,
which can perform polynomial divisicn([16], vector reduc-
tion[12], matrix algebra[7], array multiplication[5], vec-
tor compound functions[9], image processing and pat-
tern analysis[6] and real-time applications[11].

Ever since the work of Tung and Avizienis[13],
there has been very little progress made in designing
pipelined Chebyshev approximators. This article
presents the pipeline net approach to handling both
preprocessing and postprocessing plases in evaluating
various elementary functions. The pipeline nets are
under instruction control to reconfizure their internal
connections for various elementary functions. To save in
hardware, the middle phase of Chebyshev approxima-
tion is realized with a fixed pipeline structure.

In this paper, we demonstrate the design of a vec-
tor elementary function evaluator at the logic level.
Details of implementation in VLSI or other hardware
techniques are not within the scope of this paper. How-
ever, it would be interesting to see the proposed logic
structure be implemented with state-of-the-art VLSI
electronics or even with the bistable optical gate arrays
as proposed in [15].

References

[1] Agarwal, R.C., Cooley, J.W., Gustavson, F.G.,
Sheareer, J.B., Slishman, G., and Tuckerman, B.
"New Scalar and Vector Elementary Functions for
the IBM System/370", IBM J. Res. and Develop.,
vol. 30, no. 2, March, 1986.

(2] Chen, T.C. "Automatic Computation of Exponen-
tials, Logarithms, Ratios and Square Roots", IBM
J. of Res. and Develop., July 197%.

(3]

[4]

[5]

[6]

(71

[8]

[9]

(1]

11]

[12]

(13}

(14]

(18]

(6]

Fox, L. and Parker, I.B. Chebyshev Polynomials in
Numerical Analysis , Oxford University Press, Lon-
don, 1968.

Hwang, K. Computer Arithmetic: Principles, Archs-
tecture and Design, John Wiley & Sons, New York,
1985.

Hwang, K. "Global and Modular Two's Comple-
ment Array Multipliers”, IEEE Trans. Comp., vol.
C-28, no. 4, April, 1979.

Hwang, K. "VLSI Computer Arithmetic for Real-
Time Image Processing”, in VLSI Electronics:
Microstructure Science, vol. 7 (Einspruch, Ed.),
Academic Press, N.Y. 1984.

Hwang, K. and Cheng, Y.H. "Partitioned Matrix
Algorithms for VLSI Arithmetic Systems”, IEEE
Trans. Comp., vol. C-31, no. 12, December, 1982,

Hwang, K. and Xu, Z. "Pipeline Nets for Com-
pound Vector Supercomputing”, IEEE Trans.
Comp., Accepted to appear 1987.

Hwang, K. and Xu, Z. "Multiprocessors for
Evaluating Compound Arithmetic Functions",
Proc. of the Tth Symp. on Computer Arithmetic,
Urbana, Illinois, June 4-6, 1985.

IEEE Standard 754 for Binary Floating-Point Arith-
metic, IEEE Press, New York, 1985.

Milutinovic, V., Lopez-Benitez, N., and Hwang, K.
"A GaAs-Based Microprocessor Architecture for
Real-Time Applications”, IEEE Trans. Comp.,
Accepted to appear 1987.

Ni, L.M. and Hwang, K. "Vector Reduction Tech-
niques for Arithmetic Pipelines", IEEE Trans.
Comp., vol. C-34, no. 5, May, 1985.

Tung, C. and Avizienis, A. "Combinational Arith-
metic Systems for the Approximation of Fune-
tions", Proc. Spring Joint Computer Conference,
1970.

Valder, J.E. "The CORDIC Trigonometric Comput-
ing Techniques”, IEEE Trans. Comp., vol. C-9, no.
9, September, 1960.

Xu, Z., Hwang, K., and Jenkins, B.K. "Opcom: An
Architecture for Optical Computing Based on Pipe-
line Networking”, Proc. of the 20th Int’l Hawaisi
Conference on Systems Sciences, Kona, Hawaii,
Jan. 6-9, 1987.

Zak, S.H. and Hwang, K. "Polynomial Division on

Systolic Arrays", IEEE Trans. Comp., vol. C-34,
no. 6, June, 1985.

