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ABSTRACT

Recently the complex residue number system, or
RNS, has been a subject of intense study. One
special embodiment of this theory is the single
modulus complex RNS processor which suggests both
implementation and performance advantages. In this
paper these conjectures are tested in the context
of a CMOS gate array design and are found to be
valid.
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I. INTRODUCTION

Over the past several years there has appeared

numerous articles advocating the use of the
quadratic residue number system or QRNS, for
performing complex algebraic operations [1-6]. As

a subset of the more general theory of the residue
number system (RNS), it has been shown to offer low

multiplication complexity but, 1like other RNS
tools, suffers from an inability to efficiently
service scaling, magnitude comparison, or number

system conversion calls. In an attempt to overcome
this objectionable feature, the single modulus
QRNS, or SM-RRNS was proposed [6]. Based on Fermat
primes p = 2" + 1 for n = 2", the SM-QRNS was shown
to offer several advantages other QRNS
embodiments. They were:

over

i compared to the general QRNS

e scaling greatly simplified

¢ magnitude comparison greatly simplified

e sign detection trivial

e capable of assimilating existing high

performance
radix-2 hardware into its design
i1 compared to the RNS and conventional binary

weighted systems

& reduced computational complexity

e reduced computational latency

IT. THE SM-QRNS
Let Z [i] = {atibla,b e Z ; i = SQRT(-1)}.
The ring Vi [i] 1is called the "ring of Gaussian

integers moduto p. A complex CRNS number of the

form a + ib evaluates to i if a = 0 and b = 1. If
i§2Z , then it is considered to be gmaginary.
That 1@, there is no i ¢ Z such that i© = -1 mod

p and i is historically caPled a nonquadratic root

and -1 is a nonquadratic residue.” However, it 1 €

Zp, then i s a quadratic root and a + ib is
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, then
goncept
Now define

€ Z(p,p) with

rSal. For example, if p = 17 and i = 4 ¢ Z
i© =16 = -1 mod 17. For such moduli the
imaginary operation 1is void,
VA =7, x Z, and (a, b), (c, d)
r&?ég)of cé%posi%tion given by:

of an

addition:

(a,b) + (c,d) = ({a + c) mod p, (b + d) mod p)

multiplication:

(a, b)(c, d) = (ac mod p, bd mod p) (1)
Even though addition requires two (2) real adds (as
in the CRNS), multiplication requires but two (2)
real multiplies (versus 4 products and 2 adds in
the CRNS)! The isomorphism between Zp[i] and
Z(p,p) has been well studied and for p a'Gaussian

prime satisfying p = 4k + 1 (in fact, it can be a
product of Gaussian primes). The isomorphism given

by ¢, maps a complex number ¢ = a + ib (i =
SQRT(-1)) into a two tuple (z, z*) as follows:

(a, b) 2 (z, )

z = (a + jb) mod p;

z* = (a -~ jb) mod p;

2 z-1mod p; je Z,

a= 2'1(2 + z*) mod p;

b = (2§)7X(z - z*) modp (2)

In (2), j denotes a quadratic root. In fact there
are two such roots (say j, and j2) which are both
additive and multiplicative inverses of each other.

R specific choice of Gaussian primes are those
which are also Fermat primes of the form p = 27 +
1, n= s, N =2,4, 8, 16. For the case where n =
32, p is a composite Gaussian prime and therefore
also an admissable modulus. As such, the critical
parameters found in equation 2 take the form:

2l el g, o on/2,

7l 4 - /2 (3)
which can be seen to be the essentially radix 2
scaling operations. Based on this result, a SM-
QRNS of the type suggested in Figure 1 can be
designed, The functional elements will be

summarized in the next section.




11I. SM-QRNS ARCHITECTURE

The SM-QRNS unit suggested in Figure 1
consists of the following function modules.

i) Negator (see Figure 2): Note, =-x = (p -
x|} mod p = " + 2 + x) mod p where X denotes
bitwisg complement of X. Then %f X =
T a12 it follows that -x = I b12 where:
by = 29
b1 = a1
b2 = ala2 + ala2
bn = ay eee a,
+ (a1 A, e + an_l)an
ii) Modulo Adder (see Figure 3): The mod p

adder consists of an n-bit fast carry-lookahead
adder, a modulo p mapping unit, and control
logic (compare network). The mapping unit is
designed to transfer S = A + B into V = (A +
B)modp or V = S5 - P if S » p, using the
following procedure [7]:
a. Starting with the LSB of S, complement all
"0's" up to the first encountered “1."
b. Complement the first encountered "1."
c. Leave all other bits of greater
significancy unchanged.
More specifically,

v =S

0 0

V1 = 3051 + SO Sl

v, =558 Sptisg? $1)8;
Vn_1 = 5051 ees Sn_l

i11) Modulo p Multiplier (see Figure 4): The
moduTo p multiplier consists of an unsigned
multiplier and a network to process some
exceptions:
a. 1f both inputs equal 2", then set the
product to 1.
b, If only one input equals 2" (say A) then
set the product to -B

IV. SM-QRNS SUPPORT

The SM-QRNS architecture displayed in Figures
1 through 4 consists of a number of common
macrocelis called modules. They are summarized
below and shown in Figure 5.

a. Scaling by J }Eq. 3)
jx mod p,= 27X g = X41»
X = ZR/Z + & HI

= X1 * Mo
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b. Sci1ing by 2-1 Seq. 3)
2°*X mod p = (2 B 1)XL0 + XHI;
X = ZXHI XLO
X -1
c. Scaligg by (2j)~" (eq. %a
- ! 2-1) .
(ZJ) X, m = X -2 / X >
X = 2("9Q+R)XHIH1 XL Lo

V. SM-QRNS GATE ARRAY DESIGN

The SM-QRNS architecture reported in the
previous section were tested using TEGAS (TEst
Generation And Simulation janguage) and the
16C20000 Macro Library which are parts of the GE
semiconductor Gate Array design tool kit. Each
array cell consists of three CMOS devices using 2
micron gate-length and the array itself may consist
of up to 54,000 internal transistors. With these

puilding blocks, the following modules were
designed:

NEG: Negates modulo p MUTT: Product modulo p
SUM: Carry lookahead adder JX: scale by J

MDL: Sum modulo p ITW0: scale by 27

MUL: Carry-save unsigned 1TWOJ: scale by (Zj)'1

multiplier

For expository reasons, the MDL module will be
developed more fully. The MDL accepts data from
the adder and modifies the received data modulo p
if S » p or passes it unaltered otherwise. A
section of this logic is reported in Figure 6.
Such data is used to define the gate array.

VI. ARRAY ANALYSIS

The macros used to configure the SM-QRNS are
2, 3, 4, and 5 finput NAND gates, 2 input XOR and
XNOR gates, 2, 3, and 4 input NOR gates, 2-2 and 2-
2-2 AND-OR- inverters. The NEG, SUM, MDL, MUL,
MUTT, JX, ITWO, and ITWOJ units were designed and
integrated into a SM-QRNS machine. An eight bit
design, for example, consists of 4187 1/3 array
cells where each array cell consisted of 3 p-n
channel transistors pairs.

The main purpose for this study was to develop
a peformance database for SM-QRNS and
conventional CRNS designs. To establish a common
denominator for comparison, the QRNS and CRNS units
are configured so as to have a similar hardware
budget  with both operating dual modulo p
multipliers (see Figure 1). The basic database
used to support the comparative analysis is
reported in Table 1.

Assume T is the carry propagation time and Tg
js the sum propagation time for a one-bit adder.
The timing analysis for the module MUL unit, in
general case is

(n-1)T¢ + (n-1)T, if nT < (n-1)T4

Td = { ) }
n - :

(2"-2)7T, if T, > {n=1)T4




where n is the bit number of the multiplicands.
Based on the equivalent hardware budget assumption,
the timing analysis for the QRNS and CRNS systems
are stated as follows:

a. Because of the number of gate levels are the
same for the case where n = 8 to 16, assume
that the gate delay time for the non-
wordlength  dependent modules (i.e., non-
multiplier) is fixed.

b. Assume T. = Ts, the delay time Tm for the
single modulus multiplier MUTT is
Tn = (2n - .Z)TC + 230ns

¢. The delay time for the QRNS system under worse

case is
Tq = T, + (delay time of non-processing units)

= (2n - Z)TC + 230ns + €50ns
=2nT. - 2T. + 880ns

while the delay time for CRNS system under
worse case fis

Ty = 2T, + (delay time of non-multiplier units)
= 2({(2n - 2)Tc + 230ns) + 200ns
= 4nT. - 4T. + 660ns

The “break even" wordlength is given by
4nT. - 4T_ + 660ns = 2nT, - 2T, + 880ns
2nTC - 2T_ = 220ns

From the performed simulation, Tc approximates
15ns. Therefore, the equation shown above
becomes reduced to 30n = 190 or n = 6.3.

Based on the timing studies and data reported
in Table 1, the performance of a CRNS and SM-QRNS
can be compared. The data represents temporal
bounds on the performance of each individual
module. For both the SM-QRNS and CRNS it can be
seen that the principal bottleneck 1is at the
multiplier level. The table also reports summary
data for the integrated SM-QRNS and CRNS designs.
This data was produced using TEGAS applied to a
complete design rather than simply summing the
individual module delays (in accordance to Figure
1). The result is a superior SM-QRNS design.

V. SUMMARY AND CONCLUSIONS

The principal objective of this work was to
test the recently published conjecture that an
integrated QRNS based unit could outperform an CRNS
counterpart. Based on the analysis provided, using
relatively slow gate array technology, the
conjecture has been verified. While the results
will vary somewhat as a function of technology and
macro-cell differences, the reported results do
represent an unbiased exploration of SM-QRNS
question wusing accepted analysis tools. The
foregone analysis indicates that in order to
increase the potential speed advantage of SM
architecture, the non-wordlength dependent overhead
factors (i.e. scaling, negation and mod p) should
be reduced to a minimum. It is noted that using
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gate-level constructs to implement these modules
will present penalties. For example, moving from
one fan-out to three could easily add another
1.06ns delay for the ND5 macro (5-input NAND gate)
under 27°C and 5 V operating conditions. Instead,
it may be advantageous to use a high-performance
commerically available multiplier chip (used as an
attached coprocessor) or high speed semiconductor
table Tlookup (for n < 12 bits). For example, a
45ns 16 x 16 multiplier chip could be interfaced to

a SM-QRNS controller/engine. It would accept
operands from the engine, compute the binary
weighted product, and return the results to the

engine for modulo p reduction. The table-lookup
method would also be a suitable forum in which to
develop a faster architecture, For example, using
high speed memory device (e.g., 40ns, 64kxl static
RAM chips) to implement the mapping logic in a n =
16 QRNS system, the following latencies have been
determined:

Table-Lookup Gate Array

NEG 40ns 60ns
SUM + MDL 250ns 250ns
JX 40ns 130ns
ITWO 40ns 100ns
ITWOJ 40ns 120ns
MUTT (2n-2)TC (2n-2)Tc

+ 230ns + 230ns

Using the fast lookup method,
overhead bias to T

the non-wordlength
can be decreased from 880ns to

670ns. The "breakleven" wordlength then becomes n
= 1.3.
Some large and varied macrocell 1libraries,

composed of input more pin gates, multiplexers,
register files, and multipliers, are available in
the market place. These predefined LSI/VLSI
functions are optimized such as the (20000 CMOS
gate array from Fujitsu Microelectronics mixes
high-speed static memory with random logic. This
configuration, which consists of 15,000 uncommitted
gates with 6K or 12K bits of RAM, provides both
small Tlookup table and discrete 1logic design
capabilities. The bipolar array is another choice
for modular design although it has fewer gates
within a single chip (up to 8,000 gates versus
20,000 for CMOS counterparts). Higher speed with
fewer problems in driving large fan-out (as many as
eight loads) can be found in bipolar arrays which
have advantages in designing high throughput signal
processing systems.
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Figure 1 Functional block of the Single Modulus
QRNS (SM-QRNS) unit AP AP
{nv{2) I_MV(ZJ)
n+l AS - nel A6 ‘
Table 1 3 ‘1
Listing of propagation delay of the CRNS, QRNS
system and their modules
Modulus P = 2" + 1 ne=4 n=38 n =16
Delay time
min max min max min max
Module
NEG 30ns 50ns 40ns 60ns 40ns. 6Uns
SUM 60ns 70ns 120ns  130ns 120ns 130ns
MDL 50ns 80ns 70ns  120ns 70ns  120ns
MuL - 80ns 230ns  240ns 540ns  560ns
MUTT - 250ns 300ns  470ns 620ns  790ns
JX 70ns  110ns 90ns  130ns 90ns 130ns
ITWO 50ns 60ns 80ns  100ns 80ns 100ns
ITWOJ 70ns 100ns 90ns 120ns 90ns 120ns
QRNS 480ns  740ns 900ns 1100ns 1220ns 1420ns
CRNS 230ns 560ns 910ns 1200ns 1550ns 1840ns
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Figure 6 Circuit diagram of the MDL module (a submodule of
Modulo P Adder)

27




