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Abstract: In electronic computers the elementary
arithmetic operations are these days generally
approximated by floating-point operations of high-
est accuracy. Vector processors ard parallel com-
puters often provide additional operations like
"multiply and add”, "accumulate" or "multiply and
accumulate”. Also these operations shall always
deliver the correct answer whatever the data are.
The user should not be oblighed tu execute an er-—
ror analysis for operations predefined by the man-
ufacturer.

In the first part of this paper we discuss cir~
cuits which allow a fast and correct computation
of sums and scalar products making use of a matrix
shaped arrangement of adders and pipeline techno-
logy. In the second part a varinnt is discussed
which permits a drastic reduction in the number of
adders required. The methods discussed in this
paper can also be used to build a fast arithmetic
unit for micro computers in VLSI-t~chnology.

1. Introduction

Modern computers of highest pcrformance, the
so-called vectorprocessors or sup:rcomputers, are
gaining considerably in importancec in research and
development. They serve for simul. tion of proces-
ses which cannot be measured at : .1 or only with
great effort, for solving large er. ineering design
problems or for evaluation of lar:: sets of meas—
ured data and for many other app.ications. It is
commonly assumed that these comp: ‘ers open a new
dimension for scientific comput tion. In sharp
contrast to this is the fact thai. the arithmetic
implemented on supercomputers differs only margin-
ally from that of their slower predecessors, al-
though results are much more sens‘tive to rounding
errors, numerical instabilities, ~tc. due to the
huge number of operation. execut:

Research in numerical mathematic '.is shown that,
with a more comprehersive anc ptimal vector
arithmetic, reliable re ults ca: e more easily

obtained when dealing wi:.h extens - and huge pro-
blems. Computers with this kind arithmec have
proved the significance of th: development in
many successful applications.

Until now, it has been assume:! that an optimal
vector arithmetic could not be i:»lemented on su-
percomputers. The users, therefor~, had to choose
between either lengthy computatio: times and accu—
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rate results on general purpose computers or com-
paratively short computation times and possibly
wrong results obtained on supercomputrs.

It was assumed, in particular, that correct compu-
tation of continued sums and scalar products,
which are necessary for vector arithmetic, could
not be implemented on supercomputers with pipeline
processing. Well known circuits, which solve this
problem, require several machine cycles for carry-
ing out a single addition whereas a computer of
highest performance with traditional arithmetic

carries out one addition in each cyclel. This pa-
per describes various circuits for the optimal
computation of sums and scalar products at the
speed of supercomputers. There is, in principle,
no longer any reason to continue to accept inaccu-
rate sums or scalar products by not using optimal
vector arithmetic on vectorprocessors and super—
computers. The additional costs compared with the
cost of the complete system are justified in any
case. It takes the burden of an error analysis
from the user.

The first electronic computers were developed in
the middle of this century. Before then, highly
sophisticated electromechanical computing devices
were used. Several very interesting techniques
provided the four basic operations of addition,
subtraction, multiplication, and division. Many of
these calculators were able to perform an additio-
nal operation which could be called "accumulating
addition/subtraction” or continued summation. The
machine was equipped with an input register of
about 10 to 13 digits. Compared to that, the re-
sult register was much longer and had perhaps 30
digits. It was situated on a sled which could be
shifted back and forth relatively to the input
register. This allowed an accumulation of a large
number of summands into different positions of the
result register. There was no rounding executed
after each addition. As long as no overflow oc—
curred, this accumulating addition was error free.
Addition was associative, the result being inde-
pendent of the order in which the summands were
added.

This accumulating addition without intermediate
roundings was never implemented on electronic com-

1By a cycle time or a machine cycle we understand
the time which the system needs to deliver a
summand or a product, in case of a scalar product
computation, tc the addition pipeline.




puters. Only recently, several /370 comsatible
systems have appeared which simulate this nrocess
on general purpose machines by accumulating into
an area in main memory. which is kept in the cache
memory for enhanced performance. [5], [6]. This
allows the elimination of a large number of round-
ings and contributes essentially to the stability
of the computational process. This paper desribes
circuits for an implementation of the accumilating
addition on very fast computers making use of
pipelining and other techniques.

The first electronic_computers executed the'r cal-
culations in fixed-point arithmetic. Fixed-point
addition and subtraction is error free. Even very
long sums can be accumulated with only one final
rounding in fixed-point arithmetic, if a carry
counter is provided which gathers all intermediate
positive or negative overflows or carries. At the
very end of the summation a normalization and
rounding is executed. Thus accumulation of fixed
point numbers is associative again. The result is
correct to one unit in the last figure and it is
independent of the order in which the summands are
added. Fixed-point arithmetic, however, imposed a
scaling requirement. Problems needed to be pre—
processed by the user so that they could be accom-
modated by the fixed-point number representation.
¥With the increasing speed of computers, problems
that could be solved became larger and larger. The
necessary pre-processing soon became an erormous
burden.

The introduction of floating-point represerntation
in computation largely eliminated this burden. A
scaling factor is appended to each number in
floating-point representation. The arithmetic it—
self takes care of the scaling. Multiplication and
divisjon require an addition, respectively sub-
traction, of the exponents which may result in a
large change in the value of the exponent. But
multiplication and division are relatively stable
operations in floating-point arithmetic. Addition
and subtraction, in contrast, are troublesome in
floating=-point.

As an example let us consider the two floating-
point vectors

[1620 [ 1030
1223 2

x = |10%% , y = ~10%8
1018 1022
3 2111
-1021 | | 10¥0

A computation of the inner or scalar product of
these two vectors gives

10°°

+ 2,446 - 100

10°0 + 10%0

1040 =

X.y = 10™ + 6,333 -
8,779

Most digital computers will return zero as the
answer although the exponents of the data vary
only within 5§ % or less of the exponent range of
large systems. This error occurs because the
floating-point arithmetic in these computers is
unable to cope with the large digit range required
for this calculation.

Floating-point representation and arithmetic in

computers was introduced in the middle of this

257

centry. ¢ -ute ‘hen were el ively slow, being
able to « cute ¢ - about 170 fioating-point ope-
rations 7 sec 1. The fistest computers today
are able ‘o exe ite billions of floating-point
operatio: ‘n a - .ond. Thic is a cigantic gain in
speed by factn of 107 ov the electronic com-
puters o the ¢y fifties. Of course, the prob-
lems tha can .« di..lt wit.., have become larger
and larg. . The :* _.ion is whether floating-point
represent tion er . arithmetic which already fails
in simplc -alcul: tinns, as illustrated above, are
still adc.uate o be used in computers of such
gigantic : seed f r huge problems.

We think “at tlr et of floating-point operations
should bc oxtende . Ly a fifth operation, the "ac-
cumulatir. . additi-/subtraction" without interme~
diate ro ~ding, :n operation which was already
available on ma. electromechanical calculators.
It is th. surpos: of this paper to show that this
addition: operu ion can be executed with extreme
speed. % realize this operation by adding the
floating- Hint .. sands into a fixed-point number
over the ull flcating-point range. Thus "accumy--

lating ac ition/:ubtraction” is error free. Even
very long chains of additions/subtractions can be
executed with only a single rounding at the very

end of th summ .ion. Such "Accumulating addition/
subtract: " _is_sociative. The result is inde-
pendent - the order in which the summands are
added.

With the ifth ¢ ~ration "accumulating addition/-
subtracti 1", we combine the advantages of fixed-
point ar’ hmetic - error free addition and sub-
traction ven fo: very long sums - with the advan-
tages of “loati: --point arithmetic - no scaling
requireme :s.

2. The : tate o” the Art

A normalized floating-point number z (in sign-mag-~

nitude r¢sresentation) is a real number of the
form

zz*m'be.
Here % e [+,-} (:notes the sign (sign(z)), m the

mantissa mant{z}}, b the base of the number sys-
tem and ¢ the exponent (exp(z)). b is an integer
number wi h b > 1. The exponent is an integer and
lies betw cn two integers el ¢ e2. In general, el
<0 and ¢2 > 0. m is the mantissa. It is of the
form
1
m= X

i=1
Here, the z[i] denote the digits of the mantissa:
z [i] e {1 1,.....b-1} for all i = 1(1)n and z[1]
# 0. 1 i: the length of the mantissa. It denotes
the numb- of mantissa digits carried along. The
set of normalized floating-point numbers does not
contain t' e number O. In order to obtain a unique
definitio.. of O one can additionally define:
sign(0) = +, mant(0) = .000 ... O (1 zeros after
the point’ and exp(0) = el. This kind of floating~
point sysiem depends on four constants b,1,el and
e2. We denote it with S = S(b,1,el,e2).
Let

z[1] + b1 .




- A "
! Vi
4y -

u= (ui) = vV = (Vi) = i
u v

n n
L - L 4

be two vectors, the components of which are nor-—
malized floating-point numbers, 1i.e. u;, Ve S

forall 1 = 1i(l)n. The theory of computer
arithmetic[1], [2]. [3] demands that scalar
products of two floating-point vect rs u and v be
computed with maximum accuracy by t!.: computer for
each relevant, finite n and diffe.. nt roundings.
By doing so, millions of roun. ings can be
eliminated in complicated calculations. This
contributes essentially to the stability of the
computational process and enlarges t.e reliability
and accuracy of computed results. Furthermore,
defect correction then becomes :n effective
mathematical inst ument.

This requiics, fu: example, the exccution of the
following formulz: by the computer:

»* vy
uy Xy

n
u@®@v=0 3
i=1

n
ullv=0 (3 u, *v)

n
uVov=V (3 u %*-v) (I)

n
uA v A(S u; % v

i=t
The multij!icitic — and aidition-.igns on the
right side cunote the correct mulrinlication and
addition fur rea: numbers. O, . V. A are
rounding symbols. O denct s a 1« nding to the
nearest floating-»oint num :r, 7 denotes the

rounding towards zero, V/ enot.s the monotone
downwardly directed roundin;: and /° denotes the
monotone uwwardly directed r unding.

For an exccution ~f formul:. (I) first the pro-
ducts u; > v, ha.: to be correctly calculated by

the comput: . Thi: leads to ~ mantissa of 21 di-
gits and a. cxpoi. nt which .ies in the range of
2el-1{ef2e'’. S0 the comput:tinn of « ‘alar products
is reduce. -, thc¢ ‘:waluati . of : & of the fol-
lowing fo:
O (3 wi)‘ nel (1I1)
i-1

Here the v are !loating-r int n.ailers of double
length w210 1-1,2e2) . for all i o= 1I{(1)n. O
denotes a ge: ra counding  lol., o> e {O. 0O,
V. A}. . < sures nave to be . ikea first to gene-
rate and reser tothe s oy g w. correctly in
the compu- -. In ise of sur..: pio licts this can
be done b - -~ { - and w.’ * i ircuits.

For trad. ! aeral © se.e co puters there

are several ways to correctly compute (1) and (II)
mentioned in the literature. It is the intention
of this paper to describe circuits for high speed
computation of (I) and (II) on vector computers by
means of pipeline techniques. These circuits have
to accept and process one summand from (I) resp.
(IT) during each machine cycle. To assist in the
understanding of the following material, we first
refer to one of the possibilities mentioned in
[4]:

We consider a register of L = k + 2e2 + 21 + 2le1]
digits of base b, which should be placed in the
arithmetic unit (Figure 1).

k 2e2 21 2|e1]

Figure 1

We divide this register into segments of length 1
(Fig. 2):

k 1

Figure 2

The summands in (I) and (II) are of length 2I.
They fit therefore, digitwise into a subrange of
length 31 of this storage. This part of the regis—
ter, which is determined by the exponent of the
summand, is selected and loaded into an accumula-
tor of length 31. The summand is loaded into a
shiftregister of the same length, being correctly
positioned according to the exponent, and then
added into the accumulator (Figure 3).

1 Accumulator

1 Shiftregister

21 (summand)
Figure 3

The addition may produce a carry. In order to
catch this carry, a few more digits than the three
words of length 1 can be read from the long regis-
ter into the accumulator, which is extended to the
left accordingly. If not all of these digits are
b-1, the carry is caught by these additional di-
gits. Since it is possible that all these additio-
nal digits are b-1, a loop has to be provided
which then adds the carry to the following digits
of the long register. This loop may possibly have
to be activated several times.

The addition of the summands of (I) resp. (11)
into the long register, Fig. 1 resp. Fig. 2, may
still produce a carry on the very far left of the
register. In order to catch such carries the long
register is extended on the left by a few more (k)
digits of base b (Fig. 1). Then, any sum (I) or
(IT) of n summands can be added without loss of

information into the long register of length L. bk
carries may occur and can be processed without
loss of information.

Here we conclude our description of one possibili-
ty to solve the problems (I) and (II). See [4].




What we just described belongs to the state of the
art.

3. Fast Computation of Sums and Scalar Products

The method described above is not suited for the
computation of (I) resp. (II) on vector processors
or supercomputers. The process of reading, shift-
ing, carry handling, possibly by a loop, and writ-

ing back is certainly too slow to be executed in

one cycle time of only a few nsecs of these compu-—

ters. A solution of the problem by a very long-

adder is also very costly and probably too slow.

We therefore discuss here a variant of the possi-
bilities mentioned above which makes processing of
a summand of (I) resp. (II) possible within a very
short cycle time. In comparison to general purpose
computers, vector processors and supercomputers
achieve their high speed of computation by means
of pipeline technology whereby during each machine
cycle a result is obtained. If scalar products and
sums are to be computed with high speed on vector
processors or supercomputers, one has to develop
circuits which accept and process one summand
(resp. a product) per machine cycle. This is only
possible if the addition is done by means of pipe-
line technology. This paper describes various cir—
cuits which allow this.

At first the most important issues and ideas of
the circuitry are presented in the text referring
to Figures 4 to 15. These Figures contain some
more details which are not essential for a first
understanding of the principles. These details are
presented later in chapter 4 "Additional Remarks
coricerning the Figures".

The circuit described below consists of a shifter
which is followed by a pipelined adder called sum—
ming matrix (Figure 4). The shifting device may be
realized by standard technology and belongs to the
state of the art.

The adder consists of registers of a total length
of S > L. Here L denotes the length of the long

register as outlined above2 (Figure 1)}. The regis-
ter length & is divided into r identical parts
which are arranged as rows one below the other
(Figure 5). r denotes the number of rows. All rows
are of the same length. Each of these rows is di-
vided into ¢ > 1 independent adders A (see Figure
6). Thus the whole summing device consists of r -
c independent adders. Fach of these adders A has a
width of a digits. Between two of these independ-
ent adders, carry handling must be possible. Also
between the last adder of a row =z:d the first one
of the next row a carry handling must be possible.
The complete summing device which we call the sum-
ming matrix SM, has a width of S=a » ¢ - r di-
gits of base b. c denotes the number of columns of
the summi matrix. It must be S > L = k + 2e2 +
21 + 2 le?T (Figures 5, 6).

The summing matrix contains ¢ + r independent ad-
ders A. Each of these adders must be able to add a
digits of base b in parallel within one machine
cycle, and to register a carry which possibly may
occur. Since each row of the summing matrix con-

2or a part of it.
discussed below.

A reduction of the length S is
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The width a of the independent adders A depends on
the technology used and on the cycle time of the
system. The width should be as large as possible.
But on the other hand, it must permit the addition
over the a digits in one machine cycle. (In the
case of a scalar product, a machine cycle is the
time in which the system delivers a product).
Depending on the technology there are several pos-—-
sibilities of transportation of the summands to
one of the r rows of the summing matrix SM.

The method described above is based on the idea
that each of the independent adders A is supple-
mented by a transfer register of the same width
(plus tag-register for exponent identification and
+/- control). During each machine cycle, each
transfer register can pass on its contents to the
transfer register in the corresponding position in
the next row and receive a digit sequence from the
transfer register in the corresponding position in
the previous row. Attached to the transfer regis—-
ters is the tag-register for exponent identifica-
tion (Figure 5 and Figure 6). The contents of this
register are always compared with the exponent
identification of the corresponding adder. In case
of coincidence, the addition resp. subtraction is
activated (Figures 5, 6 and 12).

Alternatives to this procedure are also possible.

1. One of these alternatives could be to trans—
fer the summand in one machine cycle directly
into the appropriate row of transfer regis—
ters of the summing matrix as determined by
the exponent. During the following machine
cycle, the addition is executed. Simultan—
eously, a new summand can be transferred to
the same, or another row, so that an addition
in each machine cycle is carried out.

2. The procedure is similar to 1. The interme—
diate storage of the summands in transfer
registers, however, is not necessary if it is
possible to execute the transfer- and addi-
tion-process in one machine cycle. In this
case, no transfer registers are necessary.
The output of the result then also takes
place directly.

3. The transfer of the summands to the target
row can be carried out not only sequentially
and directly but alsc with several interme—

diate steps, for example, by binary selec-
tion.

Each one of these alternatives also allows a dir-
ect and therefore faster readout of the result
without dropping step by step through the transfer
registers.

To each independent adder A of length a belongs a
transfer register TR which is basically of the
same length. The number of adders A resp. transfer
registers TR in a row is chosen in such a way that

the mantissa length m of the summands plus the
length of the transfer registers t (=a) becomes

less or equal to the length of the row (m+a<h
= c ¢ a). In this way, an overlapping of the less
significant part of the mantissa with its most
significant part in one transfer register is avoi-




ded. For typical floating-point formats this con-
dition may result in long rows of the summing ma-
trix or in short widths a of the adders resp.
transfer registers. The former case causes leng thy
shifts while the latter case causes more carries
(Figure 6 upper part and Figure 8).

This disadvantage can be avoided by providing se-
veral (2> 2) partial transfer registers for each
adder of length a. Each partial transfer register
TR of length t < a carries its own exponent iden-
tification. Finally, the length t of the transfer
registers can be chosen independently of the
length a of the adders A. Both only need to be
integer divisors of the row length of the summing

matrix h = a * ¢ = t * n (see Figures 13. 14 and
15). :
Figures 6 and 13 show, in particular, that the

summing matrix has a very systematic structure and
that it can be realized by a few, very simple
building blocks. It is suitable, therefore, for
realization in various technologies.

Based on the same principle also, summands which
consist of products of three and more factors can
be added correctly.

If the summing matrix is to be realized in
VLSI-technology it may happen that the complet
summing matrix does not fit on a single chip. One
should then try to develop components for the co-
lumns of the summing matrix since the number of
connections (pins) between adjacent columns 1is
much smaller than between neighbouring rows.

The following remarks and Figures 4 to 15 provide
a more detailed description of the structure of
the summing matrix and its functioning.

4. Additional Remarks concerning the Figures

The following abbreviations are used in the Fig-
ures:

A Adder

AC Accumulator Register

CY Carry

E Tag-Register for Exponent Identifica-
tion

LSB Least Significant Bit

MSB Most Significant Bit
SM Summing Matrix

SR Shifter

TR Transfer Register

Figure 4 shows a structure diagram of the complete
summing circuitry and illustrates the interaction
of different parts of the whole circuitry, such
as: separation of the summands into sign, exponent
and mantissa, shifting unit, summing matrix,
controller and rounding unit.

Figure 5: As mentioned in the text, we assume that
S 2 L. Figure 5 shows the case S > L. There, for
both the first and last rows part of the row is
covered by transfer registers only. For the whole
summing matrix this means that transfer registers
exist for S digits but adders for L digits only. L
is chosen such that it is a multiple of a.

The dotted lines through the independent adders A
indicate that the transfer wires bypass the ad-
ders. Above the transfer registers, the tag-regis-—
ter for exponent identification is indicated by a
box. This register is part of the transfer regis-
ter.
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Figure 12 shows a block diagram for an adder cell.
For simplicity the case t = a is selected. The
cell contains centrally an "adder/subtractor" and
a "partial accumulator section”. The right upper

reinserted ‘he left of the row. corner shows the corresponding transfer register
Both parts : . irnished with a cor- with wires from the next less significant row and
responding >cnent identification. to the next more significant row.

Part m, wil. ¢ selected for addition Additionally, the transfer register contains a tag

2

in row y-1 ereas part m will be

added in ro

The shifted and expande.! . ntissa row drops row by
row through the ma*ri: as a transfer row. Before
that, each transfer « ti n is characterized by
its exponent which carrie: the information where
the addition has to be v ted.

Figure 10 shows the evp identification of the
sections of the t ans ows. Each row of the
transfer matrix co: is 1 transfer seciions of
length t. Figure 1) :s the exponent identi-
fication te (transfer aent) of these transfer

sections of the matrix. e, denotes the exponent

of the e.g. least sign’ +nt digit of a tramsfer
section then this ‘aivier  section can be
characteriz¢ed by t.uc xpc @nt identification te

. L -
with te_ (vt eo) d'y

Before a summand entecr: matrix, each transfer
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tification. During . ~2 through the matrix,
this exponent iden' .f: !s then compared with
te' Equality trigg s 1.i.tion. The lower part
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e (= exponent of its
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of Figure 10 shows ..
summand get their ¢
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register for "z/z-1" identification which indenti-
fies through which selection wire the cell can be
activated. The "adder/subtractor”™ receives the
operands from the "partial accumulator section”
and in case of selection from the transfer regis-
ter. Zero is added if no selection takes place. In
addition, the carry (positive or negative) arriv-
ing from the right is processed during each addi-
tion/subtraction and, if necessary, a carry is
passed on to the next adder cell on the left. This
carry is temporarily stored in an auxiliary regis—
ter. Figure 15 further shows a control wire which
selects the operation (addition/subtraction) as
well as a control wire for the read out process
(at the bottom of the figure). All control wires
traverse the whole row.

Figure 13 is very similar to Figure 6. It shows
one row of the summing matrix, but with t < a. The
Figure is based on the same data format as Figure
6, i.e.: one digit of basis b is described by 4
bits, k = 20 carry digits, 1 = 14 digits in the
mantissa, el = -64 and e2 = 64. Furthermore:

Width of AC: a = 4 bytes = 32 bits.

Number of adders in one row c = 4.

Number of rows in SM r = 10.

L=20+2 64+ 2+ 14+ 2 « 64 = 304 digits per
4 bits = 152 bytes.

Width of the complete summing matrix
S=a-<c*r=4-4-+ 10 bytes = 160 bytes » L =
152 bytes.

In this example the width of the transfer regis-

identific: ::n (e - t = e in the most N
( - m ters is smallev than the width a of the adders: t
significa:r. trans:: s ion, and exponent _a 2 b
identific ‘on e, T b 2, etc. in the less s ytes.
$ significar transfc N Igif permits a smaller row width of only ¢ = 4
¥ Figure 1C < =ws in part the two typical aduers. ,
cases. (71 Jlete su d in one The upper part of the Figure shows the position of
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Figure 11 eplains ‘.
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is transfered thr. +h ‘e matrix with the
transferr. v. The add:. - triggered off as soon

sition.

Figure 14 shows another case where the width of
the adders differs from that of the transfer re-
gisters (t # a). In the Figure the transfer regis-
ters are shown without exponent identification.

as the ident:: i and the row index

coincide. ".he row . switch RS generates Dotted lines again indicate transfer wires which

two selec " 'n signa ic activate the adders of bypass the adder in question.

the row questi: a Figure 12, too). An . .

activatir | ' ignal ia the wire "z-selec- EQEE;E_1§ shows a section of a row of the summing
. tion” if . .. row ition equals the row matrix with t # a. Here the case 3t = 2a has been
¢ index. A U atd is sent via the wire selected. It shows how digits of the same transfer

nz-l-sel.. . .on' if , 1 1s the row index. fegister are distributed and added into neighbour-

Then the tr.onsfer . ec: .1y carry the informa- ing adders.

tion (z-1,. -surm . .

Since th: ¢ unsfe. only contain positive 5. Summation with only one Row of Adders

values t' - ‘nformu: ion or subtraction is

addi tion transf . We now discuss a further variant of the above cir-

Thus the ntrolle . 1s transfer registers cuitry for which adders exist only for one row of

with spe ..c infor - r each row which leads the summing matrix. The complete structure of this

about to . struct in Figure 11. variant is similar to the one before {Figure 16).
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I.e. the complete circuitry consists of an input
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adjusting unit, the summing unit with the actual
accumulator and a device for carry handling, re-
sult row filtering and rounding.

The complete fixed-point word, over which summa-
tion takes place, is divided into rows and co-
lumns, as before. The transfer width and the adder
width, however, must now be identical. The width
can be chosen according to the criteria as out-
lined above. The columns of the matrix shaped sum-
ming unit are now completely disconnected, i.e. no
transmission of carries takes place between the
individual colums of the matrix during the pro-
cess of summation. The carries occurring during
the summation are collected in carry counters and
processed at the end of the summation process.

Figure 17 shows the circuit of a "column” of the
matrix shaped summing unit. The full "long accumu-
lator" is spread over the various columns of the
summing unit. The part allotted to one column is

called "accu-memory"”, see (1) in Figure 17.5

To each cell of the accu-memory belongs a carry
counter. The collection of carry counters of a
column is called "carry-memory"”, see (2) in Figure
17. In these cells of the carry-memory all carries
emerging from the adder/subtractor are collected
and incorporated in the result at the very end of
the summing process. The individual cells of the
carry-memory must be so wide that they can take a
carry (positive or negative) from cach summand.
For a vector length of 128 one nreeds, for example,
7 bits plus a sign bit resp. an 8 bit number in
twos’—-complement.

In Figure 17, for example, the column width is 32
bits and the width of the individual carry-memory
cells is 16 bits. This allows a correct computa-
tion of sums with less than or equal to 32 K sum-
mands. The exponent identification (in Figure 17)
has a width of e bit; consequently the column has

2% cells resp. the memory matrix 2% rows.

During the normal summation process the following
happens:
1. The mantissa section MANT, sign sg, and expo-
nent identification EPI reach the input re-
gister RI, (3).
2. In the next cycle
- the memory is addressed through EPI
and the accu-part as well as the carry
part are transferred to the
corresponding section of the register
before the sum-mation RBS, (4);
- the mantissa section, sg, and EPI are
also  transferred to the corresponding
section of RBS, (5).
3. In the next cycle
- addition resp. subtraction according to sg is
executed in the adder/subtracter (6). The
result is transferred to the corresponding
section of the register after the summation
RAS, (7). According to the carry, the carry-
part is adjusted in (8) by +1, -1 or not at

5'I'he numbers enclosed in round parentheses in the
text indicate in the corresponding Figure that
part of the circuitry which is marked with the
same number .

a.i o Ca ‘rred to RAS, (9);
- Eil s . e.. .o RAS, (10).
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We first dea. with case o).

a) The ro. .iev [Pl and EPI of RBS con-
tain - - . exy . identification. The
two ar oi.. eu in .. and in case of coin-
cicenc he rea. proce s from the memory to
RBs is  .oche o o0f din ;. t (13) of the selec-
tion wno ot . ;. Inst-:. , the result of the
additi» i . first .{ the two consecutive
sunma;, 1. ..rect.y iunsferred to RBS via
(14 ¢ . . tae s d summand can immedi-
ately i . .de..

Furth-r. 12, {i5) causes a dummy exponent to
be reud +I of RAS. So, if in the same

cycle a : thire value with the same
exponen* identificrier is transferred to RI
the cas: E.1/RI = kPl :3S = EPI/RAS is avoi-
ded. T s case would « .se a conflict in the
select. 1 unit (12).

Thus, ¢ .secutive sunmnc:ds with the same ex-
ponent .dentification can be added without

memory uvolvement. Tl : intermediate values
may be rition into the memory or discarded
(stor: t1u kade on). Only the last value
must b .ritten into tie memory via RAS.

We now deal with case b).
b) Three vilues EPII. EI’I2, EP13 with EPI1 =
}:‘,PI3 # 1PI,. In this cise EPI/RI and EPI/RAS-

contain the same exporn~nt identification.The
two re; isters are compared in (16). In the
followi g cycle the contents of RAS is
directl - transferred to RBS through part (17)
of the selection unit (12). The read process
from th: memory is again suppressed in (13).
The in‘ :rmediate value may be written into
the mer ry. It can also be suppressed.

In this way, any consecutive mantissa sections can
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output of
sign check
State 0 1
1 1/0 2/1
2 1/1 371
3 170 3/1

The transfer into the registers ends if only rows
with sign digits follow. Finally, in both regis-
ters those rows appear, which contain the mantissa
of the floating~point result. One obtains the ex-
ponent from the position as well as from the ini-
tial address resp. from the number of cycles ne-
cessary for reading. Furthermore, the information
required for the rounding is easily obtained du-
ring output. It serves for a possible adaptation
of the result.

The circuitry shown in Figure 17 may be varied to
reduce the number of input/output lines, e.g. by
transferring the carry count (19) through the MANT
inputs. The Figure is intended just to show prin-
ciples, and not tricky details.

6. Systems with large Exponent Range and further
Remarks

Many computers have a very modest exponent range.
This is for instance the case for the system /370
architecture. If in the decimal system, for in-
stance, 1 = 17, el = -75 and e2 = 75 the full
length L = k + 22 + 21 + 2 |e1| of the registers
(see Figure 1 and Figure 2) can more or less easi-
ly be provided. Then sums and scalar products of
the form (I} and (II) can be correctly computed
for all possible combinations of the data by the
technique discussed in this paper without ever
getting an overflow or an interrupt.

However, there are also computers on the market
with a very large exponent range of several hund-
red or thousand. In such a case it may be costly
to provide the full register lengths of L = k +
2e2 + 21 + 2 ]el[ for the techniques discussed in
this paper. It is most useful then to reduce the
register lengths to the single exponent range and

instead of L to choose L~ = k + e2 + 21 + |el| or
even a smaller range e’ { e < e" with el < e' and
+ 21 +

"

T r e2 and correspondingly L’
e’|.

Traditionally, sums and scalar products are com-
puted in the single exponent range el { e { e2. If

=k + e"

Iel] and e2 are relatively large most scalar pro-
ducts will be correctly computable within this
range or even in e’ e { e". Whenever, in this

case, the exponent of a summand in a sum or scalar
product computation exceeds this range e’ { e { e"

an overflow has to be signalled which may cause an
interrupt.

In such a case the exponent range could be exten-
ded to a larger size on the negative or the posi-
tive side or even on both sides. We may very well
assume that the necessity for such an extension of
the exponent range occurs rather rarely. The sup-
plementary register extensions, which are necessa-~
ry for the techniques discussed in this paper,
could then, for instance, be arranged in the main
memory of the system and the summation within the




extended register part may then be executed in

sof tware. Such procedure would slow down the com~

putation of scalar products in rather rare cases.

But it still always will deliver the correct

answer.

We further discuss a few slightly different me-

thods how to execute accumulating addition/sub-

traction and the scalar product summation on pro-
cessors with large exponent range.

On a more sophisticated processor the exponent

range covered by the summing matrix could even be

made adjustable to gain most out of this special
hardware. This could be done by an automatic pro-
cess of three stages:

1. A special vector instruction analyzes the two
vectors and computes the exponent range that
covers most of the summands or products of
the vector components. This step may be dis-
carded if the best range is already known.

2. The summing matrix gets properly adjusted to
the range found in 1. and in a vector in-
struction the fitting part of the summand or
products is accumulated into the summing ma-
trix. If a summand or product does not fit
into it it can be dealt by one of the two
alternatives:

a) Interrupt the accumulation and add that
summand or product by software to the
not covered extended parts of the accu~
mulator which resides in main memory.
Do not interrupt the accumulation, but
discard this summand or product and
mark this element in a vector flag re-
gister. Later the marked elements are
added by software to the extended parts
of the accumulator. This second way
avoids interrupting and restarting the
pipeline and will thus lead to higher
performance than a).

3. In a final step the content of the summing
matrix part of the accumulator is properly
inserted between the extended parts to get
the complete result in form of a correspond-
ingly long variable in main memory.

b)

Another cure of the overflow situation e € [e’,
e”] may be the following: Summands with an expo-—
nent e, which is less than e’, are not added, but
gathered on a "negative heap”. Similarily summands
with an exponent, which is greater than e", are
gathered on a "positive heap". The negative and
the positive heap may consist of a bit string or a
vector flag register where each summand or vector
component is represented by a bit. This bit is set
zero if the summand was already added. It is set 1
if the component belongs to the corresponding
heap. After a first summation pass over all sum
mands the computed sum is stored. Then the posi-
tive and/or negative heap is shifted into te
middle of the exponent range e’ ¢ e < e" by an
exponent transformation and then added by the same
procedure. After possibly several such steps the
stored parts of the sum are put together and the
final sum is computed. In many cases it will be
possible to obtain the final result without sum—
ming up the negative heap.

Another possibility to obtain the correct result
with a reduced register length L° =k + ' + 21 +
e" 1is the following: The process of summation
starts as usual. As soon as the exponent e of a
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summand exce rar «', e"] an exponent
part is bui. ich rets the digit se-
quence of L’ ry 1 . ntissa of a normal-
ized floatir am’ e normalization, in
general, wi. ) LA if:i. Then a "positive
heap' is no ce y. /ind in most cases it
will be pos @ n the correct rounded
result withe 23 v possibly still neces-
sary ''negat: o ¢t od computes all ac-
cumulating s il o icts correctly with-
out consider : eg. :aps as long as less
than e" - e’ :an i.e negative heap can
only influen le + cignificant digits of
L.
The reductio: fu: :cimulator length L to
a smaller si: ma 1 e exponent under— or
overflows i1 AU S ion processes. This
always makes ©ooent iling routine necessa—
ry. Whatever s, procedure represents a
trade off b. bard - expenditure and run-
time.
A rather pri er dling would consist in
a tradition: ar tle positive and nega-
tive heap. 1. is 2 sage should be deli-
vered to the - ot result is probably not
precise.
In the conte ! o n - languages the accu-
mulator of I« = 2" + 21 + e’ represents
a new data t wh 1 le called precise. As
long as no e .« . une o overflow occurs (e’
{ege')a itun f . les of type real, of
products of Lo «s_well as of scalar
products of + . v ntc to _a variable of this
type can pr _ ., e ated and it is error
free. Accumu - o sariables, products or
scalar produ a vle _of type precise is
associative. oL ‘1. dependent of the or-
der in which . < o _-_added.
Vectorproces: - o} « the fastest computers
which are pr:. .. ive abie, Their main field of
application ic. nti. -~ Computation. It should
be natural ... 1\ ct ‘°3SOrS compute vector
operations c.r: .ct.y. vector operations con-
sist basical.y of the r ponentwise addition and
subtraction, thc compo . i'wise multiplication and

the scalar product. T'c¢ :nplementation of highly
accurate vec ¢ acd.liti. . subtraction and compo-
nentwise mul i tic -longs to the state of
the art. The e ISR AR [ accurate scalar pro-
ducts has be: ea. w o . this paper.

Due to their .. h : zec . computation, vectorpro-
cessors must, able to support an

we.:r, als) be
automatic er: Ly s
computed res . . .. o:
necessary tl .. al. o icns, mentioned above,
such as comj.oucntw.se . i.ition/subtraction, com-
ponentwise multiplication and scalar products can
optionally be called with several roundings, in
particular with the minotone downwardly directed

sp. verification of the
t7» achieve this it is

rounding, th~ monotone i »wardly directed rounding
and the roun "~ ; to t!- ieast including interval.
We do not « 1ss tic implementation eof these
roundings he It belcngs to the state of the
art. For fur:: - i:or mtion we refer to the lit-
erature.

Finally, we ro1 rk tha: the methods and procedures
outlined in t1 . peper 1ire also suitable to add up
sums of procdic s corrc:tl which consist of more

than two factors, for example

T
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sumg of two single precision matrices. Multipl;ca—
tion of these sums then leads to a sum of products
of single precision matrices:

a s+ b= (a1 + a2) (bl + b,

%)
albl + a1b2 + a2b1 + a2b2 (2)

Each component of the products on the right hand
side of (2) is computed as a scalar product. Thus
each component of the product matrix a * b con—
sists of a sum of scalar products which itself is
a sca.ar product.

In case of matrix products, which consist of more
than :wo double precision matrix factors, one has
to taxe into account that the components of (2)
may already be pretty long. They may consist of 10
or 20 consecutive digit sequences of single preci-
sion lengths. These sums of single precision ma-
trices then have to be multiplied with other such
sums, which leads to a sum of matrix products.
Each component of this sum can be computed as a
scalar product of single precision numbers.

2.
Arithmetic of triple precision is a special case
of quadruple precision arithmetic.

3. Quadruple Precision Arithmetic

3.1 Sum and Difference

Each summand of quadruple precision can be repre-
sented as a sum of two double precision summands.
Thus sums of two or more quadruple precision sum-
mands can be added as expressed by the following
formuias:

a+b= a; +a, + b1 + b2

a+b+c+ ..

a,ta,+> +b +c. +¢

+ z =
1772 71 7277172

+ ...+ Zl + 22 .

Sums of quadruple precision vectors or matrices
can be treated correspondingly.

3.2 ?Products
Each quadruple precision number can be represented

as a sum of four single precision numbers a = a, +

ag + ag + ay. Multiplication of such sums requires

the execution of a scalar product:

a-b = (a1+a2+a3+a4) .

4
2 a, » b, (3)

4
(b,+b_+b +b,) = 3
1 727374 =1 =1 i J

2 :
i

Similarily, products of more than two quadruple
precision factors can be computed. We indicate
this process by the following formulas, which are
self-explanatory.

asbec-d =

4 4
)(2 Ecid)=

4 4
(a*b) (c+d) =( 3 3 a, b
i=1 j=1

i=1 j=1 J




32
=(Z2 a
i=1

32 32 32 i
Y (2 cj) = 2 S a'cd
j=1 i=1  j=1

1 ‘4)

There the 16 double precision summands aiLj and
cidj of the two factors of (4) are each represen-

ted as sums of two single precision-numbers. This
leads to the product of the two sums over 32

single precision numbers ai resp. ¢d in the next
line.

If a product of two quadruple precision matrices
is to be computed each factor is represented by a
sum of four single precision floating-point ratri-
ces as in (3).

Multiplication of these sums leads to a cum of
matrix products. Each component of these ratrix
products is computed as a scalar product. The sum
of these scalar products is again a scala- pro-
duct.

It was the intention of this section to demon-
strate that with a fast accumulating addition/sub-
traction or scalar product unit a big step towards
multiple precision arithmetic, even for product
spaces, can be done.
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