ARITHMETIC FOR VECTOR PROCESSORS

R. Kirchner and U. Kulisch

Fachbereich Informatik, Universität Kaiserlautern
Fakultät für Mathematik, Universität Karlsruhe
West Germany

Abstract: In electronic computers the elementary arithmetic operations are these days generally approximated by floating-point operations of highest accuracy. Vector processors and parallel computers often provide additional operations like "multiply and add", "accumulate" or "multiply and accumulate". Also these operations shall always deliver the correct answer whatever the data are. The user should not be obliged to execute an error analysis for operations predefined by the manufacturer.

In the first part of this paper we discuss circuits which allow a fast and correct computation of sums and scalar products making use of a matrix shaped arrangement of adders and pipeline technology. In the second part a variant is discussed which permits a drastic reduction in the number of adders required. The methods discussed in this paper can also be used to build a fast arithmetic unit for micro computers in VLSI-technology.

1. Introduction

Modern computers of highest performance, the so-called vectorprocessors or supercomputers, are gaining considerably in importance in research and development. They serve for simulation of processes which cannot be measured at all or only with great effort, for solving large engineering design problems or for evaluation of large sets of measured data and for many other applications. It is commonly assumed that these computers open a new dimension for scientific computation. In sharp contrast to this is the fact that the arithmetic implemented on supercomputers differs only marginally from that of their slower predecessors, although results are much more sensitive to rounding errors, numerical instabilities, etc., due to the huge number of operations executed.

Research in numerical mathematics has shown that, with a more comprehensive and optimal vector arithmetic, reliable results can be more easily obtained when dealing with extensive and huge problems. Computers with this kind of arithmetic have proved the significance of this development in many successful applications. Until now, it has been assumed that an optimal vector arithmetic could not be implemented on supercomputers. The users, therefore, had to choose between either lengthy computation times and accur-
computers. Only recently, several /370 compatible systems have appeared which simulate this process on general purpose machines by accumulating into an area in main memory, which is kept in the cache memory for enhanced performance [5], [6]. This allows the elimination of a large number of roundings and contributes essentially to the stability of the computational process. This paper describes circuits for an implementation of the accumulating addition on very fast computers making use of pipelining and other techniques.

The first electronic computers executed their calculations in fixed-point arithmetic. Fixed-point addition and subtraction is error free. Even very long sums can be accumulated with only one final rounding in fixed-point arithmetic. If a carry counter is provided which gathers all intermediate positive or negative overflows or carries. At the very end of the summation a normalization and rounding is executed. Thus accumulation of fixed point numbers is associative again. The result is correct to one unit in the last figure and it is independent of the order in which the summations are added. Fixed-point arithmetic, however, imposed a scaling requirement. Problems are needed to be preprocessed by the user so that they could be accommodated by the fixed-point number representation. With the increasing speed of computers, problems that could be solved became larger and larger. The necessary pre-processing soon became an enormous burden.

The introduction of floating-point representation in computation largely eliminated this burden. A scaling factor is appended to each number in floating-point representation. The arithmetic itself takes care of the scaling. Multiplication and division require an addition, respectively subtraction, of the exponents which may result in a large change in the value of the exponent. But multiplication and division are relatively stable operations in floating-point arithmetic. Addition and subtraction, in contrast, are troublesome in floating-point.

As an example let us consider the two floating-point vectors

\[
x = \begin{bmatrix} 10^{20} \\ 1223 \\ 10^{24} \\ 10^{18} \\ 3 \\ -10^{21} \end{bmatrix}, \quad y = \begin{bmatrix} 10^{30} \\ 2 \\ -10^{26} \\ 10^{22} \\ 2111 \\ 10^{19} \end{bmatrix}
\]

A computation of the inner or scalar product of these two vectors gives

\[
x \cdot y = 10^{50} + 2.446 \cdot 10^{50} + 10^{40} + 6.333 \cdot 10^{40} = 8.779
\]

Most digital computers will return zero as the answer although the exponents of the data vary only within 5% or less of the exponent range of large systems. This error occurs because the floating-point arithmetic in these computers is unable to cope with the large digit range required for this calculation.

Floating-point representation and arithmetic in computers was introduced in the middle of the century. Computers when were relatively slow, being able to execute only about 10 floating-point operations in a second. The fastest computers today are able to execute billions of floating-point operations in a second. This is a gigantic gain in speed by a factor of 10^7 over the electronic computers of the early fifties. Of course, the problems that can be dealt with, have become larger and larger. The question is whether floating-point representation or arithmetic which already fails in simple calculations, as illustrated above, are still adequate to be used in computers of such gigantic speed for huge problems.

We think that the set of floating-point operations should be extended by a fifth operation, the "accumulating addition/subtraction" without intermediate rounding. An operation which was already available on many electromechanical calculators. It is the purpose of this paper to show that this additional operation can be executed with extreme speed. We realize this operation by adding the floating-point exponents into a fixed-point number over the full floating-point range. Thus "accumulating addition/subtraction" is error free. Even very long chains of additions/subtractions can be executed with only a single rounding at the very end of the summation. Such "accumulating addition/subtraction" is associative. The result is independent of the order in which the summations are added.

With the fifth operation "accumulating addition/subtraction", we combine the advantages of fixed-point arithmetic - error free addition and subtraction even for very long sums - with the advantages of floating-point arithmetic - no scaling requirements.

2. The State of the Art

A normalized floating-point number z (in sign-magnitude representation) is a real number of the form

\[
z = z_1 \cdot b^{-1}
\]

Here $z \in \{+,-\}$ denotes the sign (sign(z)), m the mantissa (mant(z)), b the base of the number system and e the exponent (exp(z)). m is an integer number with $b^1 \geq e \geq 1$. The exponent is an integer and lies between two integers $-e_1 \leq e \leq e_2$. In general, $e_1 < 0$ and $e_2 > 0$. m is the mantissa. It is of the form

\[
m = \sum_{i=1}^{l} z[i] \cdot b^{-1}
\]

Here, the $z[i]$ denote the digits of the mantissa; $z[i] \in \{0,1,\ldots,b-1\}$ for all $i=1, l$ and $z[l] \neq 0$. l is the length of the mantissa. It denotes the number of mantissa digits carried along. The set of normalized floating-point numbers does not contain the number 0. In order to obtain a unique definition of m, one can additionally define:

- sign(0) = +, mant(0) = 0.000

If e_1 zeroes occur after the point and exp(0) = e_1. This kind of floating-point system depends on four constants b, l, e_1 and e_2. We denote it with $S = (b, l, e_1, e_2)$.

Let
be two vectors, the components of which are normalized floating-point numbers, i.e., \(u_i, v_i \in S \)
for all \(i = 1(1)n \). The theory of computer arithmetic [1], [2], [3] demands that scalar products of two floating-point vectors \(u \) and \(v \) be computed with maximum accuracy by the computer for each relevant, finite \(n \) and different roundings. By doing so, millions of roundings can be eliminated in complicated calculations. This contributes essentially to the stability of the computational process and enlarges the reliability and accuracy of computed results. Furthermore, defect correction then becomes an effective mathematical instrument.

This requires, for example, the execution of the following formula by the computer:

\[
\begin{align*}
 u \odot v &= \bigoplus_{i=1}^{n} u_i \odot v_i \\
 u \boxdot v &= \bigoplus_{i=1}^{n} u_i \boxdot v_i \\
 u \nabla v &= \nabla \left(\bigoplus_{i=1}^{n} u_i \odot v_i \right) \\
 u \triangle v &= \triangle \left(\bigoplus_{i=1}^{n} u_i \odot v_i \right)
\end{align*}
\]

The multiplication and addition signs on the right side denote the correct multiplication and addition for real numbers. \(\odot, \boxdot, \nabla, \triangle \) are rounding symbols. \(\odot \) denotes a rounding to the nearest floating-point number, \(\boxdot \) denotes the rounding towards zero, \(\nabla \) denotes the monotone downwardly directed rounding and \(\triangle \) denotes the monotone upwardly directed rounding.

For an execution of formula (I) first the products \(u_i \odot v_i \) have to be correctly calculated by the computer. This leads to a mantissa of 21 digits and an exponent which lies in the range of \(2^{e_l-1} \leq e \leq 2^{e_u} \). So the computation of similar products is reduced to the evaluation of sums of the following form:

\[
\bigoplus_{i=1}^{n} w_i, \quad n \in \mathbb{N}
\]

Here the \(w_i \) are floating-point numbers of double length \(w_i \in [0.21, 1-1.2e2] \). For all \(i = 1(1)n \). \(\odot \) denotes a general rounding symbol, \(\boxdot \in \{ \odot, \boxdot, \nabla, \triangle \} \), \(\odot \) must have to be taken first to generate and represent the sum's \(w_i \) correctly in the computer. In case of scalar products this can be done by circuits and without roundings.

For traditional general-purpose computers there are several ways to correctly compute (I) and (II) mentioned in the literature. It is the intention of this paper to describe circuits for high speed computation of (I) and (II) on vector computers by means of pipeline techniques. These circuits have to accept and process one summand from (I) resp. (II) during each machine cycle. To assist in the understanding of the following material, we first refer to one of the possibilities mentioned in [4]:

We consider a register of \(L = k + 2e2 + 21 + 2|e1| \) digits of base \(b \), which should be placed in the arithmetic unit (Figure 1).

![Figure 1](image)

We divide this register into segments of length 1 (Fig. 2):

![Figure 2](image)

The summand in (I) and (II) are of length 21. They fit therefore, digitwise into a subrange of length 31 of this storage. This part of the register, which is determined by the exponent of the summand, is selected and loaded into an accumulator of length 31. The summand is loaded into a shiftrregister of the same length, being correctly positioned according to the exponent, and then added into the accumulator (Figure 3).

![Figure 3](image)

The addition may produce a carry. In order to catch this carry, a few more digits than the three words of length 1 can be read from the long register into the accumulator, which is extended to the left accordingly. If not all of these digits are \(b-1 \), the carry is caught by these additional digits. Since it is possible that all these additional digits are \(b-1 \), a loop has to be provided which then adds the carry to the following digits of the long register. This loop may possibly have to be activated several times.

The addition of the summands of (I) resp. (II) into the long register, Fig. 1 resp. Fig. 2, may still produce a carry on the very far left of the register. In order to catch such carries the long register is extended on the left by a few more \((k) \) digits of base \(b \) (Fig. 1). Then, any sum (I) or (II) of \(n \) summands can be added without loss of information into the long register of length \(L \). If the carry may occur and can be processed without loss of information.

Here we conclude our description of one possibility to solve the problems (I) and (II). See [4].
What we just described belongs to the state of the art.

3. Fast Computation of Sums and Scalar Products

The method described above is not suited for the computation of (I) resp. (II) on vector processors or supercomputers. The process of reading, shifting, carry handling, possibly by a loop, and writing back is certainly too slow to be executed in one cycle time of only a few tens of microns. A solution of the problem by a very long adder is also very costly and probably too slow.

We therefore discuss here a variant of the possibilities mentioned above which makes processing of a summand of (I) resp. (II) possible within a very short cycle time. In comparison to general-purpose computers, vector processors and supercomputers achieve their high speed of computation by means of pipeline technology whereby each machine cycle a result is obtained. If scalar products and sums are to be computed with high speed on vector processors or supercomputers, one has to develop circuits which accept and process one summand (resp. a product) per machine cycle. This is only possible if the addition is done by means of pipeline technology. This paper describes various circuits which allow this.

At first the most important issues and ideas of the circuitry are presented in the text referring to Figures 4 to 15. These figures contain some more details which are not essential for a first understanding of the principles. These details are presented later in Chapter 4 "Additional Remarks concerning the Figures".

The circuit described below consists of a shifter which is followed by a pipelined adder called summing matrix (Figure 4). The shifting device may be realized by standard technology and belongs to the state of the art.

The adder consists of registers of a total length of $S \geq L$. Here L denotes the length of the long register as outlined above (Figure 1). The register length S is divided into r identical parts which are arranged as rows one below the other (Figure 5). r denotes the number of rows. All rows are of the same length. Each of these rows is divided into $c \geq 1$ independent adders A (see Figure 6). Thus the whole summing device consists of $r \cdot c$ independent adders. Each of these adders A has a width of a digits. Between two of these independent adders, carry handling must be possible. Also between the last adder of a row and the first one of the next row a carry handling must be possible. The complete summing device which we call the summing matrix SM, has a width of $S = a \cdot c \cdot r$ digits of base b. c denotes the number of columns of the summing matrix. It must be $S \geq L = k + 2e2 + 2l + 2[el]$ (Figures 5, 6).

The summing matrix contains $c \cdot r$ independent adders A. Each of these adders must be able to add a digit of base b in parallel within one machine cycle, and to register a carry which possibly may occur. Since each row of the summing matrix contains $c \cdot r$ adders, the sum of $c \cdot r$ digits can be added in one cycle of the summing matrix. Each of the rows of the summing matrix must be at least as long as the number of elements of the summand which is to be added. Each digit of the summing matrix is characterized by a certain exponent corresponding to the digit position. The upper right digit of the summing matrix carries the least significant digit, the lower left part of the summing matrix carries the most significant digit of the summand (Figure 6).

Each summand of each product of resp. (II) must now be added into the summing matrix at the proper position according to its exponent. The row selection is made by the most significant bits of the exponent (div h) and the column selection by the least significant bits of the exponent (exp h). This complies roughly with the selection of the digit position in two steps in the process described in Fig. 3.

The incoming product resp. product is now first shifted into the shifting unit (real shifter, cross bar switch, local shifter) in accordance with the exponents. The shifting is executed as a ringshift which means that a part of the summand which shifts over the right end is reinserted at the left end of the shifting unit (Figure 6 upper part). (Summand add 2 and 3, Figure 8). The summand is distributed onto the independent parts of width of the shifting unit. Each part receives an exact identification according to a specific digit position. e.g. the least significant one (Figures 8, 9, and 10). The individual adders A also carry an exact identification. The shifted and expanded summand now drops into the top row of the summing matrix and thereafter proceeds row by row through the summing matrix, moving ahead one row in each machine cycle. The addition is executed as soon as the exponent identification of a transfer register in the summing matrix coincides with the exponent identification part of the summand.

A summand, which arrives at the summing unit, can remain connected after shifting to the correct position within the shifting unit. In this case, the addition is executed in only one cycle of the summing matrix. The shift procedure, however, can also cause an overhauling at the right end of the row. The overhauling part then is reinserted by a ringshift at the left end of the shifting unit (see Figures 6 and 8). In this case, the addition of both parts of the summand is executed in neighboring row of the summing matrix. If the most significant part of the summand, which was situated at the right end of the shifter, is added in row y then the addition of the least significant part, which was situated at the left end of the shifter, is added in row $y - 1$. This means the next less significant row (see Figure 9).

It is, however, not at all necessary that each

\[\text{div denotes integer division, } \text{i.e. } 24 \text{ div } 10 = 2. \]

\[\text{mod denotes the remainder of integer division, } \text{i.e. } 24 \text{ mod } 10 = 4. \]

2 or a part of it. A reduction of the length S is discussed below.
transfer unit carries a complete exponent identification. It is sufficient to identify the row by the exponent part of each of the summands in the shifter and to use it for selection of row y. The distinction whether the addition has to be executed in row y or in row z is made by a bit connected with each transfer register or by a suitable column signal which distinguishes the transfer registers of a row. The principle is illustrated by the diagrams given in Figures 11 and 12.

The addition may cause carries between the independent adders A. Carry registers between the independent adders absorb the carries. In the next machine cycle these carries are added into the next more significant adder A, possibly together with another summand. In this way, during each machine cycle one summand can be fed into the summing matrix, although the carry handling of on summand may take several machine cycles. The method displayed in the figures shows one of diverse possibilities to handle the carries. There may be carry preserving or lookahead and other techniques applied to speed up the carry processing within the machine. In any way, the summing matrix allows the carry processing to be executed independently of the result with the processing time e.g., adding further summands or reading out the result. In principle, the summing matrix can only process positive summands. Negative summands are therefore not added but subtracted instead of positive summands to be processed possibly over several machine cycles. In other words: The independent adders are able to carry out additions as well as subtractions and to process positive and negative summands in both cases (Figures 6, 12).

The design of the computing system described herewith can be made in such a way that an addition or subtraction is executed within one machine cycle. Each row must be at least as wide as the summing matrix instead of adding the summands to be processed. The shorter the rows become, the shorter the summing matrix has to be made and the number of pipeline steps for the summing device containing the individual adders A has to be chosen in such a way that an addition or subtraction is executed within one machine cycle. The summands are added independently of the result with the processing time of the independent adders. In this case, no transfer registers are necessary. The output of the result then also takes place directly.

3. The transfer of the summands to the target can be carried out not only sequentially and directly but also with several intermediate steps for example, by binary selection.

Each one of these alternatives also allows a direct and therefore faster readout of the result without dropping step by step through the transfer registers. To each independent adder A of length b belongs a transfer register TR which is basically of the same length. The number of adders A resp. transfer registers TR in a row is chosen in such a way that the mantissa length m of the summands plus the length of the transfer registers t (m) becomes less or equal to the length of the row (n + a + h = c + a). In this way, an overlapping of the less significant part of the mantissa with its most significant part in one transfer register is avoi-
ded. For typical floating-point formats this condition may result in long rows of the summing matrix or in short widths of the adders resp. transfer registers. The former case causes lengthy shifts while the latter case causes more carries (Figure 6 upper part and Figure 8).

This disadvantage can be avoided by providing several (2) partial transfer registers for each adder of length n. Each partial transfer register TR of length t ≤ n carries its own exponent identification. Finally, the length t of the transfer registers can be chosen independently of the length n of the adders A. Both only need to be integer divisors of the row length n of the summing matrix h = a · c = t · n (see Figures 13, 14 and 15).

Figures 6 and 13 show, in particular, that the summing matrix has a very systematic structure and that it can be realized by a few, very simple building blocks. It is suitable, therefore, for realization in various technologies. Based on the same principle also, summands which consist of products of three and more factors can be added correctly.

If the summing matrix is to be realized in VLSI-technology it may happen that the complete summing matrix does not fit on a single chip. One should then try to develop components for the columns of the summing matrix since the number of connections (pins) between adjacent columns is much smaller than between neighbouring rows. The following remarks and Figures 4 to 15 provide a more detailed description of the structure of the summing matrix and its functioning.

4. Additional Remarks concerning the Figures

The following abbreviations are used in the Figures:

A Adder
AC Accumulator Register
CY Carry
E Tag-Register for Exponent Identification
LSB Least Significant Bit
MSB Most Significant Bit
SM Summing Matrix
SR Shifter
TR Transfer Register

Figure 4 shows a structure diagram of the complete summing circuit and illustrates the interaction of different parts of the whole circuitry, such as: separation of the summands into sign, exponent and mantissa, shifting unit, summing matrix, controller and rounding unit.

Figure 5: As mentioned in the text, we assume that S > L. Figure 5 shows the case S > L. There, for both the first and last row parts of the row is covered by transfer registers only. For the whole summing matrix means that transfer registers exist for S digits only and adders for L digits only. L is chosen such that it is a multiple of a.

The dotted lines through the independent adders A indicate that the transfer wires bypass the adders. Above the transfer registers, the tag-register for exponent identification is indicated by a box. This register is part of the transfer register.

![Figure 6 shows a block diagram of the summing matrix. It is based on a sign-bit format which uses 4 bits to store the data in this format. Width of A: 20 bytes + 1, 19 bits + 1. Number of adders A: 1, row c = 8, k = 20 carry, l = 14 digits, the mantissa el = -64 and 64. Users of various methods can recognize this data in the listed sign-bit format. L = 20 + 2 × 19 + 2 × 14 + (8 digits) = 104 digits of 4 bits = 16 bytes. Width of the complete summing matrix S = a · c = 4 · 5 · 8 bytes = 192 bytes > L = 162 bytes. In this example the width t of the transfer registers equals the width of the adder t = a = 4 bytes. The upper left of the Figure shows several positions of addends.

![Figure 7 defines the exponent coordinates x and y of the digit(s) of the summing matrix. (x) horizontally, y vertically. The coordinate y is obtained according to the following formula:

e = e_o + e_1 + e_2 + ... + e_n
denotes the reference point or the digit with the least significant digit in the adder (at the upper end).

If the adder and the last row of the summing matrix contains adders over the full width then e_o = 0 and e_m = e_o + t - 1.

e denotes the exponent of a digit to be added.

![Figure 8 describes the task of the shift unit and its relation to the generation of the exponent identification which will be transferred into the summing matrix with the mantissa.

The task of the shift unit is:
1. adjust mantissa to the correct position for its addition, if necessary by string shift.
2. fill the remaining positions of the transfer registers resp. the row with zeros.

![Figure 9 describes the shift process. Two cases are to be distinguished:
1. x = (e_o + m) mod 2^m : no over-lapping,

where the whole mantissa is added in one step.

2. x < m : the mantissa is added in two steps.

261
successive row.
Part \(m_2 \) remains within the width of the row. The overhanging part \(m_3 \) is reinserted to the left of the row. Both parts are furnished with a corresponding exponents identification. Part \(m_3 \) will be selected for addition in row \(y-1 \), whereas part \(m_1 \) will be added in row \(y \).

The shifted and expanded abscissa row drops row by row through the matrix as a transfer row. Before that, each transfer section is characterized by its exponent which carries the information where the addition has to be executed.

Figure 10 shows the example identification of the sections of the transfer rows. Each row of the transfer matrix consists of transfer sections of length \(t \). Figure 10 denotes the exponent identification \(t \) of these sections of the matrix. \(e^t \) denotes the exponent of the \(e \) least significant digit of a transfer section. Then this transfer section can be characterized by the exponent identification \(e^t \) with \(t = \lfloor \frac{\log_2 e^t} \rfloor + 1 \).

Before a summand enters the matrix, each transfer section of the summand receives an exponent identification. During its way through the matrix, this exponent identification is first compared with \(e^t \). Equality triggers an addition. The lower part of Figure 10 shows the transfer sections of the summand get their correct identification.

A mantissa with the exponent \(e^t \) (equal to exponent of its most significant digit) receives the exponent identification \(e^m \) in the most significant transfer section, and exponent identification \(e^m - 1, e^m - 2, \ldots, e^m - n \) in the less significant transfer sections. Figure 10 shows in part the two typical cases. (Addition of complete summand in one row resp. two adjacent rows).

Figure 11 explains the adder selection by row identification. This row identification is transferred through the matrix with the transfer. The adder is triggered off as soon as the identifier coincides with the row index. Two selection signals are transmitted to the adders of the row in question (Figure 12, too). An activating signal is sent via the wire "z-selection" to the row index. An activating signal is sent via the wire "z-1-selection" if the row index is the row index of the transfers adding. Since the transfer sections only contain positive values the information or subtraction is added to the transfers. Thus the controller gets the specific information about the structure of the transfer registers for each row which leads to Figure 11.

Figure 12 shows a block diagram for an adder cell. For simplicity the case \(t = a \) is selected. The cell contains a central "adder/subtractor" and a "partial accumulator section". The right upper corner shows the corresponding transfer register with wires from the next less significant row and to the next more significant row. Additionally, the transfer register contains a tag register for "z"/"z-1" identification which identifies through which selection wire the cell can be activated. The "adder/subtractor" receives the operands from the "partial accumulator section" and in case of selection from the transfer register. Zero is added if no selection takes place. In addition, the carry (positive or negative) arriving from the right is processed during each addition/subtraction and, if necessary, a carry is passed on to the next adder cell on the left. This carry is temporarily stored in an auxiliary register. Figure 15 further shows a control wire which selects the operation (addition/subtraction) as well as a control wire for the read out process (at the bottom of the figure). All control wires traverse the whole row.

Figure 13 is very similar to Figure 6. It shows one row of the summing matrix, but with \(t < a \). The Figure is based on the same data format as Figure 6, i.e.: one digit of basis \(b \) is described by 4 bits. \(k = 20 \) carry digits. \(1 = 14 \) digits in the mantissa. \(e_1 = -64 \) and \(e_2 = 64 \). Furthermore:

- Width of AC: \(a = 4 \) bytes = 32 bits.
- Number of adders in sum row \(c = 4 \).
- Number of sum rows in SM \(r = 10 \).

- \(L = 20 + 2 \cdot 64 + 2 \cdot 14 + 2 \cdot 64 = 304 \) digits per 4 bits = 152 bytes.
- Width of the complete summing matrix \(S = a \cdot c \cdot r = 4 \cdot 4 \cdot 10 = 160 \) bytes \(\geq L = 152 \) bytes.

In this example the width of the transfer registers is smaller than the width \(a \) of the adders: \(t = 2 \) bytes.

This permits a smaller row width of only \(c = 4 \) adders.

The upper part of the Figure shows the position of a summand \(m = 2 \cdot 1 = 14 \) bytes at a critical position.

Figure 14 shows another case where the width of the adders differs from that of the transfer registers (\(t \neq a \)). In the Figure the transfer registers are shown without exponent identification. Dotted lines again indicate transfer wires which bypass the adder in question.

Figure 15 shows a section of a row of the summing matrix with \(t \neq a \). Here the case \(3t = 2a \) has been selected. It shows how digits of the same transfer register are distributed and added into neighbouring adders.

5. Summation with only one Row of Adders

We now discuss a further variant of the above circuits for which adders exist only for one row of the summing matrix. The complete structure of this variant is similar to the one before (Figure 16). I.e. the complete circuitry consists of an input
adjusting unit, the summing unit with the actual accumulator and a device for carry handling, result row filtering and rounding.

The complete fixed-point word, over which summation takes place, is divided into rows and columns, as before. The transfer width and the adder width, however, must now be identical. The width can be chosen according to the criteria as outlined above. The columns of the matrix shaped summing unit are now completely disconnected, i.e., no transmission of carries takes place between the individual columns of the matrix during the process of summation. The carries occurring during the summation are collected in carry counters and processed at the end of the summation process.

Figure 17 shows the circuit of a "column" of the matrix shaped summing unit. The full "long accumulator" is spread over the various columns of the summing unit. The part allotted to one column is called "accur-memory", see (1) in Figure 17.

To each cell of the accru-memory belongs a carry counter. The collection of carry counters of a column is called "carry-memory", see (2) in Figure 17. In these cells of the carry-memory all carries emerging from the adder/subtractor are collected and incorporated in the result at the very end of the summing process. The individual cells of the carry-memory must be so wide that they can take a carry (positive or negative) from each summand. For a vector length of 128 one needs, for example, 7 bits plus a sign bit resp. an 8 bit number in twos' complement.

In Figure 17, for example, the column width is 32 bits and the width of the individual carry-memory cells is 16 bits. This allows a correct computation of sums with less than or equal to 32 K summands. The exponent identification (in Figure 17) has a width of 3 bits; consequently the column has 2^3 cells resp. the memory matrix 2^3 rows.

During the normal summation process the following happens:

1. The mantissa section WMT, sign, and exponent identification EPI reach the input register RI. (3).
2. In the next cycle
 - the memory is addressed through EPI and the accu-part as well as the carry part are transferred to the corresponding section of the register before the summation RBS. (4).
 - the mantissa section, sign, and EPI are also transferred to the corresponding section of the register RBS. (5).
3. In the next cycle
 - addition resp. subtraction according to sg is executed in the adder/subtractor (6).
 - the result is transferred to the corresponding section of the register after the summation RAS. (7). According to the carry, the carry-part is adjusted in (8) by $+1$, -1 or not at all.

4. In the next cycle the memory addresses the memory, and the data can be read in. The carry-memory, on the other hand, must be pipelined. This means, that the data of the carry-memory will be active in the next cycle. It is then possible to perform the next cycle in the same or in another memory during each machine cycle. This buffer is usual for register memories.

If in one column the same accur-memory is addressed, the previously described process can lead to a wrong result, since in the second cycle the result of the just started summation should be read, which does not yet exist. This is a typical pipeline conflict, which can be overcome by duplicating the carry-memory several times which, however, multiplies the cost. Therefore, we consider another alternative. We suppose that two consecutive cycles mantissa sections are transferred to the exponent identification section. The following two cases:

a) direct
b) with an exponent identification in between and thus the results of the latter often exactly mixed.

We first deal with case a).

a) The sign EPI sg and EPI of RBS contain the actual exponent sg. The two are only checked and in case of coincidence the read process from the memory to RBS is started if input (13) of the selection signal SI is set. Instead, the result of the addition is the first of the two consecutive summands. It is directly transferred to RBS via (19) so that the second summand can immediately be added.

Furthermore, (15) causes a dummy exponent to be read from one of RBS. So, if in the same cycle $EPI = EPI_{RBS} = EPI_{RAS}$ is avoided. This case would cause a conflict in the selection unit (12).

Thus, consecutive summands with the same exponent identification can be added without memory involvement. The intermediate values may be written into the memory or discarded (storing the whole on). Only the last value must be written into the memory via RAS.

b) Three values with $EPI_1 = EPI_2 = EPI_3$ with $EPI_1 = EPI_{RBS}
eq EPI_{RAS}$. In this case $EPI_{RBS} = EPI_{RAS}$ contain the same exponent identification. The two registers are separated in (16). In the following cycle the contents of the registers are directly transferred to RBS through part (17) of the selection unit (12). The read process from the memory is again suppressed in (13). The intermediate value may be written into the memory. It can also be suppressed.

In this way, any consecutive mantissa sections can
The transfer into the registers ends if only rows with sign digits follow. Finally, in both registers those rows appear, which contain the mantissa of the floating-point result. One obtains the exponent from the position as well as from the initial address resp. from the number of steps necessary for reading. Furthermore, the information required for the rounding is easily obtained during output. It serves for a possible adaptation of the result.

The circuitry shown in Figure 17 may be varied to reduce the number of input/output lines, e.g. by transferring the carry count (15) through the MANT inputs. The Figure is intended just to show principles, and not tricky details.

6. Systems with large Exponent Range and Further Remarks

Many computers have a very modest exponent range. This is for instance the case for the system /370 architecture. If in the decimal system, for instance, \(l = 17 \), \(e_1 = -75 \) and \(e_2 = 75 \) the full length \(L = k + 2e_2 + 21 + 2 \lceil e_1 \rceil \) of the registers (see Figure 1 and Figure 2) can more or less easily be provided. Then sums and scalar products of the form (1) and (11) can be correctly computed for all possible combinations of the data by the technique discussed in this paper without ever getting an overflow or an interrupt.

However, there are also computers on the market with a very large exponent range of several hundred or thousand. In such a case it may be costly to provide the full register lengths of \(L = k + 2e_2 + 21 + 2 \lceil e_1 \rceil \) for the techniques discussed in this paper. It is most useful then to reduce the register lengths to the single exponent range and instead of \(L \) to choose \(L' = k + e_2 + 21 + \lceil e_1 \rceil \) or even a smaller range \(e' \leq e \leq e'' \) with \(e_1 < e'' \) and \(e'' < e_2 \) and correspondingly \(L' = k + e'' + 21 + \lceil e' \rceil \).

Traditionally, sums and scalar products are computed in the single exponent range \(e_1 \leq e \leq e_2 \). If \(e_1 \) and \(e_2 \) are relatively large most scalar products will be correctly computable within this range or even in \(e' \leq e \leq e'' \). Whenever, in this case, the exponent of a summand in a sum or scalar product computation exceeds this range \(e' \leq e \leq e'' \) an overflow has to be signalled which may cause an interrupt.

In such a case the exponent range could be extended to a larger size on the negative or the positive side or even on both sides. We may very well assume that the necessity for such an extension of the exponent range occurs rather rarely. The supplementary register extensions, which are necessary for the techniques discussed in this paper, could then, for instance, be arranged in the main memory of the system and the summation within the
extended register part may then be executed in software. Such a procedure would slow down the computation of scalar products in rather rare cases. But it still always will deliver the correct answer.

We further discuss a few slightly different methods how to execute accumulating addition/subtraction and the scalar product summation on processors with large exponent range. On a more sophisticated processor the exponent range covered by the summation matrix could even be made adjustable to gain most out of this special hardware. This could be done by an automatic process of three stages:

1. A special vector instruction analyzes the two vectors and computes the exponent range that covers most of the summands or products of the vector components. This step may be discarded if the best range is already known.

2. The summation matrix gets properly adjusted to the range found in 1. and in a vector instruction the fitting part of the summand or product is accumulated into the summation matrix. If a summand or product does not fit into it can be dealt by one of the two alternatives:
 a) Interrupt the accumulation and add that summand or product by software to the not covered extended parts of the accumulator which resides in main memory.
 b) Do not interrupt the accumulation, but discard this summand or product and mark this element in a vector flag register. Later the marked elements are added by software to the extended parts of the accumulator. This second way avoids interrupting and restarting the pipelining and will thus lead to higher performance than a).

3. In a final step the content of the summation matrix part of the accumulator is properly inserted into the extended parts to get the complete result in form of a correspondingly long variable in main memory.

Another cure of the overflow situation $e \in \{e', e\}$ may be the following: Summands with an exponent, which is greater than e' are gathered on a "negative heap". Similarly summands with an exponent, which is greater than e, are gathered on a "positive heap". The negative and the positive heap may consist of a bit string or a vector flag register where each summand or vector component is represented by a bit. This is set zero if the summand was already added. It is set 1 if the component belongs to the corresponding heap. After a first summation pass over all summands the computed sum is stored. Then the positive and/or negative heap is shifted into the middle of the exponent range $e' \leq e \leq e''$ by an exponent transformation and then added by the same procedure. After possibly several such steps the stored parts of the sum are put together and the final sum is computed. In many cases it will be possible to obtain the final result without summing up the negative heap.

Another possibility to obtain the correct result with a reduced register length $L' = k + e' + 21$ is the following: The process of summation starts as usual. As soon as the exponent e of a summand exceeds $e'' + 4$, an exponent part is built which carries the digit sequence of L mantissa of a normalized floating point number. In general, this procedure will be necessary. Then a "positive heap" is not necessary, and in most cases it will be possible to obtain the correct rounded result without any possibly still necessary "negative heap". Therefore all computations all accumulated scalar products correctly without considering the exponents as long as less than $e' - e''$. The negative heap can only influence the least significant digits of L'.

The reduction of full accumulator length L to a smaller size makes the exponent under- or overflows impossible necessary. Whatever the final procedure represents a trade off between hardware expenditure and runtime. A rather practical encoding would consist in a tradition of the positive and negative heap. In any case an overflow should be delivered to the user. The result is probably not precise.

In the context of any language the accumulator of length $L = e' + 21 + e''$ represents a new data type, which is called as type. As long as no exponent overflow occurs ($e' \leq e \leq e''$) a new data type of type real of products of that length is defined. Products of a variable of this type can be manipulated and it is error free. Accumulation of variables, products or scalar products of a variable of type real is associative. Its order is independent of the order in which the values are added.

Vectorprocessors are the fastest computers which are programmable. Their main field of application is scientific computation. It should be natural that vectorprocessors compute vector operations correctly. The vector operations consist basically of the componentwise addition and subtraction, the componentwise multiplication and the scalar product. The implementation of highly accurate vector addition/subtraction and componentwise multiplication belongs to the state of the art. The question of accurate scalar products has been considered in this paper.

Due to their high speed of computation, vectorprocessors must be able to support an automatic encoding. To achieve this it is necessary that all operations, mentioned above, such as componentwise addition/subtraction, componentwise multiplication and scalar products can optionally be called either with several roundings. In particular with the round directed rounding, the round according to the least significant bit and the round according to the least significant bit. We do not discuss the implementation of these roundings here. It belongs to the state of the art. For further information we refer to the literature.

Finally, we remark that the methods and procedures outlined in this paper are also suitable to add up sums of products correctly which consist of more than two factors. For example...
7. Application to Multiple Precision Arithmetic

We show in this chapter that the essential parts of multiple precision arithmetic can be executed with high speed if a fast scalar product unit is available.

We consider

1. Double Precision Arithmetic

1.1 Sum and Difference

It is clear that sums of two or more double precision summands \(a + b\) or \(a + b + c + \ldots\) can be accumulated. The same holds for sums of vectors or matrices.

1.2 Product

If a product \(a \cdot b\) of two double precision factors \(a\) and \(b\) has to be computed, one can be represented as a sum of two single precision numbers \(a = a_1 + a_2\) and \(b = b_1 + b_2\), where \(a_1\) and \(b_1\) represent the first (highest significant) \(i\) digits and \(a_2\) and \(b_2\) represent the last (lower significant) \(j\) digits of \(a\) and \(b\), respectively. The multiplication then requires the execution of a scalar product:

\[
a \cdot b = (a_1 + a_2) \cdot (b_1 + b_2) = a_1b_1 + a_1b_2 + a_2b_1 + a_2b_2
\]

where each summand is of double precision. These can be added by the two-level scheme developed in this paper.

Similarly, products of more than two factors can be computed. As in (1), each product of two double precision numbers is represented as a scalar product of single precision factors. On the right hand side of (1) each factor is a double precision number which can be represented as a sum of two single precision numbers. As a result the product of a product of four double precision numbers leads to the following formulas, which are self-explanatory.

\[
a \cdot b \cdot c \cdot d = (a \cdot b) \cdot (c \cdot d) = \sum_{i=1}^{8} \sum_{j=1}^{8} a_i b_j c_k d_l
\]

Thus \(a \cdot b \cdot c \cdot d\) can be represented as a sum of 64 products of two single precision numbers each. The case of products of two double precision matrices is a little more difficult. But it can, in principle, be treated similarly. If a product of two double precision matrices has to be computed the two matrices are first represented as

\[
\left(\begin{array}{c c c}
\sum_{i=1}^{4} a_i b_j \\
\sum_{i=1}^{4} c_i d_j
\end{array} \right)
\]

Each component of the products on the right hand side of (2) is computed as a scalar product. Thus each component of the product matrix \(a \cdot b\) consists of a sum of scalar products which itself is a scalar product.

In case of matrix products, which consist of more than two double precision matrix factors, one has to take into account that the components of (2) may already be pretty long. They may consist of 10 or 20 consecutive digit sequences of single precision lengths. These sums of single precision matrices then have to be multiplied with other such sums, which leads to a sum of matrix products. Each component of this sum can be computed as a scalar product of single precision numbers.

2. Arithmetic of triple precision

is a special case of quadruple precision arithmetic.

3. Quadruple Precision Arithmetic

3.1 Sum and Difference

Each summand of quadruple precision can be represented as a sum of two double precision summands. Thus sums of two or more quadruple precision summands can be added as expressed by the following formulas:

\[
a + b + c + \ldots + z = a_1 + a_2 + b_1 + b_2 + c_1 + c_2 + \ldots + z_1 + z_2
\]

Sums of quadruple precision vectors or matrices can be treated correspondingly.

3.2 Products

Each quadruple precision number can be represented as a sum of four single precision numbers \(a = a_1 + a_2 + a_3 + a_4\). Multiplication of such sums requires the execution of a scalar product:

\[
a \cdot b = (a_1 + a_2 + a_3 + a_4) \cdot (b_1 + b_2 + b_3 + b_4) = \sum_{i=1}^{4} \sum_{j=1}^{4} a_i b_j c_k d_l
\]

Similarly, products of more than two quadruple precision factors can be computed. We indicate this process by the following formulas, which are self-explanatory.

\[
a \cdot b \cdot c = \sum_{i=1}^{4} \sum_{j=1}^{4} a_i b_j c_k d_l
\]

266
There the 16 double precision summands \(a_{k,j} \) and \(c_{k,j} \) of the two factors of (4) are each represented as sums of two single precision numbers. This leads to the product of the two sums over 32 single precision numbers \(a_i \) resp. \(c_j \) in the next line.

If a product of two quadruple precision matrices is to be computed each factor is represented by a sum of four single precision floating-point matrices as in (3).

Multiplication of these sums leads to a sum of matrix products. Each component of these matrix products is computed as a scalar product. The sum of these scalar products is again a scalar product.

It was the intention of this section to demonstrate that with a fast accumulating addition/subtraction or scalar product unit a big step towards multiple precision arithmetic, even for product spaces, can be done.

8. Literature

For a supplementary bibliography see the literature listed in [3].