ARITHMETIC FOR VECTOR PROCESSORS

R. Kirchner and U. Kulisch

Fachbereich Informatik, Universitdt Kaiserlautern
Fakultdt fiir Mathematik, Universitidt Karlsruhe
West Germany

Abstract: In electronic computers the elementary
arithmetic operations are these days generally
approximated by floating-point operations of high-
est accuracy. Vector processors ard parallel com-
puters often provide additional operations like
"multiply and add”, "accumulate" or "multiply and
accumulate”. Also these operations shall always
deliver the correct answer whatever the data are.
The user should not be oblighed tu execute an er-—
ror analysis for operations predefined by the man-
ufacturer.

In the first part of this paper we discuss cir~
cuits which allow a fast and correct computation
of sums and scalar products making use of a matrix
shaped arrangement of adders and pipeline techno-
logy. In the second part a varinnt is discussed
which permits a drastic reduction in the number of
adders required. The methods discussed in this
paper can also be used to build a fast arithmetic
unit for micro computers in VLSI-t~chnology.

1. Introduction

Modern computers of highest pcrformance, the
so-called vectorprocessors or sup:rcomputers, are
gaining considerably in importancec in research and
development. They serve for simul. tion of proces-
ses which cannot be measured at : .1 or only with
great effort, for solving large er. ineering design
problems or for evaluation of lar:: sets of meas—
ured data and for many other app.ications. It is
commonly assumed that these comp: ‘ers open a new
dimension for scientific comput tion. In sharp
contrast to this is the fact thai. the arithmetic
implemented on supercomputers differs only margin-
ally from that of their slower predecessors, al-
though results are much more sens‘tive to rounding
errors, numerical instabilities, ~tc. due to the
huge number of operation. execut:

Research in numerical mathematic '.is shown that,
with a more comprehersive anc ptimal vector
arithmetic, reliable re ults ca: e more easily

obtained when dealing wi:.h extens - and huge pro-
blems. Computers with this kind arithmec have
proved the significance of th: development in
many successful applications.

Until now, it has been assume:! that an optimal
vector arithmetic could not be i:»lemented on su-
percomputers. The users, therefor~, had to choose
between either lengthy computatio: times and accu—

CH2419-0/87/0000/0256%01..7 © 19 * EEE

rate results on general purpose computers or com-
paratively short computation times and possibly
wrong results obtained on supercomputrs.

It was assumed, in particular, that correct compu-
tation of continued sums and scalar products,
which are necessary for vector arithmetic, could
not be implemented on supercomputers with pipeline
processing. Well known circuits, which solve this
problem, require several machine cycles for carry-
ing out a single addition whereas a computer of
highest performance with traditional arithmetic

carries out one addition in each cyclel. This pa-
per describes various circuits for the optimal
computation of sums and scalar products at the
speed of supercomputers. There is, in principle,
no longer any reason to continue to accept inaccu-
rate sums or scalar products by not using optimal
vector arithmetic on vectorprocessors and super—
computers. The additional costs compared with the
cost of the complete system are justified in any
case. It takes the burden of an error analysis
from the user.

The first electronic computers were developed in
the middle of this century. Before then, highly
sophisticated electromechanical computing devices
were used. Several very interesting techniques
provided the four basic operations of addition,
subtraction, multiplication, and division. Many of
these calculators were able to perform an additio-
nal operation which could be called "accumulating
addition/subtraction” or continued summation. The
machine was equipped with an input register of
about 10 to 13 digits. Compared to that, the re-
sult register was much longer and had perhaps 30
digits. It was situated on a sled which could be
shifted back and forth relatively to the input
register. This allowed an accumulation of a large
number of summands into different positions of the
result register. There was no rounding executed
after each addition. As long as no overflow oc—
curred, this accumulating addition was error free.
Addition was associative, the result being inde-
pendent of the order in which the summands were
added.

This accumulating addition without intermediate
roundings was never implemented on electronic com-

1By a cycle time or a machine cycle we understand
the time which the system needs to deliver a
summand or a product, in case of a scalar product
computation, tc the addition pipeline.




puters. Only recently, several /370 comsatible
systems have appeared which simulate this nrocess
on general purpose machines by accumulating into
an area in main memory. which is kept in the cache
memory for enhanced performance. [5], [6]. This
allows the elimination of a large number of round-
ings and contributes essentially to the stability
of the computational process. This paper desribes
circuits for an implementation of the accumilating
addition on very fast computers making use of
pipelining and other techniques.

The first electronic_computers executed the'r cal-
culations in fixed-point arithmetic. Fixed-point
addition and subtraction is error free. Even very
long sums can be accumulated with only one final
rounding in fixed-point arithmetic, if a carry
counter is provided which gathers all intermediate
positive or negative overflows or carries. At the
very end of the summation a normalization and
rounding is executed. Thus accumulation of fixed
point numbers is associative again. The result is
correct to one unit in the last figure and it is
independent of the order in which the summands are
added. Fixed-point arithmetic, however, imposed a
scaling requirement. Problems needed to be pre—
processed by the user so that they could be accom-
modated by the fixed-point number representation.
¥With the increasing speed of computers, problems
that could be solved became larger and larger. The
necessary pre-processing soon became an erormous
burden.

The introduction of floating-point represerntation
in computation largely eliminated this burden. A
scaling factor is appended to each number in
floating-point representation. The arithmetic it—
self takes care of the scaling. Multiplication and
divisjon require an addition, respectively sub-
traction, of the exponents which may result in a
large change in the value of the exponent. But
multiplication and division are relatively stable
operations in floating-point arithmetic. Addition
and subtraction, in contrast, are troublesome in
floating=-point.

As an example let us consider the two floating-
point vectors

[1620 [ 1030
1223 2

x = |10%% , y = ~10%8
1018 1022
3 2111
-1021 | | 10¥0

A computation of the inner or scalar product of
these two vectors gives

10°°

+ 2,446 - 100

10°0 + 10%0

1040 =

X.y = 10™ + 6,333 -
8,779

Most digital computers will return zero as the
answer although the exponents of the data vary
only within 5§ % or less of the exponent range of
large systems. This error occurs because the
floating-point arithmetic in these computers is
unable to cope with the large digit range required
for this calculation.

Floating-point representation and arithmetic in

computers was introduced in the middle of this

257

centry. ¢ -ute ‘hen were el ively slow, being
able to « cute ¢ - about 170 fioating-point ope-
rations 7 sec 1. The fistest computers today
are able ‘o exe ite billions of floating-point
operatio: ‘n a - .ond. Thic is a cigantic gain in
speed by factn of 107 ov the electronic com-
puters o the ¢y fifties. Of course, the prob-
lems tha can .« di..lt wit.., have become larger
and larg. . The :* _.ion is whether floating-point
represent tion er . arithmetic which already fails
in simplc -alcul: tinns, as illustrated above, are
still adc.uate o be used in computers of such
gigantic : seed f r huge problems.

We think “at tlr et of floating-point operations
should bc oxtende . Ly a fifth operation, the "ac-
cumulatir. . additi-/subtraction" without interme~
diate ro ~ding, :n operation which was already
available on ma. electromechanical calculators.
It is th. surpos: of this paper to show that this
addition: operu ion can be executed with extreme
speed. % realize this operation by adding the
floating- Hint .. sands into a fixed-point number
over the ull flcating-point range. Thus "accumy--

lating ac ition/:ubtraction” is error free. Even
very long chains of additions/subtractions can be
executed with only a single rounding at the very

end of th summ .ion. Such "Accumulating addition/
subtract: " _is_sociative. The result is inde-
pendent - the order in which the summands are
added.

With the ifth ¢ ~ration "accumulating addition/-
subtracti 1", we combine the advantages of fixed-
point ar’ hmetic - error free addition and sub-
traction ven fo: very long sums - with the advan-
tages of “loati: --point arithmetic - no scaling
requireme :s.

2. The : tate o” the Art

A normalized floating-point number z (in sign-mag-~

nitude r¢sresentation) is a real number of the
form

zz*m'be.
Here % e [+,-} (:notes the sign (sign(z)), m the

mantissa mant{z}}, b the base of the number sys-
tem and ¢ the exponent (exp(z)). b is an integer
number wi h b > 1. The exponent is an integer and
lies betw cn two integers el ¢ e2. In general, el
<0 and ¢2 > 0. m is the mantissa. It is of the
form
1
m= X

i=1
Here, the z[i] denote the digits of the mantissa:
z [i] e {1 1,.....b-1} for all i = 1(1)n and z[1]
# 0. 1 i: the length of the mantissa. It denotes
the numb- of mantissa digits carried along. The
set of normalized floating-point numbers does not
contain t' e number O. In order to obtain a unique
definitio.. of O one can additionally define:
sign(0) = +, mant(0) = .000 ... O (1 zeros after
the point’ and exp(0) = el. This kind of floating~
point sysiem depends on four constants b,1,el and
e2. We denote it with S = S(b,1,el,e2).
Let

z[1] + b1 .




- A "
! Vi
4y -

u= (ui) = vV = (Vi) = i
u v

n n
L - L 4

be two vectors, the components of which are nor-—
malized floating-point numbers, 1i.e. u;, Ve S

forall 1 = 1i(l)n. The theory of computer
arithmetic[1], [2]. [3] demands that scalar
products of two floating-point vect rs u and v be
computed with maximum accuracy by t!.: computer for
each relevant, finite n and diffe.. nt roundings.
By doing so, millions of roun. ings can be
eliminated in complicated calculations. This
contributes essentially to the stability of the
computational process and enlarges t.e reliability
and accuracy of computed results. Furthermore,
defect correction then becomes :n effective
mathematical inst ument.

This requiics, fu: example, the exccution of the
following formulz: by the computer:

»* vy
uy Xy

n
u@®@v=0 3
i=1

n
ullv=0 (3 u, *v)

n
uVov=V (3 u %*-v) (I)

n
uA v A(S u; % v

i=t
The multij!icitic — and aidition-.igns on the
right side cunote the correct mulrinlication and
addition fur rea: numbers. O, . V. A are
rounding symbols. O denct s a 1« nding to the
nearest floating-»oint num :r, 7 denotes the

rounding towards zero, V/ enot.s the monotone
downwardly directed roundin;: and /° denotes the
monotone uwwardly directed r unding.

For an exccution ~f formul:. (I) first the pro-
ducts u; > v, ha.: to be correctly calculated by

the comput: . Thi: leads to ~ mantissa of 21 di-
gits and a. cxpoi. nt which .ies in the range of
2el-1{ef2e'’. S0 the comput:tinn of « ‘alar products
is reduce. -, thc¢ ‘:waluati . of : & of the fol-
lowing fo:
O (3 wi)‘ nel (1I1)
i-1

Here the v are !loating-r int n.ailers of double
length w210 1-1,2e2) . for all i o= 1I{(1)n. O
denotes a ge: ra counding  lol., o> e {O. 0O,
V. A}. . < sures nave to be . ikea first to gene-
rate and reser tothe s oy g w. correctly in
the compu- -. In ise of sur..: pio licts this can
be done b - -~ { - and w.’ * i ircuits.

For trad. ! aeral © se.e co puters there

are several ways to correctly compute (1) and (II)
mentioned in the literature. It is the intention
of this paper to describe circuits for high speed
computation of (I) and (II) on vector computers by
means of pipeline techniques. These circuits have
to accept and process one summand from (I) resp.
(IT) during each machine cycle. To assist in the
understanding of the following material, we first
refer to one of the possibilities mentioned in
[4]:

We consider a register of L = k + 2e2 + 21 + 2le1]
digits of base b, which should be placed in the
arithmetic unit (Figure 1).

k 2e2 21 2|e1]

Figure 1

We divide this register into segments of length 1
(Fig. 2):

k 1

Figure 2

The summands in (I) and (II) are of length 2I.
They fit therefore, digitwise into a subrange of
length 31 of this storage. This part of the regis—
ter, which is determined by the exponent of the
summand, is selected and loaded into an accumula-
tor of length 31. The summand is loaded into a
shiftregister of the same length, being correctly
positioned according to the exponent, and then
added into the accumulator (Figure 3).

1 Accumulator

1 Shiftregister

21 (summand)
Figure 3

The addition may produce a carry. In order to
catch this carry, a few more digits than the three
words of length 1 can be read from the long regis-
ter into the accumulator, which is extended to the
left accordingly. If not all of these digits are
b-1, the carry is caught by these additional di-
gits. Since it is possible that all these additio-
nal digits are b-1, a loop has to be provided
which then adds the carry to the following digits
of the long register. This loop may possibly have
to be activated several times.

The addition of the summands of (I) resp. (11)
into the long register, Fig. 1 resp. Fig. 2, may
still produce a carry on the very far left of the
register. In order to catch such carries the long
register is extended on the left by a few more (k)
digits of base b (Fig. 1). Then, any sum (I) or
(IT) of n summands can be added without loss of

information into the long register of length L. bk
carries may occur and can be processed without
loss of information.

Here we conclude our description of one possibili-
ty to solve the problems (I) and (II). See [4].




What we just described belongs to the state of the
art.

3. Fast Computation of Sums and Scalar Products

The method described above is not suited for the
computation of (I) resp. (II) on vector processors
or supercomputers. The process of reading, shift-
ing, carry handling, possibly by a loop, and writ-

ing back is certainly too slow to be executed in

one cycle time of only a few nsecs of these compu-—

ters. A solution of the problem by a very long-

adder is also very costly and probably too slow.

We therefore discuss here a variant of the possi-
bilities mentioned above which makes processing of
a summand of (I) resp. (II) possible within a very
short cycle time. In comparison to general purpose
computers, vector processors and supercomputers
achieve their high speed of computation by means
of pipeline technology whereby during each machine
cycle a result is obtained. If scalar products and
sums are to be computed with high speed on vector
processors or supercomputers, one has to develop
circuits which accept and process one summand
(resp. a product) per machine cycle. This is only
possible if the addition is done by means of pipe-
line technology. This paper describes various cir—
cuits which allow this.

At first the most important issues and ideas of
the circuitry are presented in the text referring
to Figures 4 to 15. These Figures contain some
more details which are not essential for a first
understanding of the principles. These details are
presented later in chapter 4 "Additional Remarks
coricerning the Figures".

The circuit described below consists of a shifter
which is followed by a pipelined adder called sum—
ming matrix (Figure 4). The shifting device may be
realized by standard technology and belongs to the
state of the art.

The adder consists of registers of a total length
of S > L. Here L denotes the length of the long

register as outlined above2 (Figure 1)}. The regis-
ter length & is divided into r identical parts
which are arranged as rows one below the other
(Figure 5). r denotes the number of rows. All rows
are of the same length. Each of these rows is di-
vided into ¢ > 1 independent adders A (see Figure
6). Thus the whole summing device consists of r -
c independent adders. Fach of these adders A has a
width of a digits. Between two of these independ-
ent adders, carry handling must be possible. Also
between the last adder of a row =z:d the first one
of the next row a carry handling must be possible.
The complete summing device which we call the sum-
ming matrix SM, has a width of S=a » ¢ - r di-
gits of base b. c denotes the number of columns of
the summi matrix. It must be S > L = k + 2e2 +
21 + 2 le?T (Figures 5, 6).

The summing matrix contains ¢ + r independent ad-
ders A. Each of these adders must be able to add a
digits of base b in parallel within one machine
cycle, and to register a carry which possibly may
occur. Since each row of the summing matrix con-

2or a part of it.
discussed below.

A reduction of the length S is

259

sists o! ¢ i
be adde! ;

of the r rc
least a< I
mands which
summing matr-
nent corre:;
upper right
least sign.::
the summing
digit of
6).

Each sui:nand
must now be
proper positio-
selection 1:

the f

of the cxpon
the columns

bits of the
roughly with
in two steps -

The incoming :

shifted in

cross bar swi
cording to th

as a ringshif-
summand wnich

serted at the

ure 6 upper p:
summand is d:
parts of wid:

receives an e:
specific digi:
one (Figures |
also carry an
and expanded s
the summing m
row through t’
row in each m.
ted as soon ¢
transfer regi:

with the expoi. .-

mand.

A summand, whi-
remain connec:
position withi.,

the addition iu

summing matrix.

row. The overl
ringshift at

(see Figures 6
of both parts
neighbouring r

most significa ..

situated at the

adders. hi= ¢
oi t sum
summij mat:
»mant? a1
he add d. Ea-
wracterived b
o the . igit
fae sum .ng moe
ligit, tle low
carries the r

Jiming device (

~.ch product of
ito the summir

cding t- its e
d by th more
+ div h} ' and
“ined by the 1
t (exp  .d h)

_lection <f the
" process descr:

Is resp. produc
aifting mit (.
into the corre
.;onents. The s
{s means that
over t.e rig
end of t.e shi:
sammands - and 3,

ibuted onto the

the shiftregi:

.t identiiication
it, e.g. the I«
.id 10). The in~
.ent identifica..
nd now drops int
nnd thercafter
waming matrix, o

¢ cycle. The ad

exponer.t ider.
in the suwming r
identificution p

arrives at the su

after shifting

ae shifting unit.
~xecuted in only
The shift procedu:
also cause an « “crhanging at the r.
‘rg part then is 1

left end of the

.1 8). In this cas

the summand is t
of the summing

part of the sum:
right end of the sl

in row y then the addition of the

cant part,
the shifter, is

whic was situated at t
«dded in row y - 1.

next less significant row (see Figu

It is, however,
BQiX denotes i
i.e. 24 di

4mgg denotes t
i.e. 24 me

not at all neces

+yer division,
)= 2.

remainder of inte,
1) = 4.

atrix.

ligits can

1 trix. Each
! st be at
the sum-

it of the
tain expo-

+ tion. The
irries the
.t part of
significant
¢ 5, Figure

resp. (II)
rix at the
~.t. The row
Jicant bits

~lection of
“ignificant

n:s complies
i position
in Fig. 3.

re now first
el shifter,
osition ac-—
is executed
part of the
nd is rein-
sister (Fig-
igure 8). The
independent
r. Each part
scording to a
significant
ual adders A
. The shifted
e top row of
sceeds row by
ing ahead one
ion is execu-
ication of a
rix coincides
. of the sum-

ing unit, can

the correct
.n this case,
e row of the

however, can
:ht end of the
:inserted by a
shifting unit

the addition
n executed in
If the
nd, which was
fter, is added

‘east signifi-

e left end of
"his means the

2 9).

iry that each

r division,




transfer unit carries a
fication. It is suffici

3¢ Hlete exponent identi-
it .o identify the row by

the exponent part exp d - I of the summands in the
shifter and to use it f.r sclection of row y. The

distinction whether the
ted in row y or in row

nected with each trans'
able column signal whic

fer registers of a row.

trated by the diagrams
12).

The addition may cause
pendent adders A. Carry
dependent adders absorb
machine cycle these cr
next more sicnificant :
with another summand.
machine cycle one summa
ming matrix, although
summand may take seve-
thod displayed in the
possibilities to hand!
carry presencing or lo
applied to speed up t!
one row. In any way, t'
carry processing to be
the summatio' s and in ;
that has to be done =
summanrds or rcading out
In principle. the summi
positive sur-nds. Neg
subtrzhends are therefo.
place not add~d but su’
ries instend «f positj
to po-itive carries t}
sibly over < veral mac
The independ:nt adders
additions as well as «
positive and negative

ure 6. 12}.

The design . the comp
ing t:e sum ‘ng matrix
depen: on i : technoloe
alrea: y th" the width
A has to h: osen in
over :ne cr v lete widt
machi e cve !t . Each rc
be at lea«. 1s wide
The s..orte: he rows
can t: shi: 4 into
other hand. :hortenin

the simmine atrix in
and with i¢, the numb.
compl: re s. ation prr

After inpv. f the 1
read tarti:, with the
vided the + in que
carrv har . g. In t!.
have . b noved
the ne 1 path
throv . - natrix.
the 1t and on
regis :rs. ring th
and < -rv dling i
may : -ill execut-
reade .© 1 css  the
floa~ ~u— 't format
can « ) itored a
able r 1er proc.
sibi®. . ‘n be c

i ‘ition has to be execu-
- 1 is made by a bit con-
register or by a suit-
distinguishes the trans-
{ile principle is illus-
~«n in Figures 11 and

‘ies between the inde-
isters between the in—
> carries. In the next
s are added into the
d - A, 1ossibly together
n ‘his way, during each
1 be fed into the sum-
carry handling of on
.1~hine cycles. The me-
ves shows one of diverse
carries. There may be
«d or other techniques
.rry processing within
ning matrix allows the
uted independently of
*1 with the processing
, e.g. adding further
resul :.
:trix can only process
summinds or positive
~ked und at the proper
‘d. liere negative car-
‘ies may occur.Similar
™t to be processed pos—
‘cles. In other words:
be able to carry out
‘tions and to process
s in both cases (Fig-

mmin: device contain-
iescribed herewith can
ed. ‘e have mentioned
the individual adders
1 way that an addition
Je er :cuted within one
e summing matrix must

ir"ividual summands.
e ' ster the summands
zht »nosition. On the
widthh of the rows of
s the number of rows
yipeline steps for the

ma:.' the rows can be
¢ sig:. ificant row, pro-
does not require any

1se L.e carries first
adou* process can use
ch te summands pass
‘1e : :sult rows follow

t°  ugh the transfer
ut rocess additions
w2 significant rows
ul sneously with the
1. to the required

erecuted. The result
te ~diate long vari-
Scv ral rounding pos-—
out .imultaneously as

mentioned in [4]. During the readout process the
computation of a new scalar product resp. a new
sum can be started.

The width a of the independent adders A depends on
the technology used and on the cycle time of the
system. The width should be as large as possible.
But on the other hand, it must permit the addition
over the a digits in one machine cycle. (In the
case of a scalar product, a machine cycle is the
time in which the system delivers a product).
Depending on the technology there are several pos-—-
sibilities of transportation of the summands to
one of the r rows of the summing matrix SM.

The method described above is based on the idea
that each of the independent adders A is supple-
mented by a transfer register of the same width
(plus tag-register for exponent identification and
+/- control). During each machine cycle, each
transfer register can pass on its contents to the
transfer register in the corresponding position in
the next row and receive a digit sequence from the
transfer register in the corresponding position in
the previous row. Attached to the transfer regis—-
ters is the tag-register for exponent identifica-
tion (Figure 5 and Figure 6). The contents of this
register are always compared with the exponent
identification of the corresponding adder. In case
of coincidence, the addition resp. subtraction is
activated (Figures 5, 6 and 12).

Alternatives to this procedure are also possible.

1. One of these alternatives could be to trans—
fer the summand in one machine cycle directly
into the appropriate row of transfer regis—
ters of the summing matrix as determined by
the exponent. During the following machine
cycle, the addition is executed. Simultan—
eously, a new summand can be transferred to
the same, or another row, so that an addition
in each machine cycle is carried out.

2. The procedure is similar to 1. The interme—
diate storage of the summands in transfer
registers, however, is not necessary if it is
possible to execute the transfer- and addi-
tion-process in one machine cycle. In this
case, no transfer registers are necessary.
The output of the result then also takes
place directly.

3. The transfer of the summands to the target
row can be carried out not only sequentially
and directly but alsc with several interme—

diate steps, for example, by binary selec-
tion.

Each one of these alternatives also allows a dir-
ect and therefore faster readout of the result
without dropping step by step through the transfer
registers.

To each independent adder A of length a belongs a
transfer register TR which is basically of the
same length. The number of adders A resp. transfer
registers TR in a row is chosen in such a way that

the mantissa length m of the summands plus the
length of the transfer registers t (=a) becomes

less or equal to the length of the row (m+a<h
= c ¢ a). In this way, an overlapping of the less
significant part of the mantissa with its most
significant part in one transfer register is avoi-




ded. For typical floating-point formats this con-
dition may result in long rows of the summing ma-
trix or in short widths a of the adders resp.
transfer registers. The former case causes leng thy
shifts while the latter case causes more carries
(Figure 6 upper part and Figure 8).

This disadvantage can be avoided by providing se-
veral (2> 2) partial transfer registers for each
adder of length a. Each partial transfer register
TR of length t < a carries its own exponent iden-
tification. Finally, the length t of the transfer
registers can be chosen independently of the
length a of the adders A. Both only need to be
integer divisors of the row length of the summing

matrix h = a * ¢ = t * n (see Figures 13. 14 and
15). :
Figures 6 and 13 show, in particular, that the

summing matrix has a very systematic structure and
that it can be realized by a few, very simple
building blocks. It is suitable, therefore, for
realization in various technologies.

Based on the same principle also, summands which
consist of products of three and more factors can
be added correctly.

If the summing matrix is to be realized in
VLSI-technology it may happen that the complet
summing matrix does not fit on a single chip. One
should then try to develop components for the co-
lumns of the summing matrix since the number of
connections (pins) between adjacent columns 1is
much smaller than between neighbouring rows.

The following remarks and Figures 4 to 15 provide
a more detailed description of the structure of
the summing matrix and its functioning.

4. Additional Remarks concerning the Figures

The following abbreviations are used in the Fig-
ures:

A Adder

AC Accumulator Register

CY Carry

E Tag-Register for Exponent Identifica-
tion

LSB Least Significant Bit

MSB Most Significant Bit
SM Summing Matrix

SR Shifter

TR Transfer Register

Figure 4 shows a structure diagram of the complete
summing circuitry and illustrates the interaction
of different parts of the whole circuitry, such
as: separation of the summands into sign, exponent
and mantissa, shifting unit, summing matrix,
controller and rounding unit.

Figure 5: As mentioned in the text, we assume that
S 2 L. Figure 5 shows the case S > L. There, for
both the first and last rows part of the row is
covered by transfer registers only. For the whole
summing matrix this means that transfer registers
exist for S digits but adders for L digits only. L
is chosen such that it is a multiple of a.

The dotted lines through the independent adders A
indicate that the transfer wires bypass the ad-
ders. Above the transfer registers, the tag-regis-—
ter for exponent identification is indicated by a
box. This register is part of the transfer regis-
ter.

261

Figure 6 si.
trix. It is
uses 4 bit-

Width of A .
Number of =..
Number of rc
k = 20 carry
el = -64 and
Users of /3
this dita .
L =20+ 2
4 bits = 1!
Width of the
S=a-c¢c -
152 by tes.
In this ex
ters ecqual
bytes.

The upper
positions of

Figure 7 def
of the dig "
y vertical, .
cording to

e o
o denote:
the le-
upper
e
1 cdenote.
adder.
e
m denotc.,
theadd~ -
If th-
matrix
then ¢,
e denotes
e-e
O Genotes
end o:
= e—e )
y (e=e )
the di..
X = e-e
(e-e )
least .
Figures 8 -
unit and it

exponent idc;
into the summ

The task of t

1. adjust r
its add.
2. fill th:
registe:

Figure 8 sho
sible cases.
Figure 9 des-
are to be dis

1. x = (e-e
e
T

2. x<m

t

v block dincranm
ornoa s, i

e summing ma-
format which

~ibe onc di :se b.
i bytes -
in one ro- C
"SM r =8
s, 1 = 14 dig. o the mantissa
= 64,
tibl. Sat recognize
thei: < 7 s5.on format.
20+ 14 + . = 04 digits of

mplete summing m @ i-
=4+ 5 « 8 1yt O bytes 2 L. =

i .2 width t of cansfer regis-—

+ width of the Tt =a =4

= of the Figurc shows several
..ands.

the expon .t ¢ wites X and y

e summit ©omnc horizontal,

-» coordi. ite obtained ac-

~vllowing foimu.

e reference po:
cexponent in ¢
¢ end).

least si nii..u

e digit with
rix (at the

ligit of the

ae most  signiti. at digit  of
~ and the last ros
rins adders ov: I

and e = ¢ 4+
m o

the complete
full width

(6]

2 exponent of a «i. it to be added.

e distance to the ' st significant
» matrix.

" h is the .uate in which

"s added.
cistance to the

iOW ..

vith the exjonen: .
h indicates the

.ficant end of rouw ;.

i describe the of the shift
ziation to the gencration of the
Jication which wi.. .¢ transferred
r matrix with the ranrissa.

Lasr

- shift unit is:

1itissa to the co.

on, if necessary 1
emaining positions
resp.

position for
. ring shift.
f the transfer
the row with .-ros.
the shifted manti:- . in both pos~—
bes the shift proci ss. Two cases
iguished:
mod h 2 m : no overlianging,

whole mantissa is added in one

over ..
mantissa is

wring,

ided in two




successive r ..

Part m) Tem..ns within the width of

the row. The - rerhanging part my is

Figure 12 shows a block diagram for an adder cell.
For simplicity the case t = a is selected. The
cell contains centrally an "adder/subtractor" and
a "partial accumulator section”. The right upper

reinserted ‘he left of the row. corner shows the corresponding transfer register
Both parts : . irnished with a cor- with wires from the next less significant row and
responding >cnent identification. to the next more significant row.

Part m, wil. ¢ selected for addition Additionally, the transfer register contains a tag

2

in row y-1 ereas part m will be

added in ro

The shifted and expande.! . ntissa row drops row by
row through the ma*ri: as a transfer row. Before
that, each transfer « ti n is characterized by
its exponent which carrie: the information where
the addition has to be v ted.

Figure 10 shows the evp identification of the
sections of the t ans ows. Each row of the
transfer matrix co: is 1 transfer seciions of
length t. Figure 1) :s the exponent identi-
fication te (transfer aent) of these transfer

sections of the matrix. e, denotes the exponent

of the e.g. least sign’ +nt digit of a tramsfer
section then this ‘aivier  section can be
characteriz¢ed by t.uc xpc @nt identification te

. L -
with te_ (vt eo) d'y

Before a summand entecr: matrix, each transfer
section of the sum ‘ves an exponent iden—
tification. During . ~2 through the matrix,
this exponent iden' .f: !s then compared with
te' Equality trigg s 1.i.tion. The lower part

.«.afer sections of the
‘dentification.

e (= exponent of its

rceives the exponent

of Figure 10 shows ..
summand get their ¢
A mantissa with the e
most sig: ‘ficant 4

register for "z/z-1" identification which indenti-
fies through which selection wire the cell can be
activated. The "adder/subtractor”™ receives the
operands from the "partial accumulator section”
and in case of selection from the transfer regis-
ter. Zero is added if no selection takes place. In
addition, the carry (positive or negative) arriv-
ing from the right is processed during each addi-
tion/subtraction and, if necessary, a carry is
passed on to the next adder cell on the left. This
carry is temporarily stored in an auxiliary regis—
ter. Figure 15 further shows a control wire which
selects the operation (addition/subtraction) as
well as a control wire for the read out process
(at the bottom of the figure). All control wires
traverse the whole row.

Figure 13 is very similar to Figure 6. It shows
one row of the summing matrix, but with t < a. The
Figure is based on the same data format as Figure
6, i.e.: one digit of basis b is described by 4
bits, k = 20 carry digits, 1 = 14 digits in the
mantissa, el = -64 and e2 = 64. Furthermore:

Width of AC: a = 4 bytes = 32 bits.

Number of adders in one row c = 4.

Number of rows in SM r = 10.

L=20+2 64+ 2+ 14+ 2 « 64 = 304 digits per
4 bits = 152 bytes.

Width of the complete summing matrix
S=a-<c*r=4-4-+ 10 bytes = 160 bytes » L =
152 bytes.

In this example the width of the transfer regis-

identific: ::n (e - t = e in the most N
( - m ters is smallev than the width a of the adders: t
significa:r. trans:: s ion, and exponent _a 2 b
identific ‘on e, T b 2, etc. in the less s ytes.
$ significar transfc N Igif permits a smaller row width of only ¢ = 4
¥ Figure 1C < =ws in part the two typical aduers. ,
cases. (71 Jlete su d in one The upper part of the Figure shows the position of
rOW resp. 0 P OUOWs ). a summand of m = 2<1 = 14 bytes at a critical po-

''fied adder selection
"..is row identification

Figure 11 eplains ‘.
by row identificati .
is transfered thr. +h ‘e matrix with the
transferr. v. The add:. - triggered off as soon

sition.

Figure 14 shows another case where the width of
the adders differs from that of the transfer re-
gisters (t # a). In the Figure the transfer regis-
ters are shown without exponent identification.

as the ident:: i and the row index

coincide. ".he row . switch RS generates Dotted lines again indicate transfer wires which

two selec " 'n signa ic activate the adders of bypass the adder in question.

the row questi: a Figure 12, too). An . .

activatir | ' ignal ia the wire "z-selec- EQEE;E_1§ shows a section of a row of the summing
. tion” if . .. row ition equals the row matrix with t # a. Here the case 3t = 2a has been
¢ index. A U atd is sent via the wire selected. It shows how digits of the same transfer

nz-l-sel.. . .on' if , 1 1s the row index. fegister are distributed and added into neighbour-

Then the tr.onsfer . ec: .1y carry the informa- ing adders.

tion (z-1,. -surm . .

Since th: ¢ unsfe. only contain positive 5. Summation with only one Row of Adders

values t' - ‘nformu: ion or subtraction is

addi tion transf . We now discuss a further variant of the above cir-

Thus the ntrolle . 1s transfer registers cuitry for which adders exist only for one row of

with spe ..c infor - r each row which leads the summing matrix. The complete structure of this

about to . struct in Figure 11. variant is similar to the one before {Figure 16).

262

I.e. the complete circuitry consists of an input

1D




‘ N T S
. 4 >

adjusting unit, the summing unit with the actual
accumulator and a device for carry handling, re-
sult row filtering and rounding.

The complete fixed-point word, over which summa-
tion takes place, is divided into rows and co-
lumns, as before. The transfer width and the adder
width, however, must now be identical. The width
can be chosen according to the criteria as out-
lined above. The columns of the matrix shaped sum-
ming unit are now completely disconnected, i.e. no
transmission of carries takes place between the
individual colums of the matrix during the pro-
cess of summation. The carries occurring during
the summation are collected in carry counters and
processed at the end of the summation process.

Figure 17 shows the circuit of a "column” of the
matrix shaped summing unit. The full "long accumu-
lator" is spread over the various columns of the
summing unit. The part allotted to one column is

called "accu-memory"”, see (1) in Figure 17.5

To each cell of the accu-memory belongs a carry
counter. The collection of carry counters of a
column is called "carry-memory"”, see (2) in Figure
17. In these cells of the carry-memory all carries
emerging from the adder/subtractor are collected
and incorporated in the result at the very end of
the summing process. The individual cells of the
carry-memory must be so wide that they can take a
carry (positive or negative) from cach summand.
For a vector length of 128 one nreeds, for example,
7 bits plus a sign bit resp. an 8 bit number in
twos’—-complement.

In Figure 17, for example, the column width is 32
bits and the width of the individual carry-memory
cells is 16 bits. This allows a correct computa-
tion of sums with less than or equal to 32 K sum-
mands. The exponent identification (in Figure 17)
has a width of e bit; consequently the column has

2% cells resp. the memory matrix 2% rows.

During the normal summation process the following
happens:
1. The mantissa section MANT, sign sg, and expo-
nent identification EPI reach the input re-
gister RI, (3).
2. In the next cycle
- the memory is addressed through EPI
and the accu-part as well as the carry
part are transferred to the
corresponding section of the register
before the sum-mation RBS, (4);
- the mantissa section, sg, and EPI are
also  transferred to the corresponding
section of RBS, (5).
3. In the next cycle
- addition resp. subtraction according to sg is
executed in the adder/subtracter (6). The
result is transferred to the corresponding
section of the register after the summation
RAS, (7). According to the carry, the carry-
part is adjusted in (8) by +1, -1 or not at

5'I'he numbers enclosed in round parentheses in the
text indicate in the corresponding Figure that
part of the circuitry which is marked with the
same number .

a.i o Ca ‘rred to RAS, (9);
- Eil s . e.. .o RAS, (10).

In tae .

- B .+ ddresses the memory, and

e o t ther with the carry-
Cer xick into the memor: .

Since . e- ; . . mantissa section
suppli ', N w be pipelined. Th ;
means, : . phases need to wve
active .. i - be possible ther~-
fore, o r e and to write i: »
the szie o 1 : memory during e 1
machine -y Ve is usual for reg..-
ter me. (e
If in n L. the same accu- and
carry-memor; ¢ ] ¢ dressed, the previously
described p: ¢ .. lead to a wrong result,
since in the co-! yc'e -he result of the just
started s -r o t.ould be read, which
does not - - . a typical pipel; &
conflict., =~ =r o can be overcome bLy
duplica- i« - < ar: :mory several times
which, ..« i v oC
Therefore, - : an ier alternative. e
suppose ti. @ ! Conse ive cycles manti: a
sections - ; oo «* o>nent identificati:n
arrive. o . : Li lowing two cases:
a) divi ot o =~ . .her;
b)  with » >t ¢ snent centification in bet-

ween th © .itiarily often and mixed.

\

We first dea. with case o).

a) The ro. .iev [Pl and EPI of RBS con-
tain - - . exy . identification. The
two ar oi.. eu in .. and in case of coin-
cicenc he rea. proce s from the memory to
RBs is  .oche o o0f din ;. t (13) of the selec-
tion wno ot . ;. Inst-:. , the result of the
additi» i . first .{ the two consecutive
sunma;, 1. ..rect.y iunsferred to RBS via
(14 ¢ . . tae s d summand can immedi-
ately i . .de..

Furth-r. 12, {i5) causes a dummy exponent to
be reud +I of RAS. So, if in the same

cycle a : thire value with the same
exponen* identificrier is transferred to RI
the cas: E.1/RI = kPl :3S = EPI/RAS is avoi-
ded. T s case would « .se a conflict in the
select. 1 unit (12).

Thus, ¢ .secutive sunmnc:ds with the same ex-
ponent .dentification can be added without

memory uvolvement. Tl : intermediate values
may be rition into the memory or discarded
(stor: t1u kade on). Only the last value
must b .ritten into tie memory via RAS.

We now deal with case b).
b) Three vilues EPII. EI’I2, EP13 with EPI1 =
}:‘,PI3 # 1PI,. In this cise EPI/RI and EPI/RAS-

contain the same exporn~nt identification.The
two re; isters are compared in (16). In the
followi g cycle the contents of RAS is
directl - transferred to RBS through part (17)
of the selection unit (12). The read process
from th: memory is again suppressed in (13).
The in‘ :rmediate value may be written into
the mer ry. It can also be suppressed.

In this way, any consecutive mantissa sections can




e added and the c.rries cclle -

counters.

W#e now consider the process of r
The central read cintrol produc
dresses so that the accu- nemor:

least significant to the
This sequence is a must !
carry handling. The add:
through the multiplexer (:

Wires (19), (20) for transvicr of

m: s’

1¢
:S

from column to colurn. The carry

are fed to the next more sionific
they are taken into the i
the multi+!.

To get there
over. The carry, which is
nlement for convenience,

sary, expanded in 1 :ngth

the carry is added and t
lbit-carry (positive or :
the unit for preparing t}
storage in RAS. The ab
there be stored either ir

register or in a 2bit aux.:

During the process of re

Jdelete the particular str
a circuitry part which i
example, be done by writi
rious scalar products res
lated, the process of rea
the computation of the f
summands are continuousl
accu-carry-memory.

From the most signi!icant
the memory is transferre
register, (24) in F.gure
ry is transferred with =«

tiss
war
5. re.

Tirst
into sign-magnitude -repre ~n' ¢

wire (20) to the leist s°

it available for thk: rea
significant row.

The final carry treatmen:
resp. multi-stage pipelir
‘ng carries are inc'uded

of this part of tL:. cir

“he result appear, the
Tirst.
In another part of the

shown in Figure 18, the
cant digits must b: for
digit of the more signi:
tains the result sim; s
zero) means positiv -, la:
mal 9, hexadecimal ) me
ble to initialize .oth
circuitry for filt.ring
information now ch cks
the circuit whethe  tl
1ot equal to the si:n ¢
higher significant regis

-ase or if there is no s-
decimal system) at :nsit
is enabled for the . ctu:
to fill both regic ers
rows. If, however, the
abled in the previc s cv
abled for one cycle onl-
may therefore be d ~r+
table with entries '+ov:

1]

1

¢

T

m:n

nar'
ary

i

1C
Gt

'

J\i L
28
t

in the carry

z the result.
»ntinuous ad-
ead from the
ificant row.
he necessary

the memory

carries lead
s of a column
column. There
ction of RBS.
is switched
he twos’-com—
"o he changed
1, if neces-
» next cycle,
1 a possible
ansferred to
‘er temporary
d carry can
he RAS-carry
cer (23).

advisable to
mmediately by
This can, for
‘o it. If va-
‘0 be accumu—
itarted until
inished. The
2d into the

carry part of
<iliary carry
“e, this car-
ne cycle via
‘lumn to have
s of the more

‘ns a single-
still remain-
. At the end
ady rows of
ficant ones

6). which is
the signifi-
significant
er (28) con-
(preferably
jual 1, deci-
t is advis-
ith zero. The
h significant
presented to
“t one digit
ored in the
this is the
z. 1..8 in a
. the transfer
t clock cycle
v consecutive
already en-
.ist be reen-
. circuit (29)
‘1lowing state
‘er enable”.

264

output of
sign check
State 0 1
1 1/0 2/1
2 1/1 371
3 170 3/1

The transfer into the registers ends if only rows
with sign digits follow. Finally, in both regis-
ters those rows appear, which contain the mantissa
of the floating~point result. One obtains the ex-
ponent from the position as well as from the ini-
tial address resp. from the number of cycles ne-
cessary for reading. Furthermore, the information
required for the rounding is easily obtained du-
ring output. It serves for a possible adaptation
of the result.

The circuitry shown in Figure 17 may be varied to
reduce the number of input/output lines, e.g. by
transferring the carry count (19) through the MANT
inputs. The Figure is intended just to show prin-
ciples, and not tricky details.

6. Systems with large Exponent Range and further
Remarks

Many computers have a very modest exponent range.
This is for instance the case for the system /370
architecture. If in the decimal system, for in-
stance, 1 = 17, el = -75 and e2 = 75 the full
length L = k + 22 + 21 + 2 |e1| of the registers
(see Figure 1 and Figure 2) can more or less easi-
ly be provided. Then sums and scalar products of
the form (I} and (II) can be correctly computed
for all possible combinations of the data by the
technique discussed in this paper without ever
getting an overflow or an interrupt.

However, there are also computers on the market
with a very large exponent range of several hund-
red or thousand. In such a case it may be costly
to provide the full register lengths of L = k +
2e2 + 21 + 2 ]el[ for the techniques discussed in
this paper. It is most useful then to reduce the
register lengths to the single exponent range and

instead of L to choose L~ = k + e2 + 21 + |el| or
even a smaller range e’ { e < e" with el < e' and
+ 21 +

"

T r e2 and correspondingly L’
e’|.

Traditionally, sums and scalar products are com-
puted in the single exponent range el { e { e2. If

=k + e"

Iel] and e2 are relatively large most scalar pro-
ducts will be correctly computable within this
range or even in e’ e { e". Whenever, in this

case, the exponent of a summand in a sum or scalar
product computation exceeds this range e’ { e { e"

an overflow has to be signalled which may cause an
interrupt.

In such a case the exponent range could be exten-
ded to a larger size on the negative or the posi-
tive side or even on both sides. We may very well
assume that the necessity for such an extension of
the exponent range occurs rather rarely. The sup-
plementary register extensions, which are necessa-~
ry for the techniques discussed in this paper,
could then, for instance, be arranged in the main
memory of the system and the summation within the




extended register part may then be executed in

sof tware. Such procedure would slow down the com~

putation of scalar products in rather rare cases.

But it still always will deliver the correct

answer.

We further discuss a few slightly different me-

thods how to execute accumulating addition/sub-

traction and the scalar product summation on pro-
cessors with large exponent range.

On a more sophisticated processor the exponent

range covered by the summing matrix could even be

made adjustable to gain most out of this special
hardware. This could be done by an automatic pro-
cess of three stages:

1. A special vector instruction analyzes the two
vectors and computes the exponent range that
covers most of the summands or products of
the vector components. This step may be dis-
carded if the best range is already known.

2. The summing matrix gets properly adjusted to
the range found in 1. and in a vector in-
struction the fitting part of the summand or
products is accumulated into the summing ma-
trix. If a summand or product does not fit
into it it can be dealt by one of the two
alternatives:

a) Interrupt the accumulation and add that
summand or product by software to the
not covered extended parts of the accu~
mulator which resides in main memory.
Do not interrupt the accumulation, but
discard this summand or product and
mark this element in a vector flag re-
gister. Later the marked elements are
added by software to the extended parts
of the accumulator. This second way
avoids interrupting and restarting the
pipeline and will thus lead to higher
performance than a).

3. In a final step the content of the summing
matrix part of the accumulator is properly
inserted between the extended parts to get
the complete result in form of a correspond-
ingly long variable in main memory.

b)

Another cure of the overflow situation e € [e’,
e”] may be the following: Summands with an expo-—
nent e, which is less than e’, are not added, but
gathered on a "negative heap”. Similarily summands
with an exponent, which is greater than e", are
gathered on a "positive heap". The negative and
the positive heap may consist of a bit string or a
vector flag register where each summand or vector
component is represented by a bit. This bit is set
zero if the summand was already added. It is set 1
if the component belongs to the corresponding
heap. After a first summation pass over all sum
mands the computed sum is stored. Then the posi-
tive and/or negative heap is shifted into te
middle of the exponent range e’ ¢ e < e" by an
exponent transformation and then added by the same
procedure. After possibly several such steps the
stored parts of the sum are put together and the
final sum is computed. In many cases it will be
possible to obtain the final result without sum—
ming up the negative heap.

Another possibility to obtain the correct result
with a reduced register length L° =k + ' + 21 +
e" 1is the following: The process of summation
starts as usual. As soon as the exponent e of a

265

- -_—
summand exce rar «', e"] an exponent
part is bui. ich rets the digit se-
quence of L’ ry 1 . ntissa of a normal-
ized floatir am’ e normalization, in
general, wi. ) LA if:i. Then a "positive
heap' is no ce y. /ind in most cases it
will be pos @ n the correct rounded
result withe 23 v possibly still neces-
sary ''negat: o ¢t od computes all ac-
cumulating s il o icts correctly with-
out consider : eg. :aps as long as less
than e" - e’ :an i.e negative heap can
only influen le + cignificant digits of
L.
The reductio: fu: :cimulator length L to
a smaller si: ma 1 e exponent under— or
overflows i1 AU S ion processes. This
always makes ©ooent iling routine necessa—
ry. Whatever s, procedure represents a
trade off b. bard - expenditure and run-
time.
A rather pri er dling would consist in
a tradition: ar tle positive and nega-
tive heap. 1. is 2 sage should be deli-
vered to the - ot result is probably not
precise.
In the conte ! o n - languages the accu-
mulator of I« = 2" + 21 + e’ represents
a new data t wh 1 le called precise. As
long as no e .« . une o overflow occurs (e’
{ege')a itun f . les of type real, of
products of Lo «s_well as of scalar
products of + . v ntc to _a variable of this
type can pr _ ., e ated and it is error
free. Accumu - o sariables, products or
scalar produ a vle _of type precise is
associative. oL ‘1. dependent of the or-
der in which . < o _-_added.
Vectorproces: - o} « the fastest computers
which are pr:. .. ive abie, Their main field of
application ic. nti. -~ Computation. It should
be natural ... 1\ ct ‘°3SOrS compute vector
operations c.r: .ct.y. vector operations con-
sist basical.y of the r ponentwise addition and
subtraction, thc compo . i'wise multiplication and

the scalar product. T'c¢ :nplementation of highly
accurate vec ¢ acd.liti. . subtraction and compo-
nentwise mul i tic -longs to the state of
the art. The e ISR AR [ accurate scalar pro-
ducts has be: ea. w o . this paper.

Due to their .. h : zec . computation, vectorpro-
cessors must, able to support an

we.:r, als) be
automatic er: Ly s
computed res . . .. o:
necessary tl .. al. o icns, mentioned above,
such as comj.oucntw.se . i.ition/subtraction, com-
ponentwise multiplication and scalar products can
optionally be called with several roundings, in
particular with the minotone downwardly directed

sp. verification of the
t7» achieve this it is

rounding, th~ monotone i »wardly directed rounding
and the roun "~ ; to t!- ieast including interval.
We do not « 1ss tic implementation eof these
roundings he It belcngs to the state of the
art. For fur:: - i:or mtion we refer to the lit-
erature.

Finally, we ro1 rk tha: the methods and procedures
outlined in t1 . peper 1ire also suitable to add up
sums of procdic s corrc:tl which consist of more

than two factors, for example

T




n

Z a,
i=l
7. Application to Mu!:

We show in this chapter
of multiple precision

unit is available.

We consider

1. Double Precision Ar i thmeti

1.1 Sum and Differenc:
It is clear that sums
summands a + b or a + L
lated. The same holds
trices.

1.2 Product
If a product a * b of tw
a and b has to be com

represented as a sum of two sir
bers a = a, + and b =
17 %

represent the first (hirher sig
the 1

and a, and b2 repres: ..

cant) 1 digits of a =
requires the executior. o
a b= (al + 32)

alb1 + alb2 + a2b1

vwvhere each summand is .-

can be added by the t-«
paper.

b,
i

»le T

that

: rithm
executed with high speed if a ¢

iWo o
c ..
r sur

doul.
ited,

b, +1

1

. The
a sc

1 + b

a,b,
2 <
dou!
,‘:qw

Similarly, products of : sre t

be computed. As in (1) product:
cision numbers are exprissed b

of single precision
side of (1) each
number which can -
single precision n' *
of four double prec si
following formulas, w:.:

arbsced = (a*b) (

8 8
3 ai e 3 ¢ =
i=1 =
i .
a o
1

i
8
witha « b= 3
i=
Thus a*b+c+d can b~
ducts of two sing! or
The case of product.
sion matrices is a li
can, in principle, b
product of two double
computed the two matri.

6High speed scientific
in the long data f-
means the double 1

If the usual long
precision our d-. .
quadruple or exte:

ers.
i is
resse
nt
umbse

. are

cion
O
< m
rent
B

A

“pute
Ne
le.
is »

s

i

1
de

i

<

oL

rst

n

1_Arithmetic

ential parts
n easily be
:alar product

ble precision
an be accumu-
>ctors or ma-

‘sion factors
actor can be
recision num-

.ere a, and b1

1
ant) 1 digits
ower signifi-

'ication then
duct:

(1)
cision. These
ped in this

» factors can

2 double pre-

~alar product

right hand

le precision

sum of two

f a product

leads to the
»lanatory.

[

1 of 64 pro-

‘ach.

uble preci-
.cult. But it
arily. If a

>s has to be

resented as

usually done
¢cision here
that format.
‘alled double
‘esponds to

sumg of two single precision matrices. Multipl;ca—
tion of these sums then leads to a sum of products
of single precision matrices:

a s+ b= (a1 + a2) (bl + b,

%)
albl + a1b2 + a2b1 + a2b2 (2)

Each component of the products on the right hand
side of (2) is computed as a scalar product. Thus
each component of the product matrix a * b con—
sists of a sum of scalar products which itself is
a sca.ar product.

In case of matrix products, which consist of more
than :wo double precision matrix factors, one has
to taxe into account that the components of (2)
may already be pretty long. They may consist of 10
or 20 consecutive digit sequences of single preci-
sion lengths. These sums of single precision ma-
trices then have to be multiplied with other such
sums, which leads to a sum of matrix products.
Each component of this sum can be computed as a
scalar product of single precision numbers.

2.
Arithmetic of triple precision is a special case
of quadruple precision arithmetic.

3. Quadruple Precision Arithmetic

3.1 Sum and Difference

Each summand of quadruple precision can be repre-
sented as a sum of two double precision summands.
Thus sums of two or more quadruple precision sum-
mands can be added as expressed by the following
formuias:

a+b= a; +a, + b1 + b2

a+b+c+ ..

a,ta,+> +b +c. +¢

+ z =
1772 71 7277172

+ ...+ Zl + 22 .

Sums of quadruple precision vectors or matrices
can be treated correspondingly.

3.2 ?Products
Each quadruple precision number can be represented

as a sum of four single precision numbers a = a, +

ag + ag + ay. Multiplication of such sums requires

the execution of a scalar product:

a-b = (a1+a2+a3+a4) .

4
2 a, » b, (3)

4
(b,+b_+b +b,) = 3
1 727374 =1 =1 i J

2 :
i

Similarily, products of more than two quadruple
precision factors can be computed. We indicate
this process by the following formulas, which are
self-explanatory.

asbec-d =

4 4
)(2 Ecid)=

4 4
(a*b) (c+d) =( 3 3 a, b
i=1 j=1

i=1 j=1 J




32
=(Z2 a
i=1

32 32 32 i
Y (2 cj) = 2 S a'cd
j=1 i=1  j=1

1 ‘4)

There the 16 double precision summands aiLj and
cidj of the two factors of (4) are each represen-

ted as sums of two single precision-numbers. This
leads to the product of the two sums over 32

single precision numbers ai resp. ¢d in the next
line.

If a product of two quadruple precision matrices
is to be computed each factor is represented by a
sum of four single precision floating-point ratri-
ces as in (3).

Multiplication of these sums leads to a cum of
matrix products. Each component of these ratrix
products is computed as a scalar product. The sum
of these scalar products is again a scala- pro-
duct.

It was the intention of this section to demon-
strate that with a fast accumulating addition/sub-
traction or scalar product unit a big step towards
multiple precision arithmetic, even for product
spaces, can be done.

8. Literature
[1] U. Kulisch: Grundlagen des Numerischen Rech-
nens - Mathematische Begriindung der Rechner-
arithmetik, Bibliographisches Institut, Mann-
heim 1976

[2] U. Kulisch and W.L. Miranker: Computer Arith-
metic in Teory and Practice, Academic Press
1981

[3] U. Kulisch and W.L. Miranker: The Arithmetic
of the Digital Computer: A New Approach,
SIAM-Review, March 1986, pp. 1-40

[4] IBM System /370 RPQ. High Accuracy Arith-
metic, Publication Number SA 22-7093-0

[5] High Accuracy Arithmetic, Subroutine Library,
General Information Manual, IBM Program Num-
ber 5664-185

[6] High Accuracy Arithmetic, Subroutine Library,
Program Description and User's Guide, IBM
Program Number 5664-185, Publication Number
GC 33-6163

[7] T. Teufel:‘Ein optimaler Gleitkommaprozessor,
Dissertation, Universitit Karlsruhe, 1084

[8] G. Bohlender and T. Teufel: BAP-SC: A Decimal
Floating-Point Processor for Optimal Arithme-
tic, to appear in: Computer Arithmetic,
Scientific Computing and Programming; Lan-
guages (E. Kaucher, U. Kulisch, Ch. Ullrich,
Eds), B.G. Teubner, 1987

[9] Arithmos Benutzerhandbuch, SIEMENS AG. .
Bestell-Nr.: U 2900-]J~Z 87-1

For a supplementary bibliography see the litera-
ture listed in [3].

operation 55, P
o) --f
it
u i
b i
-
o
4
P mmir
e
o
o
—
Figur- ructu
lue d
Lrom gh: T
3] I . -
oy cy I—‘
4
i a— —
ac i —_—
o T
v
-+
-
IR
‘
: \

E: tag-rc  ste

expon: id 162
CY: carxy s oo
TR: transi:-: re.. ‘er
A: adder

: accumu) -ting . .
cludin; arithmet

each row cc "21n8 ¢ a

of t digits i.e. he=
Pigure S: cture o
s o
AL — -
'
Figure .:.: T: nsf
wivth
transt
tag-fi

267

ber {summand) = (sq,e,m)s

t n pathes (n-t=h)

t' t'=t + Exp~
identifi-
cation

t n pathes for
the result

rounding

_L (mj,;,;)r = result as floating-~
point number

¢ wle circuitry
f rumber of figures of ‘value'

: least significant bit

: most significant bit
number of rows

KY¥: row carry

o

sieoaitry

rrs f a digits and n transfer registers

*a n-t (bere: n=c and t=a)

th - uming matrix
; ! i 34
TR TR TR
R W | 1A
N
req rs and addexs of different
ta, : . instance: t=4, a=6}. The
reni-t.rs are represented without

ds :or exponent identification




tions as leaving

different posi-
the shifting unit

ET— CA7/777 38
(el
E_ TR ] Lse
AC

Summands in

:EZ examples of

el 2777
e 7274

A

[EFZ

O77
[ef7
¥

ERZZ2
Epzzz2
3 S—

2

[
Yoz
EZA]

Summand |

e_+h-1 e
©

[} _pt— -~ -

e +2n-1
Vo e—
e°¢3h-1
2 —_—
e taho1
3 ——— e

eo*(x-Hhﬂ

-2 — -
e_t+rh-1
P I Y

only transfer regist .

eyt reference poi: - ligi

e exponent of tt st i,

ent exponent of t! st a

h: length of row
L=er-e+, s

e: exponent of a <. g

e-e : distance to the
Y= (.—.o) aiv h: row
x= (e-eo) mod h: dis:

Figure 7: Exponent cc r!i .
matrix

transfer register,
+: most significant digit of summand

: carry,

tag-register for exponent identification, TR
AC: accumulator register, CY

Summing matrix SM consisting of h=c - r independent adders A

Figure 6

x

< ———
e
o

¢ re, sters,nu adders

e tlr-2)h

—_—

eof(r-”h

—

2xpone t in the matrix
digit of the adders
1igit of the adders

b), h=u-a

end of the matrix
yit - uh exponent e
nificant end of row y

:irs in the summing

Cage 1: x 3z m

digit with exponent e

|

00.....0 00 [e m ] 0o...0 0o0...
L s +
i 1
k + + } + + + 4
row with n transfer registers of lenqgth t
x<®m
m, 00 00.....0 00......0 00....0e m
| 2 122, 4 + | ! |
[ i I 1
' " + " " + 4 y
b + y + t + {
row with n transfer registers of length t
Figure B: Task of the shift unit
Case x zm
1
4 addition of all digits of
the mantissa in row y.
Case 2: x < ®
m. L} m
2 e —. 2 Famge m,
— )
m. x<m part m, of the mantissa
y-1 - is added in row y,
y — 1 part m, in row y-1.
y = (e—eo) div h
e: exponent of the most significant digit of the mantissa
m: length of mantissa, number of digits of the mantissa
h: number of digits of a row of the summing matrix
Figure 9: Description of the shift process
Exponent identification T of the transfer sections
of the matrix:
row
P ) B —_— 5
2n-1 n+1 n
1 L + + + {
-2 JAr=1)en=1 N ; (r-2)n
£n -1 {r-1)n
-1 b + % +
A mantigsa transfer row with mantissa exponent e gets the
Ffollowing exponent identifications in the corresponding
transfer sections: e .,  ,,.... .
- - ve--.] 00 OO...
,00.....0 00 {em , ®*m~! em-2 | . .
! 1
with e = (e - e ) div e
This is independent of the location in the transfer row.
For instance:
-1 e -2 ee. 0D 00.......ucnts «...0 00 e
[ L) |- Mot L
I 1 I 1

Figure 10: Exponent identification of the sections
of the transfer rows




register for
row identification

selection
lines
per row

operation

z-selection
z-1-selection

i: index of the swmmands {i=}
RS: row selection
Figure 11: Simplified adder selection by

row identification y;

from row of
lower significance

t'=t+{z,z-1) identification

TR

—— 4
selection

selection
z Jogic through
z-1 going
control
. wires
oPeratighl 3\ addition/subtractiond .
B id v
Ao [T adigies_ac <ty
%

control wire for the
read out process

to row of
higher significance

CY: carry with sign

selection logic: add/subtr, if (selection-z) and (tag-z)
or (selection-(z-1} and {tag-(z-1)
add/subtr. zero else

Figure 12: Structure of a section of the matrix rew Y,
for am¢t

sumand [EP] TE] 12 \B772.87//) EZAE72 BZE77)

2 [ TR [E[ =R [eT r]e[rr] E[ TR |E LSB
o I
+/~ - +/-
AC AC . AC
— 3 sH
J -
[BI rRTel 1R} [ETrrTe[ ] e[ TR [E] TR ] E] TRIE] TR )
cy T
Figure 13: Part of the summing matrix with +/-
transfer registers with t<a, here t=a/2
t:most significant digit of summand

t t t

igits ] [t digits | t digits ] TR

&
t

L § VLI Lg v/2 £t ,
a | digies a digits H :n; AC

o

(I

cy

Pigure 15: Structure of a section with several
adder / subtracters and transfer
registers (for example 2a = 3t}
in a simplified representation with-
out tag-fields for exponent identification
and control lines.

SL: selection

269

input adjuting unit

mantissa sections, each one
with exponent identifica-
tion and sign

. .J control
- ! columns
centca consisting
con= of one
trolle adder
— register and
accu-
i register
adder
carry C
register -4
-
f @ final carry treatment
' @ filtering the rows with
l Torett ¢ R
) significant information
result <
preparation
unit for adjusting
the result
Figur: mming unit

'f adders

m Farcy sccu-manory L
corstral] o . haacry £

gt — — 432 trom the
higher - U '—ﬁ lover coluaa
column
i
RBS

@ o "

£
- 1637

{2 {1

o unit for preparing the
result

Pigure 17: nnt
s

processed rows
without carries

R ) 32-¢
p—
—
cont.t. -E ) higher
’@ register for
€ significant
i o1 rous
e B g Lower
L =i
Fijure B ©*+ rows with significant

ot columng




