A Bit-Serial Arithmetic Unit for Rational Arithmetic

Peter Kornerup
Aarhus University
Aarhus, Denmark

Abstract

We describe a binary implementation of an
algorithm of Gosper to compute the sum, differ-
ence, product, quotient and certain rational
functions of two rational operands applicable to
integrated approximate and exact rational
computation. The arithmetic unit we propose is an
eight register computation cell with bit serial
input and output employing the binary lexico-
graphic continued fraction (LCF) representation of
the rational operands. The operands and results
are processed in a most-significant-bit first
on-line fashion with bit level logic leading to
less delay in the computation cell when compared
to operation on the full partial quotients of the
standard continued fraction representation.
Minimization of delay is investigated with the aim
of supporting greater throughput in cascaded
parallel computation with such computation cells.

I. Introduction

This paper presents an arithmetic unit, and
in particular its binary implementation, which can
take as input two bitstreams and produce as output
a bitstream representing the result. The bit-
streams are consumed and produced on-line most-
significant-bit first, as representations of
rational numbers utilizing their continued
fraction expansions. The arithmetic unit can
realize a variety of dyadic operations
supplementing the standard add, subtract, multiply
and divide operations. The general form of the
permissible primitive operations is given by

- 8Xy + bx + cy + d
z(x,y) = SRR

where a,b,c,d,e,f,g,h are arbitrary prespecified
integers. This allows as a more general example
computation of Axy + B as one primitive dyadic
operation, given the prespecified rational
constants A and B.

The arithmetic unit can be envisioned as a
bit-serial, precision driven computation cell:

®*This research was supported by the National
Science Foundation under grant DCR-8315289.

CH2419-0/87/0000/0204%01.00 © 1987 IEEE

204

David W. Matula®
Southern Methodist University
Dallas, Texas

X~
Z(xyy) ’
y-—7

where z(x,y) can be computed, most-significant-bit
first, by pulling in information about x and y
most-significant-bit first. The unit can request
information from x and y as needed to support the
computation of z(x,y) to the precision desired.
Such a unit synergistically supports both exact
rational and finite precision approximate real
computation, of importance to computational
environments requiring integration of symbolic and
numeric procedures.

Multiple units may be cascaded to support
more general computational needs, in general
forming a binary tree structure analogous to the
parsing tree of an expression in a programming
language. In such a tree the result appears at
the root, with input data supplied bit-serially
(as requested and only as needed) at the leaves.

As an example of such a cascading of units in
pipeline form, consider the evaluation of a
polynomial with rational coefficients using the
Horner scheme:

y=(((Ax + B) x +C)x + D) x + E
which can be evaluated by the structure:

z'=
,gc,’_,’_..y
L i

A considerable literature exists for on-line
arithmetic (e.g. see [TE77,Er84])in the context of
fixed-radix digital representation. Our methods
effectively extend the features of on-line
arithmetic to computation with rational values,
affording the advantages of convenient short exact
representation of simple rationals within a
variable precision approximate system. For many
applications a finite precision representation
based on rational numbers is an attractive
alternative to floating point numbers, as data and

;
?
|
>
.

results may be known to be rational. Symbolic and
algebraic systems currently support exact rational
arithmetic in the fornp of unlimited precision
integer representation of the numerators and
denominators of rational fractions, with only
limited and inconvenient ineclusion of numerically
approximate real computation. Finite Precision
arithmetic on rational operands, also in integer
numerator/denominator form, has been proposed and
analysed in [MK80,KM83,MK85].

This paper demonstrates the possibility of
supporting arithmetic on rational numbers
represented as continued fractions, considered as
sequences of integers and appropriately encoded as
bitstrings, and applicable concurrently to both
finite precision and exact rational computation.

The theory of continued fractions has been
extensively developed by mathematicians [HW79]
yielding some tools of application ‘to
computational Practitioners, e.g. the Pade
approximations. However, direct computation with
continued fraction representation of numbers was
not considered tractable until quite recently in
"mathematical research time." In a classic nusber
theory monograph written as recently as 1935,
A. Y. Khinchin [Kh63] states: ~

"On the other hand, for continued fractions
there are no practically applicable rules
for arithmetical operations: even the
problem of finding the continued fraction
for a sum from the continued fractions
representing the addends is exceedingly
complicated, and unworkable in computational
practice."

Whether Khinchin knew of any means of doihg
arithmetic on continued fractions and considered
such means computationally intractable, or"ﬁﬁ%tﬁei
he did not know of any such methods is unkﬁ&ﬁﬁfﬁb
these authors. 1In 1972, in a memo from Hffﬁi '
lab, Gosper [Go72, see also p. 360 of 'KHEYY
published an algorithm for performing aritfike
on continued fraction represented opéf
Although appearing too complex f£dé X
calculations the method is quite tractab¥e*for
computer implementation, in particular becomitig
surprisingly competitive to traditional methods
when implemented using VLSI. & more réebnt
presentation of Gosper's idea is given in [Sﬁﬁ :

The purpose of this paper is to f{
Gosper's algorithm, which is based on manipuilk
the integer valued partial quotients o
continued fraction expansion, to a bi¢
algorithm based on binary LCF-representd
[MK83,KM85] which is ideally suited to°
application. N

In Section II we survey Gosper's algor:
and explain the selection procedure u)
determine the next partial quotient of;zG;
Section III then investigates a binary
mentation of the unit as an eight reg
computation cell, utilizing the LCF-represen
of continued fractions as a binary encod

L e

input and output. ‘A suitable matrix notation is
introduced to describe the primitive shift, add
and subtract operations to be performed on the
internal register contents, and to describe the
details of the selection procedure for determining
the individual bits to be output. The delay
between input and output is discussed, and in most
cases this is seen to be reasonably small. We
describe certain "worst case" circumstances where
the delay could still become quite large. We note
that such situations could then be handled by
incorporating redundancy into the representation,
but this subject is not pursued in this paper,

Section IV discusses various time and space
considerations utilizing previous analyses of
rational computation and using heuristic arguments
supported by simulations.

II. The Basic Algorithm

Following an idea of Gosper [Go72] we are
interested in evaluating a general expression of
the form:

axy + bx + cy + d

= 1
2(x,y) €Xy + fX + gy + h ()

where a,b,c,d,e,f,g,h are integers. By
appropriate choices of these constants, the form
can be used to compute X+Y, X-y, xsy, x/y, and
other expressions in x and y.

As pointed out by Gosper, it is possible to
enter x and y into the computation of z(x,y), by
utilizing the continued fraction expansions of x
and y. Let the ec.f. expansion of x be given by

X = [ao/a1/.../an]

where 3121 for i=1,2,...,n whenever a £0, and a
for i=2,3,...n when a0=0 and a1£0, 80 then

121

X

n
g

+
ﬂﬂ

n
We thus consider [aO/a1/.../a 1 as the operable
mwuwmumofmaMeth&vﬂwofxmm
the computation by successively entering the
partial quotients ao,a1,...,an, in that order.
Notice that we may asscciate the sign of x with
the first non-zero partial quotient, a_ or a,.
o Entering a partial quotient P corresponds to
the substitution x = p + 1/x' which transforms the

: éﬁi?ﬁssion (1) into

(pa+c)x'y + (pb+d)x' + ay + b

2
(pe+g)x'y + (pf+h)x' + ex + f (2

e -

fétice that if p is chosen as the first partial

“quotient of x, then x' = [a,/a /eoi/a] > a,, d.e.

1

: xf%contains the remaining partial quotients of x.

Equivalently if we substitute y = q + 1/y'
into (1) we obtain:
(qa+b)xy' + ax + (qe+d)y' + ¢ (3)
(qe+f)xy' + ex + (qg+h)y' + g °

z(x,y') =

Now notice that (2) and (3) have the same form as
(1), where the eight (integral) constants have
been transformed by simple linear transformations
using the partial quotient of x and/or y as input.

Since we want .0 perform arithmetic on
continued fractions it is necessary to transform
z(x,y) into its continued fraction expansion for
output. Let us thus rewrite (1) into

1

z(x,y) = r + P eA) %)
where
2'(x,y)= exy + fx + gy + h (5)

(a~-re)xy + (b-rf)x + (c-rg)y + (d-rh)

which again has the same form as (1).

To be able to accept r as the first partial
quotient of z(x,y), it is necessary that (4) is
satisfied with Jz'(x,y)] > 1, which is the
selection procedure to be discussed.

We want to realize an on-line algorithm for
the computation of the c.f. expansion of z(x,y),
given the c.f. expansions of x and y. Hence we
vant to output partial quotients of z as soon as
possible, before we have read all the partial
quotients of the initial x and y. At any stage of
the on-line algorithm, x and y in (1) are taken to
denote the values of the remaining continued
fractions of the two input arguments, and z(x,y)
i1s the value of the remaining part of the original
expression, possibly after some leading partial
quotients have been output.

The selection procedure we want will attempt
to determine a next partial quotient of z,
utilizing only the 8-tuple of integer constants in
(1), i.e. not using any further information about
the actual values of x and y. Since the value of
a ¢.f. is greater than its first partial quotient,
we know that x > 1 and y 2 1, except possibly
initially (a0 may take any value, and if a, = 0
then a, may take any non zero value). We avoid
any initialization problem by delaying any attempt
to output until the first non zero partial
quotients of each argument have been input. Note
that if the range of the function z(x,y) 1s within
the interval r < z(x,¥) < r + 1 over the domain:
x 21 and y 2 1, then certainly the next partial

quotient is r.
Assume for the moment that z(x,y) is

well-defined, i.e. the denominator is non-zero.
Then after having input sufficiently many partial
quotients of x and y, z(x,y) will be a monotonic
function of x and y over the domain of the
remaining "tails" of x and y. For the selection
of the next partial quotient r of z(x,y) it is
then sufficient to consider the values of z(x,y)
at the four extremes of x and y over their ranges:

a+b+c+4d a+ ¢

XD e M g
(6)
a+b a
At =) = 5

where for simplicity we have used the symbol < for
the limiting values of x and y. Thus if there
exists an r such that

r < min(z(1,1), z(1,), z(=,1), z(=,*}) ,
r o+ 1> max(z(1,1), z(1,=), z(=,1), z(=,=)) ,

then r is the next partial quotient of z(x,y), and
z(x,y) can be reduced by (4) and (5) into z'(x,y).

Recalling the definition of a finite
continued fraction, we may add an "end-marker" in
the form of the symbol = as an extra last partial
quotient. Thus an empty "tail" of x or y may be
interpreted as the value "™o", In the selection
procedure, if x or y have been exhausted, then
only two of the extreme values have to be
considered. Finally, if both x and y have been
exhausted, the c.f. expansion of z(»,») = a/e
provides the remaining partial quotients.

Before returning to the problem of when we
can assume that z(x,y) is a monotonic function,
let us consider an example. Here we will record
the eight integer coefficients of z(x,y) in a
2%2X2 array, which will be written in the
following notation:

g % e

Example: Let us compute the value of
z(x,y¥) = x - y where x = 25/9 = [2/1/3/2] and
y = 8/3 = [2/1/2). The computation will be
recorded in a table, initialized in the upper
left~-hand corner with the 2x2x2 array which
corresponds to the computation of z(x,y) = x - y.
The table below just records the input of x and Y
no partial quotients of z are removed as it is
difficult to display the process in the third
dimension.

X~y x-> 2 1 3 2 -
[1 2 3
y 1 [} 1
-1 [IS |
0 0 ° [}
o i
2 fo 13
| 1 [
1 1
1 1o o 11 -2
Vo 1 L] 9
| SO
1 1 3
2 3 12 27

At the stage of the computation indicated by the
dotted box, we may observe that:

0 1 1. .0
z(1,1) = P z(1,») = - 5 z(=,1) = 55 2(w @) = 7

Hence it is possible to econclude that
- 1/2 < z(x,y) £ 1/2 since z(x,y) does not have
any singularities. It is then possible to
determine that the first partial quotient of
z(x,y) is 0, and the second of absolute value of
at least 2, however it is not yet possible to
determine the sign of z.

After input of one more quotient in the
x-direction (of value 3) and the last of y (of
value 2), utilizing that y now has been exhausted
it is sufficient to consicder z(1,#) = 2/15 and
z(=,=} = 1/12. Thus 1/12 < z(x,y) < 2/15 and it
is now known that the first partial quotient is O,
the next is positive and between 7 and 12 (recall
that removing the partial gquotient zero just
interchanges the roles of numerator and
denominator, and this has not been done).

Finally, in the lower right-hand corner
z{»,») = 3/27 represents the result of the
computation x ~ y = 25/9 ~ 8/3 = 3/27 = [0/9]. It
is easy to confirm that any entry (uv) in the
table represents the numerator u and denominator v
of u/v = z(x,y), where x and y are the values of
the continued fractions input so far. []

Returning to the question of the
well-definedness of z(x,y) it is obvious, because
of the numerator-denominator symmetry, that this
problem is equivalent to the problem of zerc
values of z(x,y), and hence to the problem of
determining the sign of the first non-zero partial
quotient of z(x,y). If a root-curve of either the
numerator or the denominator (or both) extends
into the domain of (x,y), corresponding to the
"tails"™ of x and y, then cbviously the sign of
z(x,y) cannot be determined. Reading the next
partial quotient, say p of x, restricts the domain
of the tail of x to the interval (p,p+1], which is
by the substitution x = p - 1/x' mapped into the
interval [1,=). Thus looking at the four values
z(1,1), z(1,»), z(»,1) and z(=,=) can only safely
determine the sign and possibly the value of the
next partial quotient of z(x,y), if no root-curve
(neither of the numerator nor the denominator)
extends into the domain of the remaining tails of
x and y. If one root curve passes through the
domain, it may be possible {0 determine a leading
partial quotient of value zero, as in the example
above. If root-curves of both the numerator and
the denominator extend into the domain, nothing
can be concluded from the four extreme values, as

the sign-changes may cancel out.
For our selection procedure to work, it is

thus necessary to assume that either the numerator
or the denominator is non zero over the domain
determined by those partial quotients of x and y
that have been read before applying the selection
procedure., It should be emphasized that employing
the unit to realize any of the standard arithmetic
operations {+,-,x,:} can yield no such inter-
mediate problem. It is only in formulating more
complex functions with the cell that this issue
must be resolved.

207

Of concern for standard arithmetic {+,-,x, ; }
is the observation that we should anticipate a
large delay in the output of any partial quotient
of z(x,y) of large absolute value. As indicated
by the example, it might be possible to make
conclusions on the order of magnitude of the next
partial quotient, without even being able to
determine the sign. But if our objective is to
output the correct partial quotient, we must
occasionally experience large delays which will be
compounded in any cascaded sequence or tree of
computation cells. In the next section we show
that the anticipated delay can be substantially
reduced if we read and emit partial quotients
"bitwise" in a suitable binary representation.

IIT. A Binary Algorithm

The previous section described the
computation of the expression z(x,y) in terms of
integer partial quotients, as introduced by Gosper
[Go72]. We now introduce an equivalent algorithm
utilizing a binary encoding of the partial
quotients, in particular the LCF-representation
introduced in [MK83] and [KM85].

For the purpose of the algorithm described in
Section II it is initially sufficient to notice
that the LCF-~representation of a continued
fraction utilizes a self-delimiting binary
representation of the integer partial quotients.
This representation is composed of a unary
encoding of the length of the standard binary
representation, followed by the binary
representation of the integer partial quotient
with the leading bit inverted to indicate the
switch,

More precisely, if [p] ...b1bo,is
the standard binary representation o#]p 2 1, then

() =1"0bb.b (so 2(1) = 0)

n-1 170
is the encoding to be used. This representation
turns out to be particularly well suited to the
purpose of realizing the arithmetiec unit as a
computation cell. In particular, the bits of 2(p)
may be individually interpreted as encodings of
primitive shift, shift-and~-add or shift-and-
subtract operations, performed in a binary
implementation of the algorithm.

In the following it will be necessary to
employ a variety of variable substitutions in the
expression (1) of z(x,y) to correspond to these
bit level transformations. A more general
substitution of the variable x is given by

ax!
x=-—-Y+E‘— (7)

§ + Bx!
which when substituted into z(x,y) given by (1)
yields the following expression:
(na+Bc)x'y+(ub+Bd)x'+(ya+60)y+(Yb+6d)

z(x',y) = (ue+Bg)x'y+(af+Bh)x'+(Ye+6g)y+(Yf+6h) (

8)

which again has the same form as (1).

——

To describe the more complicated substitution
as a sequence of simple bit level transformations,
it is convenient to introduce the following matrix
notation. With a straight-forward interpretation
of matrix multiplication, where one operand is our
2%2x2 array and the other is a standard 2x2
matrix, we denote the substitution of (7) into (1)
yielding (8) as follows:

d b §d+yb fd+ab
h f § B Sheyf Bh+af
c a Y Sc+ya Bc+aa
4 e Sg+ye gg+ae

The standard substitution from Section I,
X = p + 1/x' may thus be described by the matrix
0 1

1 p
and the substitution y = q + 1/y' may be described
by a similar matrix., For y either the
multiplication has to be performed "from below, "
or "the usual way" on a pProperly transposed
version of the 2x2x2 array.
Foa}ﬁhe substitution x = p + 1/x', with

t(p) =10 bn—1 ...b1bo, (1) = o0,

ba}

1

b .2
it is easy to see ghst:
vl bn-l
Y I) L A~
1 ho 1 0)
L)
0 1 [©
‘(Zﬂobn_‘z""ﬁ....obo) - 1 P :)
Notice the correspondence between the terms

of (9) to the bits of 2(p). The initial
(leftmost) matrix corresponds to the information
"p 1s at least one", the following n matrices each
tell us "I am at least twice as big,"™ and add the
denominator into the numerator, leftshifting the
former. The zero in the middle of %(p) has no
counterpart matrix, but indicates a switch of
operation. The n rightmost matrices each
rightshift the denominator and (depending on the
bit values) add it to the numerator, gradually
building up num + p «x den, where num and den are
any of the four numerator-denominator pairs in the
2x2x2 array.

Suitably interpreted we may similarly input a
partial quotient q of y, and perform the
appropriate substitutions described by the
matrices derived from £(q). Note that the order
in which bits from 2(p) or £(q) (from x or y) are
input is immaterial, since the corresponding
variable substitutions can be performed in any
order. The essential observation is, of course,
that we are free to input bits from 2(p) when we
need more information on x, and bits from 2(q)
when we need more information on ¥y, and, as we
shall see below, to output bits of &(r) where r is
the next partial quotient of z(x,y).

O A -
L

208

To output bits of & r) the selection
procedure of the previous section has to be
modified, so as to allow us to determine bits of
2(r) from the four values z(1,1), z(1,»), z(=,1)
and z(~,),

Assume first that r > 1. If r = 1 can be
determined, then output 2(r) = 2(1) = 0. If
z(x,y) > 2 can be determined, we would 1ike to
eject one of the leading (unary) bits of #«r) and
divide z(x,y) by 2, and continue doing so while we
can assure that z(x,y) > 2. This corresponds to
repeatedly performing the transformation
z(x,y) = 2 2'(x,y) which can be performed by
multiplying by the matrix:

1 0

0 2

in the appropriate direction (corresponding to
multiplying all denominators by 2, or leftshifting
these).

When, however, we can determine that
1 £ 2(x,y) < 2, we are ready to switch, as we have
determined the leading bit of r. Ejecting a zero
bit indicating the switch in Xr), we want to
perform the transformation z(x,y) = 1 + z'(x,y),
which can be achieved by multiplication with the
matrix:

1 0
1

-1 -
2

This subtracts the denominator from the numerator,
and rightshifts the former one position. Thus we
have actually performed the transformation
z(x,y) = 1 + 2'(x,y)/2, readying our unit for the
next step.

Whenever it is possible to determine that one
of the following cases oceurs, the unit can emit an
extra bit of &(r), rightshifting the denominator
back towards its original position:

1< z(x,y) < 2 : perform the transformation:

1 1 0

z(x,y) = 1 + 5 2'(x,y) ~ 1
-1 -

2

and emit a one.

z(x < 1 : perform the transformation:
1 1 0
z2(x,y) = = z*t(x,y) ~
2 1
0 -
2

and emit a zero.

When the denominator has been shifted back
into its original position, r has been completely
determined. Then an interchange of numerators and
denominators has to be performed, corresponding to
the transformation z(x,y) = 1/2z'(x,y).

Combining the transformations described above
actually yields ome extra rightshift, which we may
correct in conjunction with the final switeh

obtaining
1 on 1 0 1 0 1 0 0 1
1 LS I M1z o
0 2 - Pt 3 %0 3
0 1 0 1

1-@o 2™)] 1

corresponding to a combined transformation
z(x,y) = r + 1/2'(x,y).

Notice that all of the transformations
performed during the selection procedure above are
invariant under the variable substitutions
performed when bits of the binary continued
fraction representations of x and y are input by
the unit. Whenever the selection procedure cannot
determine the next bit to be emitted, input from x
or y can be requested and fed into the unit, until
the selection procedure is satisfied and ready to
emit the next bit,

We have now seen how to handle positive
partial quotients in the representation £(+), from
the input of x and y, as well as the output of a
partial quotient of z. A partial quotient of
value zero can only occur as the first partial
quotient, and it is easy to see that the matrix:

0 1

1 0
will perform the necessary transformation
corresponding to a zero quotient on input as well
as on output. However, zero cannot be represented
in the 2(*) encoding, but has to be handled
separately in the LCF-representation of continued
fractions.

The LCF-representation i1s defined by [MK83,KM85]:

10 Hag) © Lay) o... Ka,) © Hay) K for fan

wsG):

0 °layp © &ay) ... Elay 1) © La,) O K= for T

where p/q = [ao/a1/a2/.../a2 _q/a n] is in
"terminal index even form." Notice that a leading
zero partial quotient in the case 0 < p/q < 1 is
encoded as a zero, and the terminating ET;S is
Just an infinite string of zeroes. Only the
leading non-zero part of LCF(p/q) need be
represented for any rational number, implicitly
assuming an infinite string of trailing zeroes.
The complementation of the representation of the
odd numbered partial quotients suffices to achieve
lexicographic ordering, since the value of a
continued fraction is an increasing function of
the partial quotients in the even positions, and a
decreasing function of the quotients in odd
positions.

209

A signed LCF-representation was also intro-
duced [MK83,KM85] by prepending a signbit together
with complementation as follows:

1aLcs(9) for £ >0,
a a
SLCF(E) . —~ .
/ oo LCF(—-) for 2 ¢,
q a
where T denotes 2's complementation. SLCF is

again lexicographic order preserving since:
/—_/p
LCF(=

) ()

due to the fact that 2's complementation, besides
complementation, also changes a "terminal index
even" into a "terminal index odd" continued
fraction, and vice versa.

Recalling the example in Section II we notice
that we cannot start emitting bits of SLCF(z)
before the sign of z has been determined. In
general we can emit bits of the LCF or SLCF
representation of a partial quotient before the
complete partial quotient has been determined.
However, there are situations where there is still
an inherent delay which cannot be avoided without
a redundant representation.

Successive approximations to a rational
number u/v, obtained by including the partial
quotients successively, will oscillate around u/v.
Hence the computed approximations of z(x,y), based
on the leading partial quotients of x and y, will
oscillate around the final value. Thus there
might be situations where more input is
continuously needed to decide whether the next
partial quotient is going to be say r or r+i
because z(x,y) continuously oscillates around r+1,
as more and more partial quotients are being read.
Hence it is difficult to decide whether to output
r+1 followed by a large partial quotient, or to
output r, then 1 and then some equivalently large
partial quotient.

for P >0
q

As an example of this situation consider the
product xy, where both x and Yy are rational
approximations of /5, obtained by truncating the
(infinite) continued fraction expansion:

V2 = [1/2/2/2 ...].

Until either x or y terminate it is not possible

to determine whether the result is [2/x] or

[1/1/m], where k and m are some large integers.
The corresponding LCF-representations are:

LCF([2/k]) = 10100011...10...

"

110000...01...

LCF([1/1/m]) = 10000011...10...

10111...10...

which are approximations from above and below of
LCF(2) = 1100,.. . Notice that these LCF rep=-
resentations are very close in the lexicographic
ordering. This property of ordering is identical
to the problem in standard radix representation to
any base, e.g. with numbers like 9.9999... and
10.000... . As in radix representation the
solution is to introduce redundant representation,
e.g. signed digits. An analogous solution for
redundancy in LCF-representation is being pursued,
and will be presented in a later paper.

IV. Conmsiderations Concerning Time and Space

For the implementation of an arithmetic unit
as a "computation cell"™ along the lines described
in the previous sections, it should be noticed
that parallelism can be utilized to perform the
linear transformations on four (%) pairs
concurrently. We will thus assume the existence
of four such register pairs with a shift
capability, and four add/subtract units which we
assume can be connected appropriately. The
capacity (bit-width) of the registers and
add-subtract units affect the overall complexity
of the cell and requires careful analysis.

The time-complexity of the partial quotient
driven unit described in Section II, can be
measured in terms of major cycles, given either by
the input of a partial quotient of X, a partial
quotient of y, or the output of a partial quotient
of z(x,y). Each major cycle then again consists
of a number of minor cycles, which will consist of
a shift, or an add-subtract operation, used to
implement the multiplications or division steps of
the linear transformations.

The number of major cycles is thus the sum of
the number of partial quotients of x and y and the
number of partial quotients of z that are
requested, which will depend on circumstances. If
X and y are exact numbers then z(x,y) can be
computed exactly, and all partial quotients of
z(x,y) are significant. On the other hand, if x
and y are imprecise numbers, it does not make
sense to input more quotients of x and y than
those that can be considered significant. This
implies that it is sufficient only to pull out as
many partial quotients of z(x,y) as can be
extracted considering the domain of the "tails" of
x and y to be indeterminate, i.e. only using the
terminating symbol =, whenever x and/or y can be
considered exact.

For finite precision arithmetic we may
restrict our consideration to some subset of
continued fraction represented rational numbers.
For this purpose we will choose the set:

H ={§|lpxq| < k} .

210

which has certain desirable properties [MK80] in
support of approximate real arithmetic., This then
limits the set of representable continued
fractions by restricting the numerators and
denominators of their rational fraction
equivalent, rather than by defining restrictions
on the continued fraction expansions themselves.
Notice that k determines a maximum bound on the
length of the c.f. expansion, as well as the size
of its partial quotients.

Using some heuristic arguments along the
lines of those presented in [Kn81] and [kMTB], it
is possible to show that the average number of
partial quotients of p/q grows asymptotically as

3(1n 2)2

2 logzk ~ 0.1460 1032k

when p/q is chosen according to a log-uniform
distribution from H, .

Since the relative accuracy of rational
numbers in is of the order of one part in k, we
may for finite precision arithmetic assume that X,

y and z(x,y) all are restricted to Hk' We then
conclude that the number of major cycles in
computing the approximate answer z(x,y) is
3%0.1460 logzk ~ 0.44 1ogzk.

It is also easy to see that the average
number of shifts (minor cycles) in total is 3%1.5
logzk, however the number of add/subtract
operations can be expected to be smaller.
Following [KM78] it can be shown that the average
number of add-subtract cycles in computing z(x,y)

is 2
3x {g , 3 2)
3 2

}logzk z 2,688 logzk

assuming that the operations on the four register
pairs takes place in parallel in one of these
cycles.

The same analysis applies to the
LCF-represented operands; there is one
"shift-matrix" for each shift to be performed,
some of which also contain an add-subtract
operation. Recalling that on input of x and y the
number of matrix applications corresponds exactly
to the number of shifts, and on output of z(x,y)
there is one extra corresponding to the switch of
numerators and denominators, we get a total of

(0.15 + M.S)logzk = 4,65 1og2k

matrix applications for a computation in the Hk
system,

In the previous analysis we have implicitly
assumed that it is possible to pull out partial
quotients (or bitsthereof) at about the same rate
as they are being read from that operand (x or y)
that has so far provided the fewest. This i3 the
maximal rate we might expect from an information
theoretic heuristic argument, and is confirmed by
simple experiments, except for some of the special,

L

cases discussed previously. The same heuristics
also tell wus that we might expect a growth of the
size of the numbers in the registers at the same
rate. This can again be found as the normal case
in simple experiments. These heuristics thus
indicate that it seems possible to support finite
precision arithmetic over Hk’ if the internal
registers have a width of the order 1/2 log. k
bits. If x and y can be represented exactly in

, then using the terminating symbol <, the exact
result z(x,y) could be obtained from the unit,
even if z(x,y) does not belong to H. . In these
considerations we have implicitly assumed that the
constants a,b,...,h are small (0's or +1's). If
larger values are used then the registers and
ALU's must have suitably larger capacity.

The final question to address is the delay
between input of partial quotients from x and Y,
and the output of quotients of z(x,y). We must
expect a varying delay when complete partial
quotients are to be output, and a more smooth and
hence smaller delay when output is produced
bit-by~bit, except for the special case of 1000...
or 0111... previously mentioned. This again can
be seen from simple experiments.

Simulations to obtain empirical evidence on
the delay were performed at both the partial
quotient (or major cycle) level corresponding to
the basic algorithm of Section II, and at the
bitwise level corresponding to the binary LCF
representation (or minor cycle) level of Section
III. Logz(pxq) for p/q = [a(/a1/.../a] was used
as a measure of the bit length for determining
delays at the partial quotient input/output level,
and the lengths of the LCF bit strings were used
for measuring delays at the binary algorithm
LCF-bit input/output level. We measured average
delay in both cases to more fairly gauge the
general improvement obtained by the binary
algorithm, and the results are summarized below.
For application we are of course more concerned
with the maximum, as opposed to the average,
delay. We believe a redundant form of LCF
representation can be formed and employed to
achieve approximately the same 4-bit delay in the
worst case, comparable and possibly better than
the average case for non-redundant form, and
investigations in this area are continuing.

Partial Quotient I/0
(Basic Algorithm
of Section II)

LCF Bitstream 1/0
(Binary Algorithm
of Section III)

Bit Delay
(average)

b5 -5.0 3.8 = 4,2

Acknowledgement
We wish to thank Steve Hickman and Sam Chen

for developing the simulation programs and
results,

211

[Er84]

[GoT2]

[HW79]

[kh631]

[Kn81]

[kM78]

[kM83]

[KM85]

[MK801

[MK83]

[Mk85]

[Se83]

(TET71

References

M. D. Ercegovac, "On-Line Arithmetic: An
Overview," SPIE Vol 495 Real Time Signal
Processing VII, 1984, pp 86-93.

R. W. Gosper, Item 101 in HAKMEN, AIM239,
MIT, Feb. 1972, pp 37-4%4,

C. H. Hardy and E. M. Wright, "An Intro-
duction to the Theory of Numbers," 5th
ed., Oxford University Press, London,
1979.

A. Y. Khinchin, "Continued Fractions,"
1935, Translated from Russian by P. Wynn,
P. Noordhoff Ltd, Grooningen, 1963.

D. E. Knuth, "The Art of Computer Pro-
gramming, Vol, 2, Seminumerical Algo-
rithms," 2nd ed., Addison Wesley, 1981,

P. Kornerup and D. W. Matula, "a
Feasibility Analysis of Fixed-Slash and
Floating-Slash Rational Arithmetic,"
Proc. 4th IEEE Symp. Comp. Arith., 1978,
pp 39-47.

P. Kornerup and D. W. Matula, "Finite
Precision Rational Arithmetec: An
Arithmetic Unit,"™ IEEE-TC, Vol. C-32, No.
4, April 1983, pp 378-387.

P. Kornerup and D. W. Matula, "Finite
Precision Lexicographic Continued
Fraction Number Systems," Proc. Tth IEEE
Symp. Comp. Arith., 1985, pp 207-214.

D. W. Matula and P. Kornerup, "Founda-
tions of Finite Precision Arithmetic,"
Computing, Suppl. 2, 1980, pp 88-111.

D. W. Matula and P. Kornerup, "An Order
Preserving Finite Binary Encoding of the
Rationals," Proc. 6th IEEE Symp. Comp.
Arith., 1983, pp 201-209.

D. W. Matula and P. Kornerup, "Finite
Precision Rational Arithmetic: Slash
Number Systems," IEEE-TC, Vol. C-34, No.
1, Jan. 1985, pp 3-18.

R. B. Seidensticker, "Continued Fractions
for High~Speed and High-Accuracy Computer
Arithmetic," Proc. 6th IEEE Symp. Comp.
Arith., 1983.

K. S. Trivedi and M. D. Ercegovac,
"On-line Algorithms for Division and
Multiplication," IEEE-TC, Vol C-26, No.
7, July 1977, pp 681-687,

