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abstract

This paper describes a new online division (reciprocal)
algorithm for (maximally) redundant floating-point numbers of
arbitrary radix. The algorithm works for normalized,
quasi-normalized, and pseudo-normailized numbers and can
therefore be applied in chained online compuatations. The online
delay of the proposed algorithm is the smallest reported so far.
The algorithm consista of two steps: the first m digits of the result
are generated by a simple table lookup method; the remaining n-m
digits are generated by using an adapted Newton-Raphson
iteration method. In the second step, the online digits are created
by using a fast and simple selection mechanism.

1. Introduction

In online computations, the input operands, as well as the
results, flow through arithmetic units in a digit by digit manner,
starting with the most significant digit. An online algorithm is
said to have an online delay of &, if for the generation of the j-th
digit of the result, (j+8) digits of the corresponding operands are
required [TRIV77].

During the last decade, online processing has gained much
attention [ERCES84]. In the conventional digit-serial arithmetic, in
general, all digits must be known in advance before a result (ora
part of a result) can be generated. In conventional digit-parallel
arithmetic units, high speed multi-operand processing requires
full precision bandwidth (as many bits as the word-length)
between the arithmetic units in a paralle! or/and pipelined
computational structure. This is not desirable or feasible as the
complexity of the computation increases. In contrast to the
conventional digit-parallel approach, online arithmetic reduces the
interconnection complexity between the processing units to a
minimum of one digit per operand while still providing a good
speedup ratio by overlapping or pipelining successive
computations. Digit-serial conventional arithmetic also reduces
the communication requirements; but it is very slow: the next
operation cannot begin until the current cpperation has been
completed.

Fig.1 illustrates the evaluation of an expression. The time
diagrams of the conventional method of processing and the online
principle are shown in the figure.

This paper deals with the problem of online division. A
systematic approach for online reciprocal approximation is
proposed. In literature ([TRIV77], [IRWI78], [OWENS1],
[OWENSQ]), a number of online algorithms dealing with the
complete division (Q/P) operation are described. This does not
always need to be advantageous than first calculating the
reciprocal followed by a multiplication. Those online division
algorithms have online delays of 8=3 to 5. It has been shown that
6=3 for radix-8 [OWENS80] and 8= for radix-4 normalized
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numbers [OWENS1]). The online delays of other radices by
using this algorithm cannot easily be determined, since no general
formula for the online delay has been given as function of the
radix. The online division algorithm considered in [TRIV77] has
an online delay of 8=4. This is a relative large online delay, since
for all other 4 basic functions (addition, subtraction,
multiplication, square rooting), algorithms have been found with
online delay of 7 [ERCE84]. The proposed online reciprocal
algorithm has a smaller online delay. For radix-r redundant
numbers with 724, the online delays is / and 2 to 3 for
normalized and quasi-normalized numbers, respectively. For
example, to evaluate the expression y=(. a+b)¥(c*d)/V(ef) by
using the scheme in Fig. 1, the total online delay can be reduced
by 2 to 3 compared to using a complete division unit.

Definition: A non-zero redundant floating-point number P with
n digits of mantissa, defined as

Lc .

= E J

P= . p;r
j=1

and represented by a maximally redurndant digit set,
is said to be

(1) normalized if ri</pi<l;
(2) quasi-normalized  if ré< /P/<I;
(3) pseudo-normalized if ri< [P[<1 with 3<g<n.
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Fig.1 Computing y=(a+b)}*(c*d)/V(e-f). Assume that the online
delaysof the different operations are the following:

¥+)=1, &-)=1, &*)=1, 8(V)=1, and &recip)=1 10 2.
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As is shown in [WATAS1], floating-point online arithmetic
algorithms yield quasi-normalized results for 732, However, for
radix-2 numbers, quasi-normalized results also can be obtained by
testing the two first consecutive result digits. When they have
opposite signs the second digit is converted and first one is made
zero; then the converted digit is compared with the next digit, etc.
This process goes on until the two digits to be tested have the same
sign or the second digit is zero. In that case the result is
quasi-normalized. Of course, the exponent has to be properly
adjusted. So, all online processing arithmetic units must be able to
handle quasi-normalized numbers in order to chyin with other
online processing units. The earlier known online division
algorithms consider normalized redundant numbers only. In this
paper, online division with respect to both normalized and
quasi-normalized numbers is considered. The de rived results are
also valid for pseudo-normalized numbers, however, in practice
this leads to realization difficulties, especially in the table look-up
procedure. The proposed algorithm is valid for all radices,
including radix-2 redundant numbers.

In the following, we will first consider the online digit generation
using a RECIP table in Section II. Next the online reciprocal
approximation algorithm is given in Section IIL. Tn Section IV, the
implementational aspects of the proposed online reciprocal unit are
considered.

2. Online table lookup method for
reciprocal approximation

In this section, an online table lookup method is described. The
proposed method produces online reciprocal approximations with a
RECIP table.

Definition: Let P, with rig/P/<1, be the n-digit mantissa of a
redundant floating-point number. The RECIP

function Jg is defined as
j+k
FfP() =X(i) where P(i) =ZI' py?
J=

P(i) is the i-th approximation to P with k being a
positive constant, and X(i) equals to the first i digits
of the sum I/P(i)+sign(P).(ri2).r (4., i.e., X(i)is the
value of 1/P(i) symmetrically rounded to the i-th digit.

0

The most significant digit x, of X(i) has a weight of 4. sign(P) is
the sign function with sign(P)=1 if P>0, sign(P)= -1, otherwise.
The first digit, p ;7 of P, determines the sign of P(i) for all ;. X(@i)is
represented in the sign-magnitude form, all digits x;, of X(i) have
the same sign as P, ie., sign(xk)=sign(P) for all k with I <k<.

Assume that the RECIP function fg is implemenied by a table
lookup unit (RECIP table). It is known that X(i) is one digit more
precise than X(i-1). Suppose X(i-1) has been produced in the
previous cycle. The next output result will be one ¢ ligit more
accurate if the difference X(i)-X(i-1) is being used to correct
X(i-1). This reciprocal approximation can be made online, if for all
I (1<i<n) the difference X(i)-X(i-1) can be represented by one
single digit with a weight of 79-1J_In that case, ar the first step
X(1)=x, is produced, then the following digits are equal to
X(2)-X/1 ), X(3)-X(2), respectively.

In the following, we will show that if the parameter £ is chosen
properly, then the difference X(i)-X(i-1) can be represented by one
single digit with a weight of r(-4-!). The online delay for this online
table lookup method for reciprocal approximation is .

Lemma 1: Let X(i-1)=fi(P(i-1)) and X(i)=fy(P(i)), then
WD 1<r T Zagar bty

if r9<Pi<I

Proof: Given ri<jP/<1, the approximation to the reciprocal of P
canbe represented as a redun(ﬁnt number X, consisting of 1 digits,
with x;, 1.<i<n, having a weight of r(i-4-1), Since
P(i)=pp,...p; . =P+¢ with [g/<r(i+)) it holds

,i-LHi-I_H_e_
PP P P+e P(P+¢g)
’

i+k2
<= )

rr

The error caused by applying symmetrical rounding to 1/P(i) at the
i-th digit is equal to or less than (r/2).r-0-4) e,
1X(i)-11P(i)/<(r12).r (9), Therefore,

| 1 1 1
'X(l) “Fls KO- W,+ 'm‘ FI
< Er_rﬂ-q) i) 2)
Furthermore,
s 1 L0 1
bxi)-x(i-1)) < Ixi)- 21 + Ixgi-1)- L1
P P
< Fad) L I, trasd) ort) )
r 2
So, lemma 1 has been proved. 0

Corollary: Let X(i-1)= (P/i-l 2} and X(i)= fp(P(i)), then it holds
[X(i)-X(i-1){<r(-9-2] if

(1) k=3 and r=2, when P is normalized;
(2) k=4 and r=2, when P is quasi-normalized;
(3) k=2 and r=3, when P is normalized;
(4) k=3 and r=3, when P is quasi-normalized.
(5) k=1 and r>4, when P is normalized;
(6) k=2 and r>¢, when P is quasi-normalized.

Proof: The corollary can be easily verified using Lemma 1. For
example, consider P is a normalized radix-2 redundant number and
k=3. Substitution of r=2, k=3 and q=1 into Eq.(2), leads to
/X(1)-X(i-1)] < (15/16).r-(¢-7). The other cases can be proved in a
similar way.

The following lemma shows that for all ; (1<i<n), the difference
X(i)-X| gi-] ) can be represented by one single digit with a weight of
r(°4-1) when the value of k is chosen as that in the corollary of
lemma 1.

Lemma 2: Let X(i-1)=f4(P(i-1)) and X(i)=fp(P(i)). If

[X(5)-X(i-1)/ 2y 1-a2)_then (X(?:XgiJ )) equals 1o eithex
£ W4 or [-sign(p )r+x,].r 1) and x 0 in the
latter case.
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Proof: Given [X(i)-X(i-1)/< r(©4-2), it follows that

K41 042)  x0) X1 2700 D) < plia2) 5 gl
Since sign(x;)=sign(P) (a property of the function fp)and
[xj/<(r-1), the above formula can be transf; rmed to

2rr 4D, 04 < X (1) X(i-1) x,r (47D < p:42) i pg.

-r4D) < X(1)X(i-1) 04D < 2 pli02). gl 35 peg
(3)

Obvig}lsly, X(i)-X(i-1) -xi.r'(i‘q‘] ) must be an integral muldple of

rt4-2) thys Eq.(3) is equivalent to
L i~ )
X X @i-1) x,r Y < { J if P>0
: -(i-q-] )
X - X(i1)x 72 { ; if PO @)
Thus, from Eq.(4) it follows:
. x, e D .
X(0)-X(i-1) = [ —‘sign(P).r+,1:E].r'("q'1) 5)

Since sign(x;)=sign(P) and x,#0, it holds I-sign(P )r+xi<(r-1).
Thus, lemma 2 shows that X( i)-X(i-1 3 can be represented by one
single digit X; with a weight of r(*-3-1), provided that the value k is
chosen properly (corollary of lemma 1). This means that the
reciprocal can be approximated by using %,=/X(i)-X(i-1 )J.r(i9-1) as
its i-th digit. Thus, online reciprocal approximation can be
generated by using a table lookup urit.

In the following, the problem of how to determine the value of the
i-th digit ii of an online reciprocal approximation is considered.

Lemma 3: Let X,=X(1), and x; =/X(i)-X(i-1)].r (41 for i>2 be
the i-th digit of the online reciprocal approximation of
P, then it holds

LK) . 1 Y n-gl N k-2
(1) I.XIXZ....xn- F|_<_2_.r("ql+r(n+ q)

. X. if x, =x’ e
@ 5 { I T

where x; and X, ; are the i-th and (i-1)-th digit of
X(i)=fp(P(i)) respectively, and x is the (i-1)-th digit
of X( i-ls )=fp(P(i-1)).%; is the radix-r complement of
x; 'iiz-signﬁxi ).r+x;.

Progf:
(1) From the definition of X;, it holds

Xpky.. Xy =X(1)+[X(2)-X(1)]+...+ [X(n)-X(n-1)]=X(n)

Therefore, from Eq.(2) it follows that statement (1) is true.

(2) Lemma 2 says that XW—X(i-I ) is equal to either xx,.r(4-1) or
[-sign(P).r+x;] r-(~4-1], Obyiously, X(i)-X(i-1 J=xr(ia-D)
means that X(i)-X(i-1)-x,r(-4-1) =0, Since the signs
of the corresponding digits of X(i) and X(i-1) are identical, it
holds thatx~=xj' forallj (1sj<i-1), where x: denotes the j-th
digit of X(if anfl x;’ denotes the j-th digit of X(i-1).
Now, consider thé case X(i )-X(i-1 J=[-sign(P).r+x ] r(--1),
This means that X(i)-X(i-1 )-xi.r'( -q- )=-sign(P).r‘ -¢-2) (see
Eq.(5). It can be proved that this always implies X171
Assume that x; 4 =x; ;’, then it follows that
X()-X(i-1)-x..r -4 Dig an integral multiple of r1-9+3)_Since
-sign(P).r"(4-2) cannot be an integral multiple of r(-4+3) the
assumption leads to a contradiction with the given condition,
meaning that x;_,#x; ;" (In fact, there are only two possible
digits patterns wflicfx satisfies .

X(i)-X(i-1)-x,.r(i-9-1 )=-sign(P).r'("q‘2).' X; 1=x; ;-1 or
J;I....xO(r-If..(r-I) and x;".. x;'10..0 with xp=x,"for all k
(I<k<J)). So, we conclude thajt the two cases of the value
X(i)-X(i-1) can be distinguished by observing the digits X ;
and xi_l ', i.e.,

xo xgn=§ 50 g X
T\ (S rex )t if :.'_1#"{1

By definition, it holds £;=/X(i)-X(i-1)].r"(4-1) and
X;=-sign(x;).r+x;. Therefore, the i-th digit X; of an online
reciprocal approximation equals to

i22

Lemma 3 shows that the implementation of the online table
lookup method is simple. To generate an online reciprocal
approximation of m digits with an error less than (r12)(ma it
requires a RECIP table having (m+k) digits, a;a,...a,, . as its
input address. At the i-th iteration, a 1958y = P1P3-- Dy A0
a;=0 for all j (i+1<j<m+k) is used as the input add{'css‘ The RECIP

ble then gives the value of two digits X;_; and x;. The i-th online
digit x; is determined by these two digits and the digit x; ;" (keptin
aregister) of the previous iteration.

The size of the RECIP table can be reduced if the redundant
number P(i) is being transformed into a non-redundant
sign-magnitude number representation P*(i), and using P*(i) as the
input address. The sign of P*(i) is determined by the sign of the
first digit of P. When the radix is small, the reduction of the size of
the RECIP table can be significant. For example, for r=2, the
number of input bit can be reduced by half, since a radix-2
redundant digit requires 2 bits.

The transformation can be done by using a radix-r digit
count-down counter. The sign of P (sign(P)=sign(P*(i)) is stored
separate from the magnitude of P*(i). The magnitude of P*(i) is
stored in the radix-r counter. Denote the most significant digit
(MSD) as the first digit of the counter, the next to the MSD as the
second, etc. To start the online reciprocal computation, the counter
is cleared. The counter is implemented as a radix-r counter which
can perform count-down/load operations at different digit positions.
At the j-th time step, if sign( pj)=sign(P ) then p; is counted down
from the j-th digit of the couriter, otherwise, p ;15 loaded into the
J-th digit in the counter.

The realization of an online table lookup reciprocal unit is shown
in Fig.2.

Another method is on-the-fly conversion, proposed in [ERCES5].
Here, no borrow propagation is necessary.




3. Online division with an adapted Newton-Raphson
method

In the previous section, an online table lookup method for
reciprocal approximation has been proposed. It has been shown
that using a so called RECIP table, a low online delay (the lowest
online delay for division known) is obtained. However, the size of
the RECIP table grows exponentially with the word-length, e.g., to
obtain an accuracy of 2", a memory of size 16M. logr?bit is
required to store the RECIP table. This is impractical. So, we will
introduce an adapted Newton-Raphson method in addition to the
method of Section II. In the initialization phase, the online table
lookup method is applied to generate the first m digits; then the
adapted Newton-Raphson method is applied to produce the -
remaining m-n digits (n=number of digits of the mantissa of a
floating point number). Like the online table lookup method, the
adapted Newton-Raphson method generates one digit of the online
result each iteration.

The iterative Newton-Raphson equation for the reciprocal
approximation can be written as X(i+1 J=X(i)*[2-X(i}*P], where
X(i) is the i-th approximation to the reciprocal (1/P). The
Newton-Raphson method converges quadratically. Many online
algorithms are based on the Continued Sums/Products principle in a
converted form ((DELU70],[KUCK78],[OWEN79]), the
Continued Sums/Products method is a linear method. The
algorithm to be considered uses the quadratic iterative
Newton-Raphson method. Although online results converges
linearly (one digit more accurate each iteration), but it will be
shown that using a converted faster (quadratic) method reduces the
online delay and simplifies the digit selection unit.

The following notations are used: Ax=x,./(4-1) and
Ap;=p;, 57 *+% The value of § must satisfy the convergence and
onfine requirements of both the online table lookup method and
adapted Newton-Raphson method, so 6k (k is given in the
corollary of lemma 1).

1. Initialization:

X(0)=0,
fori=Itomdo

generates the i-th digit Ax; with the

online table lookup method,

X(i)=X(i-1)+Ax;;

R(D)=[X(i-1)+ Ax;]*{1-[X(i-1 )+ A, *[P(i-1)+ 8p,]);
od.

2. Adapted Newton-Raphson iterations:

select a new online digit: Ax,, , ;=SEL(R(m));

for i=(m+1) to (n-m) do
X(i)=X(i-1)+Ax;;
R(1)=[X(i-1)+ Aq;*{1-[X(i-1)+ Ax;] *[P(i-1)+ Ap,]};
select a new online digit: Ax;, =SEL(R(i));

where SEL(R(i)) is the selection function; SEL(R( )) equals to the
result of R(i)+(r/2).r- (4+!) rounded to the digit with a weight of
r4) with R'(i) represents the L most significant digits which are
fully propagated from the (i+1)-th to the (i+L)-th digit of R(i), i.e.,
the value R(i) is first truncated to L digits to avoid full carry
propagation, then it is symmetrically rounded to the (i+1)-th digit
(the digit with a weight of (19}, As it will be proved later on, if
the parameters », t and L are chosen properly, ISEL(R(i))| is less
than (r-1/2).r- (04, 50 Ax; , ; can be represented by one single digit
with a weight of r(-4),

In the following, the convergence of the adapted '
Newton-Raphson method and the online property of the method
will be proved.

Let X(i) be an approximation to I/P in the i-th iteration, then the
Newton-Raphson iteration equation for reciprocals can be written
as X(i)=X(i-1)*(2-X(i-1)*P). However, in online computation, not
all digits of the input operand P are known during the iterations. Let
P(i)=p;p,...p;,, be the i-th approximation to P, then the adapted
Newton-ﬁaphson iteration equation is X(i+1)=X(i P¥(2-X(i)*P(i)).
Substitution ofX(i):X(i-I)+Axi leads to X(i+1)=X(i)+R(i). Thus,
if we can prove the convergence of the adapted Newton-Raphson
method, the used selection function SEL(R()) will guarantee that
X(i+1) is one digit more accurate than X(i). Thereafter, we will
prove that Ax; , ,=SEL(R(i)) can be represented by one single digit
with a weight of (9 for all i (m<i<n-m), i.e., the proposed
iteration method is online, .

Suppose X(i)=X(i-1)+Ax;=1/P+c,.r(9) and ,
P(i)=P(i-1)+Ap;=P+c,.r (*Y), where ¢;.r (-9 and c,.r(i*+!) are the
errors of the i-th approximation to 1/P and P respectively;  is the
online delay of the adapted Newton-Raphson method. Substitution
of X(i) and P(i) into the iteration equation, it follows that

X(i+1) = X(1).[2-X().P(i)]
= {(1/P)+c;.r(9)} (2-f (1iP)+cy.rita) {P+cyriitiy

=(1/P)-Ar(-d) (6)
where A =c—§.r{'+q) + ZCITCZ.r{m) +Pc12.r ) +c1202.rm+ 0
p
Since it also holds X(i+1)=X(i)+R(i), we have
X(i)+R(i) = (1/P)-Ar (-9
Let Ax;, ;=SEL(R(i)), then
X(i)+Ax;, 1 +(R(i)-Ax, ;) = (1/P)-Ar-(i-0)
such that
| X(i)+Ax; j-(1/P) 1 <1 ALr(@) + | R(i)-Ax;, ;| (7)

From the definition of the selection function SEL, it follows
that | R(i)-Ax;, ) | < (r12)r (594D p(oq+L-) ‘where (r/2).r(4+1)
is the rounding error (if truncation instead of rounding is applied, a
larger error will result which is equal to r.r4+0)), and F-4+L-1} ig
the truncation error as a result of taking only the digits with a
weight larger than r"(-9+L-1) inio consideration by the selection at
the i-th iteration. The value of A decreases as 7 and i increases,
therefore, the (i+1)-th approximation X(i+1 )=X(i )+Ax;, ; will have
an error less than (-9, if the values of the parameter m {im+1 )t
and L are large enough. Thus, the convergence of the method of
selecting Ax;, ; by means of the selection function SEL(R(i)) has
been proved.

In the following, the question of if the approximation generated
by the adapted Newton-Raphson method can be made online is
considered.

The output X(i+1) is online if Ax;, ; can be represented by one
single di%it with a weight of 7(9), We require that
IR()/< rD-(r72) -4+ 1)~ (r.1/2) r9)  then it holds that
Ax;, y<r.r(t4), this means that A, ; can be represented by one
single digit with a weight of r-(+-4). Another consequence of /R(i)/<
(r-112).r @) is that only L digits of R(i) have to be taken into
consideration by the selection function SEL, since the digits of R(i)
from the 1-st through the i-th digit are equal to zero.

Let X(i)=1/P+c;.r(-9), and X(i+1)=1/P-Ar (-9 (see Eq.(6)),
then R(=X(i){1-X(DP(i)]=X(i+1 )X(i)= -Ar(4) ¢, r(-9),
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Therefore,

IR} <r(-a[I A} + | ¢ ] (8)

So, it can be concluded that the output X(i+1) is online if
lAl+Icll<r-0’5.

From Eq.(7) it follows I ¢; | <1 Al+1/24r L1, Since | ¢yl <l and
risiPi<], from Eq.(6) it follows that

[ A1 sr a0, rli+ta)y Prit@s(c, 2y 2ittg)
Furthermore, it holds i2(m+1), such that

| AL S rl@sgc) pimviqrl) e 2 pmelg)y P r(2matgs2)
(9)

The aim is to obtain a minimal online delay 7. This is an
optimization problem: minimize ¢ under the constraint
AL+ 1c, 1 <r-0.5 with I, | <1 Al+1/24rL1) ang Eq.(9).

The aﬁovc optimization problem is not easy to solve
analytically. However, f can be evaluated in a simpler way.
Substitution of |¢; | <TA1+1/24r LD into | Al 4 | ¢ 1< r-05, it
follows that 2./ A {+J R+r@-l) < rp5iga sufficient condition to
ensure the output X(i+1) being online. Furthermore, it holds
lep 1< r-0.5, substitution of ¢ 7=r-0.5 into the equation of A, the
expression 2.1 Al+12+r -1V ¢ r 5 becomes a function of
parameters ¢, m and L.

When the values of the parameters f, m and L are chosen
properly, the online condition can be satisfied. Table 1 gives
several of such values of these parameters as a function of the radix
r. It can be easily verified that the value of tin Table 1 is the
minimal possible value which still satisfies | A | + [ ¢ 11 <705, the
values of m and L are lower bounds corresponding to the value of
t. In practice, a table lookup initialization system will be restricted
10 g<3, otherwise too large a tables will be necessary.

The proposed online division algorithm uses the online table
lookup method to generate the first m digits, and uses the adapted
Newton-Raphson method to generate the remaining (n-m) digits.
For normalized numbers, the result produced by our algerithm is
between 7 and #, so if the “decimal-point” (i.e., before the digit
with a weight of r/ ) is set before the first digit X; of the result, the
result is quasi-normalized (of course, the exponent must be7
increased by 7). For quasi-normalized numbers, <(1/P)<i?,
Assurning the “decimal-point" is set before % (increasing the
exponent of the result by 3), then the ran ge of the result becomes
between r and /. With the following quasi-normalization
procedure, the online result can be transformed to quasi-normalized
numbers.

t m L

q+2 4+q 3

r=2 g2 3+q 7}
r=3 g+1 2+q 2
r4 q 2+q 2

TableI. Several values of the parameters t, m, and L , Jfor which
the online condition is satisfied.

Quasi-normalization: Consider the first two digits x; and x,. If
x;=0, then right shift the "decimal-point" one position (i.e.,
decreasing the exponent by 7); if x 1=1, Xy#0 and
Sign(X;#sign(x,), then set ¥ 1=0, complement digit X, and right
shift the "decimal-point" one position. In all other caSes, the
result is already quasi-normalized. The quasi-normalization
introduces an extra online delay of 7 digit.

Therefore, the proposed online algorithm gives
quasi-normalized floating-point numbers as results, The online
delays of the algorithm are d=MAX. {k,} and 6=MAX{k 1} to
MAX{k,t}+1 for normalized and quasi-normalized inputs,
respectively. The values of given in Table 1 are equal to the
corresponding values of given by the corollary of lemma 1,
This means that 7 can be taken equal to & resulting in a perfect
match between the two phases of the algorithr. Thus, for radix-2
numbers the online delays are §=3 and d=4 to .5 for normalized
and quasi-normalized inputs respectively. The online delay for
radix-r redundant numbers with r>¢ are é=1and =2 to 3 for
normalized and quasi-normalized floating-point inputs,
respectively. Among the known online division approaches, the
online delay of our algorithm is minimal (the multiplication after
the reciprocal evaluation has an online delay of / ([TRIV77D)).
For example, the online delay of the algorithm described in
[OWENS1] is §=4 and 6=3 with normalized radix-< and radix-§
recundant numbers respectively as inputs, and 6=4 for the online
division algorithm described in [TRIV78] for normalized hi gher
radix redundant numbers, Online division algorithms dealin g
with quasi-normalized numbers have not been reported so far.
With the online table lookup principle, the theoretical minimal
online delay can be obtained.

4. Implementation of an online reciprocal unit

In the previous sections, an online reciprocal algorithm has
been proposed. The algorithm consists of two phases: 1.
init alization,by using the online table lookup method to generate
the first m digits; 2. adapted Newton-Raphson iteration, by using
the adapted Newton-Raphson method to produce the remaining :
{m+1)-th through the n-th digits of the reciprocal. i
As has been shown in Section II, the implementation of the {
online table lookup unit is very simple, it consists of mainly a !
ROM to store the RECIP table. In this section, the :
implementation of the adapted Newton-Raphson method is !
considered.
The formula for the residue R(i) can be written as a recursive
equation:

R() = R(-1)-2X(i-1) P(i-1) A+ A, X(i-1) X(i-1).4p,
-2 X(i-1).40,. 8p-P(i-1). A, K- Ax, A, Ap

[t S ]

(10)

Since /R(i)/<(r-1/2).r- 9, R(i) can be scaled up by a factor 7

during each iteration, resulting that the most significant digit of

R(i) remains in the same position, This simplifies the selection

unit. Substitutign of R (i)=R(i).r(i-¢-1) Ax=x;r%9-1) apg
i=Pirs 9 into Eq.(10), results in

R(i)=
rR(-1)-2. X(-1).P(-1) 43X (1-1) X(i-1) sr(®Ha+l)

2 X(-1) %y s r +O-P(11) (5,2 r(i-0-1)

- by gr(Pi+Ea D) (1)




At first sight, Eq.(11) seems quite complicated. However, it
can be partitioned into three independent sub-operations which
can be implemented in a carry save adder way (i.c., only
neighboring carry-propagation during addition and
multiplication). The three sub-operations are: 1. the multiplication
of X(i)*P(i); 2. the multiplication of X(i)*X(i); 3. the calculation
of R(i). The block diagrams of these three components are
shown in Fig, 3. .

If the terms 2 X(i-1)c,.p;, sand P(i-1). ()2 r(-4-1) are
computed with a parallel shift unit, a complex circuitry will result
in addition to a large delay in the circuit. To avoid this, the terms
X(i-1) and P(i-1) are shifted digit-serially, i.e., each iteration
X(i-1) and P(i-1) are shifted right one digit positign (equivalent to
the multiplication with ), such that X(i-1).r-(+9) and
P(i-1)r%9)) can be pgovided to the digit-multipliers in Fig. 3
(the constant factors 0 and H9*) can implemented by a fixed
offset of wires).

A number of online division algorithms described in the
literature demand a complicated digit selection mechanism, but
the selection unit for the adapted Newton-Raphson online
reciprocal algorithm is simple and fast. As is depicted in Fig. 4,
the most significant L digits of R(i) have to be fed to a full
propagation adder (FPA), then only the most significant two
digits are being used to determine the online digit Ax;, ;. Forr23
it holds that L=2, so, full propagation of these 2 digits needs not
actually be irplemented, since the digit selection logic can be
realized with a few gates. '

The calculation of R (i) requires the longest time among the
three components, so the maximal delay per iteration is equal to
the time of calculating R (i). The delay per iteration is equal to the
sum of the delays of 2 digit-multipliers, 2 serial adders and 1
selection operation. Since multiplications and additions are done
in a carry save way, the circuit delay is small and high
computation speed can be obtained.

»

5. Conclusions

An algorithm for online division by means of reciprocal
evaluation has been described. The algorithm works correctly for
maximally redundant floating-point numbers with arbitrary radix.
In contrast to other known algorithms, normalized,
quasi-normalized, and pscudo-normalized floating point numbers
can be handled. For chained online computations, both
normalized and quasi-normalized floating-point numbers must be
handled; the proposed algorithm meets this criterion. The online
delay of the algorithm is the smallest among the known online
division algorithms. With the online table lookup method, the
theoretical minimum of online delay can be obtained. Using the
online table lookup method for the initialization, the adapted
Newton-Raphson method perfectly matches this online delay. It
has been shown that the digit selection mechanism is simple and
fast, and the proposed algorithm can be implemented with fast
logic without the need of full carry propagation.
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Fig2 Block diagram of an online table lookup reciprocal unit.

-i+q+1

Xi X(l--1)‘r Xi X(i)'r'i+q+1

y ‘
oM. ] [ om

X(i-1).X(i-1) *X(i-n.Pu-n
l + |
+ i).P(i

X(i). X (i)

Fig.3a. The multiplier for X(i)X(i). DM is a digit multiplier
which operates in carry save mode {(without carry
propagation),

Fig.2b. The multiplier for X(i).P(i).
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Fig4 A sketch of the selection unit for the adapted
Newton-Raphson method.
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