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ABSTRACT

Two closely related new systems of computer arith-
metic are proposed. It is shown that both are
closed under arithmetic operatioas in finite-pre-
cision arithmetic, thereby offering a permanent
solution to the problems of overflow and underflow.
Other advantages of the new systams pertaining to
precision are described, and there is also a brief
discussion of possible ways of hardware implementa-
tion.

1. Introduction and Summary

The floating-point (f%p) system was adopted
almost universally for computer arithmetic soomn
after the introduction of electronic computers in
the early 1950's. Since then it has served the
computing community remarkably well. Nevertheless
there are persistent problems associated with the
system. If this were not the case, then it would
not have taken a large and distinguished committee
many years to formulate the recert IEEE standard;ll
indeed, there may have been no ne¢ed for such a
standard.

Foremost among the problems associated with
the fip system is failure caused by overflow or
underflow. Anyone who has attempted to produce
robust software is painfully aware of these prob-
lems; see, for example, references 1, 5. The
reason overflow and underflow occur, of course, is
that the f2p system 1is not closed: starting from
any two representable numbers it is always possible
to generate numbers that lie outside the represent-
able set by a finite number of additions, subtrac-
tions, multiplications or divisions, excluding
division by zero. All modifications of the fip
system, including for example thecse developed b{
Hull and his co~workers? and by Matsui and Iri,i"
also inevitably suffer from lack of closure.

Does a closed system of arithmetic exist? If
it does, then we would expect it to be more compli~
cated and costlier to execute than the fip system.
As a result, the question has remained largely of
academic interest. However, phenomenal advances in
computer technology suggest that implementation of
a closed system in an economic maaner might now be
feasible. Furthermore, although 2xecution speed of
arithmetic operations is always bound to be slower,
some of the loss may be recoverable by the use of
simpler algorithms. Human effort, too, would be
saved by simplifications in the construction and
debugging of programs.
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In 52 we describe a system of computer arith-
metic, called level-index (%i) arithmetic, together
with a modification called symmetric level-index
(sfi) arithmetic. This section also outlines algor-
ithms for implementing arithmetic operations in
these systems.

In §3 we prove that the %1 and sfi systems
are closed.

In 84 we discuss various aspects of the pre-
cision of the new systems, including some compari-
sons with the precision of the fip system. 85
supplies an illustrative example. In §6 we discuss
briefly hardware implementation, and in the final
section, §7, we present our main conclusions.

For fuller treatments of the topics in this
paper, the reader may consult references 2, 3 in
the case of §2, reference 13 in the case of §§3-5,
and references 16, 19 in the case of §6.

2, The 21 and si Systems

The 2i system is based on the mapping

X = ¢(x), (2.1)

and its inverse

x = y(|x]). (2.2)
Here X is any real number, and its image (or "2i
image") x is a nonnegative number that 1is stored
internally in the computer (along with the sign in
(2.1)) to represent X. The functions ¢ and ¢
are "generalized" exponentials and logarithms,
defined by

$(x) = x (0 =x < 1), (2.3)
$(x) = ? D (4 5> 1y, (2.4)
Y(X) = X (0 =X < 1), (2.5)
vX) = 9y(2n X) +1 (X = 1). (2.6)
Both ¢(x) and ¢(X) are increasing functions,

with continuous first derivatives when 0 < x < =
and 0 = X < o,

The image x 1is stored in fixed absolute pre-
cision. Its integer part & and fractional part
f, say, are respectively the level and index of X.
The reason for these names is that in consequence
of (2.1), (2.3) and (2.4) X can be expressed
explicitly in the form




where the exponentiations are carried out £ times.
(When 2 = 0, we have X = f.)

Suppose that we wish to subtract two numbers
in the 21 system. That is, we are given their
images x and y, with x 2 y = 0, and we need
to find z to satisfy the equation

(z) = o(x) - ¢(y).

Let the result of decomposing x, y and 2z into
their integer and fractional parts be denoted by

x=2+f, y=m+g, z=n +h.

If 2 =m= 0, then the calculation of n and
h is trivial: n=0 and h = f - g If 2 >0,
then we compute three sequences {aj}, {bj} and

{c,}, the members of which are defina:d by

|
ay = 1/¢(x~j), bj = aj¢(y—j), ey = aj¢(z—j).

The aj
The b
3

are required for j £ -1, 2 - 2,...,0.

are required for j =m- 1, m - 2,...,0,

except that we need b_. also when m = 0. The

0]

sequence Cj’ i =20,1,... 1is terminaied when

Cj < aj or j = & - 1, whichever cones first.
Recurrence relations and initial values are

supplied by

~1/a,
a, .=e I a =ef
-1 * %1 ’
'(l—bj)/aj
bj—l = e ,
= g = (n =
bm—l a _,© (m 2 1), b0 ag (o 0),
c, =1+ ajkn cj—l’ CO =1 - bO.

If cj(O £ 3 2 2-1) is the first membor of its

sequence to satisfy cj < aj, then
n=3j, hs= cj/aj,

However, if ¢, > a, for j=0,1,...,8 - 1,
then J J

h=f+ : .
n (2_1
These relations are derivable from the definitions

(2.1) to (2.6). 1It should be noted, incidentally,
that the recurrence relations for the bj and Cj

are the same, but they are applied in cpposite
directions. Each of the quantities a_, b, and

cj lies in the interval [0,1], and in reference

3 an error analysis is given to show that the
algorithm can be executed in fixed-point arith-
metic.

The algorithm for addition is similar to that
for subtraction; the main change is to replace the

equation ey = 1 - b0 by ey = 1+ bo. Multipli-~ Z

cation and division are equivalent to addition and
subtraction at a lower level For example, if

¢(z) = ¢(x)(y), (2.7)

with x 21 and y = 1, then on taking logarithms
we have

$(z~1) = ¢(x-1) + ¢(y-1). (2.8)

Further details will be found in reference 3.

At level zero the i system functions as a
fixed-point system; compare (2.3). Often, however,
we wish to preserve the relative precision of small
numbers; in consequence an alternative way of
representing numbers in the interval [0,1] is
needed. The s%i system achieves this by using
reciprocals of £i numbers, just as the f2p
system attains the same end by use of negative
exponents. Thus in the s%i system we have

*+1
X = #{o(x)} 7,
the ambiguous sign in the exponent being positive

or negative according as IXI z 1. Equivalently,
the s%i system can be represented by the mappings

X = 0(x), x=v([x]),
in which

®(x) = 1/¢(1-x) (x < 0),

(x) = ¢(1+x) (x 2 0),

VXY = 1-p(1/X) (0 < X < 1),
YY) =9 -1 (X =21),

and ¢(*) and Y(*) are defined as above. Again,
both &(*) and Y¥(*) are increasing functions,
with continuous first derivatives, in their inter-
vals of definition. Algorithms for arithmetic
operations in the s%i system are obtainable by
modification of those for the &i system; see
reference 4.

3. Proof of Closure

To fix ddeas, let us suppose that the inter-
nal arithmetic base of the computer is r, and
the fractional parts of the 21 images are stored
to d r-nary places. Then if we add any repre-
sentable number ¢(x) to itself the stored £i
image of the sum will not exceed X, provided
that

~d
$(xter 7) > 2¢(x). 3.1
Here ¢ 1is a positive constant: if the &i

arithmetic processor computed to infinite pre=~
cision, then we would have ¢ = 1 for chopping,




and c¢ = % for rounding. By using a sufficient

number of guard digits in the processor we can
approach these values arbitrarily closely, but the
precise value of ¢ 1is not resally important. On
taking logarithms the inequality (3.1) becomes

¢ (x-1+ cr'd) > ¢(x-1) + &n 2.

If x >2, then ¢'(x-1) 1is increasing. Hence
by application of the mean-value theorem we see that
the last inequality is satisfied when

cr_d¢'(x—l) > n 2.

This is equivalent to

-1d
x 2 8(c "r &n 2),

where 8(t) denotes the root of the equation

' (x~1) = ¢t.

Sample values of 6(t), computed with the
aid of Newton's rule, are as follows:

32 64

8(277) = 5.06..., 8(277) = 5.26...,

0(210%%) = 5.63..., a(2>»°V2,869

) =6.00...
Consider now the set A of all numbers

generated by the addition or subtraction of any

two numbers, beginning with any pair of numbers

whose 2i 1images are less thzn e(c-lrdln 2).
Assume that the i images «f the members of A
are generated by arithmetic operations in the 2i
system and stored to d r-nary places. In con-
sequence of the result just proved, the absolute
values of the members of A are bounded by

18 (c lrdln 2)}. If we now extend the arithmetic
processes to include multiplication and division,
other than division by zero, then the set of num-
bers so obtained is bounded in absolute value by

${6(c 1rdln 2) +1}. This is a consequence of
the equivalence of multiplication and division to
addition and subtraction at one level below; com-
pare (2.7) and (2.8). See also reference 13.

We have therefore shown that when the 21
system is used with any finite-precision arith-
metic, there is a subset of its set of represent-
able numbers that is closed under the operations
of addition, subtraction, multiplication and
division, excluding division by zero. Obviously,
the same conclusion alsc applies to the sfi
system.

With the aid of the numerical values of 6(t)
quoted above, we see that when r = 2 and d = 32,
that is, with 32 bits assigned to the storage of
the fractional part of the i image, an upper
bound for numbers generated by addition and sub-
traction is ¢(5.07), whether the abbreviation
mode be chopping or rounding. For multiplication
and division the corresponding bound is $(6.07).
To raise the overall upper bound from ¢(6.07) to
¢(7), or more, we would need a wordlength in
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excess of 5,500,000 bits. Thus in practice levels
beyond 6 will not be entered; in consequence 1t
will always suffice to allocate 3 bits to the
storage of the integer part of the 21 image.

4, Precision

The main advantage of the £i and sfi
systems over other systems is the closure property
established in the preceding section. However,
there are also advantages pertaining to precision.

In the first place, because the mapping func-
tions ¢(x), ¥(X), ¢(x) and Y¥(X) have continu-
ous derivatives, the systems are free from the
annoying phenomenon of wobbling precision.

Next, there is no need to introduce gradual
underflow, *’ with its injurious effects on error
analysis. In a sense, gradual underflow is
already incorporated in a natural manner in the
2i system at level zero, and in the sfi system
underflow is absent because of the closure proper-
ty.

As for error analysis, the 2i and s&i
systems have their own error measure, namely the
absolute error in the 2i and sfi images. This
measure is called generalized precision,” since
it reduces to absolute error at level zero (in
21) and to relative error, or more precisely
relative precision,15 at level one (in 2i). More-
over, in contrast to relative error, generalized
precision has the elegant and useful property of
being a metric.

Lastly, in order to compare directly local
precisions* of the ffp and #i (or s2i)
systems for a given wordlength, we need to convert
from generalized precision to relative precision.
This comparison is carried out in some detail in
reference 13, and we merely sketch the main
results in the case of the 2i system.

For a given mantissa length the relative pre-
cision of the £f&p system is constant, within a
factor r (the internal base). For a given index
length the relative precision of the 2i system
varies. Its measure is least for numbers X= ¢(x)
at level one, and increases steadily as X enters
higher levels. At X = 1, the relative precision
of the 2i system is better than that of the IEEE
fip system11 by a factor of 32 in single precis-
ion and 256 in double precision. The relative

precisions become approximately the same in the

11

ranges 2 < X < 218 (single precision) and
44 70

2 <X <2 (double precision). At higher
values of X the f2p system gains, up to a

factor of about 37 just before overflow in

single precision (X = 2127), and of about 68

just before overflow in double precision

X = 21023). In consequence of these variations

the comparative accuracy of results computed in
the two systems will depend on the magnitude of
these results as well as on the magnitudes of the
numbers that appear during the intermediate steps.
Unless most of these numbers happen to be in the
upper part of the representable ffp ranges (in
which case the danger of overflow is increased),

*By "local precision" we mean the distance between
consecutive representable numbers.




the 241
accuracy.
After X 1increases beyond the overflow limits,
the f2p system fails. The 21 system still
functions and the local relative precision con-
tinues to increase, becoming of order unity at

X = ¢{6(c_lrdln 2)} that is, at "infinity" for

the &i processes of addition and subtraction
(83). It might be argued that this gradual ercsion
of relative precision renders the 21 system in-
effective for very large numbers, However, rela-
tive precision is the appropriate error measure for
the f&p system, not the &1 system. One might as
well argue that the erosion of ahsolute precision
that accompanied the change from the fixed-point
system to the f&p system would have rendered the
fip system ineffective for large numbers.

system can be expected o yield the higher

5. Example

A good example of the power of the new arith-
metics is afforded by the computation of the bi-
nomial probability distribution I(n,k,p), defined
by

I(n,k,p) = j-—go (3‘) pj(l—-‘p)n—j,

with 0=k=<n and 0 <p < 1.
of Sterbenz's well-known book!
this problem. Sterbenz discusses failures caused
by overflow and underflow in f&p arithmetic, and
provides an algorithm to overcome these difficul-
ties, based on careful rescaling. The algorithm
is for individual terms in the sum, and is quite
complicated. In contrast, a simple recursive
algorithm based on the relations y0 = (1-p)n,

Over six pages
are devoted to

= R=jtl p

yj 3 1-p yj—l (G =.,2,...k),

and
Kk
I(n,k,p) = J y.,
j=0 J

can be executed straightforwardly in sfi arith-
metic and yields results of comparable accuracy
to those generated by Sterbenz's algorithm.,

The advantages of the s2i algorithm are
first that the construction and debugging of the
program are less time-consuming. Secondly, the
s2i algorithm entails far fewer arithmetic
operations, which offsets some of the increase in
execution time needed for s2i arithmetic.

Further details of this example, including
computed results, will be found in reference 13.

6. Hardware Implementa:ion

So far, implementations of th: £i and sl
systems have been made only in sof:ware. These

implementations have been somewhat cumbersome
because for convenience the steps of the arith-
metic algorithms (§2) have been simulated in fap
arithmetic, rather than the more natural fixed~
point arithmetic.

The next stage will be the development of
fast hardware processors for evaluating the

requisite exponentials and logarithms. Given num-
bers a, b and ¢ in fixed-point form we need to

compute e_a, e-l/a, em(l_b)/a and 2n ¢, also

in fixed-point form. On microcomputers algorithms
of the CORDIC type (originated by J. E. Volder)
might be useful; see, for example,references 17,
20. For mainframe computers, however, digital
parallel algorithms of the kind used for fixed-
point and f2p arithmetic operations are likely
to be more effective; see, for example, reference
10, §3.2, and reference 21, Chapter 3. Considerable
progress on these lines has already been made by
Johnsson and Krishnaswamy, and Turner and

Olver, 16-19

The ultimate objective is to have the £i and
82i systems encoded on a single silicon chip.

Then at the outset of a program, programmers would
be able to declare whether they wish the arithmetic
to be executed in fip, 21, sfi or some other
arithmetic, e.g. that of reference 9, or even
fixed-point arithmetic. This declaration would be
analogous to those now made in FORTRAN pertaining
to single or double precision, and real or complex
variables.

Of course, it is unlikely that 21 and s2i
arithmetic operations will ever be as fast as the
corresponding operations in ffp arithmetic. How-
ever, if the ratio of the speeds could be brought
to within 10, or so, then the overall execution
time of a program in 21 or s2i arithmetic
might be only two or three times that of the same
program in ffp arithmetic. This is because only
a part of program execution is spent on arithmetic
operations, as a rule. Moreover, as indicated in
§5, freedom from overflow and underflow means that
it will be possible to implement simpler algorithms
in the 2i and s%i systems than in the fip
system. This advantage will help to offset further
some of the speed loss of the arithmetic opera~
tions. It will also lighten human effort in con-
structing, testing and debugging programs and
software.

7. Conclusions

We have described a new form of computer
arithmetic, called the level-index system, to-
gether with a modification thereof, called the
symmetric level-index system. In contrast to
existing systems, the 2i and sfi systems are
closed under arithmetic operations in finite-
precision arithmetic. In consequence, bhese
systems offer a permanent solution to the problems
of overflow and underflow. There are also certain
other advantages pertaining to precision. Execu-
tion speeds of arithmetic operations will be
slower than for the floating-point system, but
this loss may be offset to some extent by the
ability to use simpler programs.

We have not entered into any discussion of
error analysis in the new arithmetics. This
subject is investigated in reference 13.

We can summarize briefly by stating that the
advantages and challenges of the new systems are
similar to those that were offered in the 1930's
on the introduction of the floating-point system.
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