5
i
.
¥

s i e ot

IMPLEMENTATION OF LEVEL-INDEX ARITHMETIC USING PARTIAL TABLE LOOK-UP

F. W. J. OLVER and P. R. TURNER

IpsT,
University of Maryland,
College Park, MD20742, U.S.A.

Abstract

This paper is concerned with finding fast effi-
cient algorithms for performing level-index
arithmetic. The approach user combines the ad-
vantages of parallel processing with the use of
table look-up. The latter is used only for short
words and the result is a potential implementa-
tion with £i operation times comparable with
floating-point long multiplications.

Introduction

In this paper we explore an alternative approach
to the implementation of i and si arithmetic
(f2],{3]and[4]) to that useo in [9]. The objec-
tive remains the same, namely the provision of
fast algorithms which will make level-index arith-
metic a feasible, practical ccmputing facility.
For simplicity of description, we again consider
the case of £i arithmetic operations, the exten-
sions for the sfi case being straightforward.

A conclusive comparison between the approach des
cribed here and that in [9] is not possible with-
out detailed analysis of the relative efficiencies
of the hardware components required. However, it
seems likely that any efficient implementation
will make use of aspects of both these approaches
- and probably others as well,

The level-index addition/subtraction algorithm is
a technique for obtaining 2z = n+h such that

d(z) = ¢(x)2o(y) (1.1)

where x = £+f 2 y = m+g; &,m,n are nonnegative

integers; f,g,h e [0,1) and the £i representa-
tion function ¢ is given by

¢(x) = explexp(...(ex> f)...)), (1.2)
the exponentiation being carried out & times.
This requires the computation of the (finite)
sequences defined by

ay= 1/0(x=3)s by = bly-3)/0(x-5) (1.3)
and €= 0(z-3)/0(x-1). (1.4)

J

(For a full description of the algorithm see {3])

.

CH2419-0/87/0000/0144$01.00 © 1987 IEEE

Department of Mathematics,
University of Lancaster,
Lancaster LA1 4YL, U.K.

In the next section we describe a partial table
look-up approach to the computation of {aj} and

{bj} based on breaking a number up into packets

of 6 bits. This idea extends into the calcula-
tion of {cj} which we discuss in section 3.

Throughout the description we make considerable
use of parallelism both in the vector sense and

at a bit-by-bit level based on the use of the
Carry Saver Adder (CSA) and the storage of intes-
nal quantities as "double numbers", (See {2] and,
for a full description of the CSA and "double
number™ philosephy,[7] and [10]). The benefit
here is the limited use of the Carry Propagate
(CPA) or Carry Look-ahead Adders which are nec-
essarily much more time consuming.

2. Computation OE—{aj}'{bj} using partial table
1ook-uE;

The sequence bj} is generated by the relations

-f

ag_, = e , aj-l = exp(—l/aj) (J =2 -1,000,1)

(2.1)
while for {bj} we have

b = a e’ , b

m-1 m-1 jo1 " EXP((bj—l)/aj)

(i = m-1,000,1,).

(2.2)

The requiréﬁ“ﬁbsu;pte working precisions for these
quantities for single-length £i arithmetic are

37

typically 2~ for {aj} ang 27 %% for {bj}.

(Note that for the case m=0 we also require
bU = aDg.)

Consider first the calculation of a, , for <L .
i~
The basic strategy is to form the reciprocal
t =)
Vay {2.3)

say, and then use table look-up for subwords of
the binary representation of t combined with
parallel multiplications to obtain aj 1

In order to obtain aj

(ap) 27 %7

-1 with absolute precision

we require t to this same precision.

a1
i
.

Also, if a, 2 5 then
a, ;=% e 32 5 2746 - og; ap (2737 .
- (2.4)
Thus if a 5 27% ye return the value a; = 0.
Otherwise the (temporary) storage of t requires

42 bits (including 5 before the binary point).
We write

t = t1 + t2 + eee

where each ti is simply the ith

+ t
’ (2.5)
block of 6 bits

from this 42-pit word. The values af exp(-t.)
i

(i=1,2,444,7) can be obtained by simultaneous table

look-up since the possible ranges of values of the
ti are disjoint. The requirsd value is then the

product of these guantities.

To estimate the time for this operation we begin
with the reciprocation. UWe ~irst shift aj to the

interval [4,1] and subtract the result from 1 so
that we require 1/(1-8) for some § ¢ (0,4]. This
is given to the necessary aci:uracy by

S S
Using the same notation as in [9] we suppose such
a shift takes b time units (-.u.) and that a
further b t.u. will be requived to form the one's
complement to yield &. We ulso assume that a
single CSA operation takes a t.u.

We next form &2 as a double number.
CSA we reduce the 42 terms to 2 in

k Lokl
Next, the powers &2 *1, ...,02 * can be formed

in parallel for k = 1,2,...,5 as "double x
double" products. (This requires the facility to

Using the

Ba+b t.u.

"broadcast" 52k as an input :o several mul<ipliers
simultaneously). Each such product generates 168
terms which can be reduced tc 2 in 12a + b t.u.

There are now 40 double and : single numbers to be
added to form a single number. This takes a fur-
ther 10a + b + ¢ t.u., where ¢ t.u. is the time
required for the CPA (carrypropagate adder) oper-
ation. Finally to obtain t itself this result
must be shifted to compensate for the initial
shift of aj. The total. time for the reciprocation

is therefore
78a+10b+c t.u.

Separating t into the subwords t1,...,t is

?

another shift operation. This is to be followed
by the simultaneous table log<-up after which we
have seven single 42-bit numbars to be multiplied
together. Six of these factors can be multiplied
in pairs leaving the results as double numbears.
Continuing as in the reciprocation process and

then using the CPA to express the result aj_l as

a single number we find that :his part of the

operation requires a total of
b+B8a+b+2(12a+b)+c =

$2a+4b+c- tou. (2.8)

145

The overall time to produce aj 1 from aj is

therefore
110a+14b+2c+e t.u.

where e t,u.
look-up.

is the time needed for a 6-bit table
The calculation of az 1 does not require

ar initial reciprocation and therefore takes only

32a + 4b + c + e t.u.

(The fact that there are now only 6 factors in the
product does not yield any saving in the multipli-
cation time).

The sequence {bj} can be computed in parallel
with {aj}. (Ve must use the alternative defini-
for the case f=m

for m < 4},

tions bm—l = exp(g-f) and bm

-1

= exp(g—l/am) Firstly we can form

1—bj while the reciprocation stage above is being

used to obtain 1/aj as a double number. These

results must then be multiplied to produce t' =

(bj - 1)/aj. This multiplication takes 10a+b t.u.

follouws

The remainder of the calculation of bj—l

precisely that of aj 1°

This time-lag of 10a+b t.u. is no penalty since
the table look-ups for t and t cannot be per-
formed simultaneously unless the table is dupli-

cated. However, since the table requires
28 x 7 x 42 = 18,816 bits, it is unrealistic to
suppose that it can be repeated in several places

on a "level-index chip". (There will be a similar
delay in the "parallel" computation of a and

bm—l in the case m=f since a full subtraction

is needed to ewvaluate f-qg.
in the timings below.
utation of bm

This is accounted for
For the case m<f the comp-
-1 can be achieved in the same time

as am-l and so there is a delay of e t.u. caused

solely by the non-duplication of the table). It
is likely therefore that the fetching and carrying

times of these table look-ups would be such that
e > 10a+b.

Combining these results we see that the overall
time for obtainin a, b, from a_,b. is
? %1t i

T1 $ = 110a + 14b + 2c + 2e t.u. (2.7)

while that for computing ag (and by L when m=L)
is bounded by

T T =

2 32a + 4b + c + 2e + max(c,e) t.u.

(2.8)
It is worth noting here that retention of t,t' as
double numbers would be unlikely to result in any
saving since it would remove the advantage of
simultaneous table look-up. The comparison of
these timings with those obtained in [g] depends
critically on the relative timings of e t.u. for
the table look-up and d t.u. for obtaining the
sign of a double number. The corresponding value

for T in (9] is 140a+50b+41d. With the assump-

tion that a = b = ¢/32 the comparison reduces,
approximately, to a comparison betusen e and 20d
which would probably depend on architectural
details,

3. The _sequence {CT}

This sequence is computed using the relation

=1 j=03T 000
i + aj+12n °5 (3=0,1,.0) (3.1)
where ¢ =1 *b . Since b @ [0,1] , c_ is ob-
o 0 0 0

tained either by inserting a one before the binary
point or by forming the one's complement of bu'

In both cases this takes b t.u.

To compute &n cj we first write

L (3.2)
cj = s(1+0)

where s comprises the first six (significant)bits

of c; and 0O < 278, The first step is to divide

cj by the six-bit number s. As in the previous

section we first shift s and form the one's com-
plement so that division is by 1-8 with 0 5 § < 4.

This takes 2b t.u. We require &n{1+G) to ap(2”%2%)
and so U to this same accuracy. In this case §

is a 6-bit single number from which we can compute
simultaneously &2 and cjé as 12-bit and 32-bit

double quantities respectively in 3a+b t.u. Next
chZ,cjﬁa and 8* can be computed in parallel,

as double numbers. The remaining terms are com-
puted in three similar stages.

The timings for these operations and their summa-
tion using the same approach as in 32 are as
follows:

cj52, cj53, s 9a+b [T

cjﬁk,...,cj57,68 lla+b T

chB,...,cjdls,ﬁls 12a+b AN

cjﬁls,...,cjéal 12a+b E.u.
il c.&F 9a bou.
r=g

To complete the calculation of O this sum must be
shifted back to compensate for the original shift
in s and then unity must be subtracted. This sub-
traction can be achieved with one further CSA oper-
ation (see [&)] for example) and so the double
number O is obtained in a total of 57a + 8b t.u,

Since 0 < 2% the required precision in £n(1+0)
is obtained using the approximation

2 05

- r T

g. 9,0 ¢
2 3 4
Witn 1/3 and 1/S as stored binary constants we can
compute 02, 0/3 and O/5 in parallel as double
numbers. Only o? requires a "double x double"

product; this has 128 terms and so takes 12a+b t.u.
Next, 0%/3 and 0" can be produced in parallel and
then o%/s. During the final stage we also perform
the shifts required to obtain 02/2 and 0%/4. This
gives 10 terms to be summed together with £n s' and

-pdn 2, where s' is the shifted value 2Ps and p is
the number of leading zero bits in cj. (Note that,

for addition, cj > 1 so that p=0). The value of

&n s' is obtained by table look-up while the other
stages proceed; similarly -pn 2 can be computed

from the stored constant &n 2 during this time. -
This summation takes a further 52 t.u. which gives]
a total time of '

57a + 8b + 3(12a+b) + 5a = 98a +11b t.u.(3.3)

for the evaluation of £n Cj as a double number.

To complete the calculation of Cﬂ 1 the last result
I+

must be multiplied by aj+l after which the addition

of unfty requires a further CSA operation before

the CPA is used to produce cj+l' The overall time

is therefore

g8a + 11b + {10a+b) + a + c = 109a + 12b + ¢ t.u.
(3.4)
The corresponding time for this stage in [g] is
83a+37b+34d t.u. Again the comparison depends
critically on the relative values of c and d and
of the 6-bit table look-up which we have implicitly
assumed here takes no more than about 100a or 3c
teu.

To complete the 2i operations we have either a
division or at most twe further logarithms to
compute., These final stages can be performed,
using the same general approach in at most
2(98a + 11b + ¢c) t.u.

4. Overall Timings and Conclusions

The worst case for which £i arithmetic is not
trivial is given by £ = m = n = 5, because

®(x) * ¢(y) 1is accurately approximated by ¢(x) to
every realistic working precisior when x 2 6 and

x > y; see [1], [2] and [8] For this "worst
case", only one final logarithm is needed and so
we obtain an overall time for finding the sum or
difference of two £i numbers of

(32a+4b+c+e+max(c,e)) + 4(110a+14b+2c+2e) +b +
4(109a+12b+c) + 98a+11b+c
= 1006a + 120b + 14c + Se + max(c,e) (4.1)

% 49c + 9e + max (c,e) t.u. (for a=bxc/32),

No floating-point system would be able to perform
arithmetic on numbers of level 5 magnitude. Indeed
most floating-point arithmetic takes place with
numbers at levels noc more than 3 since
$(4.0)=3.814x10%. For a more realistic comparison
~ which is still not unfairly favourable to the

2i system - suppose that £=3, m=2 and n=4. The
overall time is reduced to

666a + 79b + 9c + Be = 32c + 6e t.u. (4-2)

The figures quoted above are based on the assump-
tion that e 2 11a (in the timings for {aj})and

e £ 100a (in those for [cj})“ In the table

below we show comparisons with floating-point long
multiplication times (f.p.m.) of approximately 25c
for a range of possible values of e.

e "Realistic"time "Worst case"time

lla or c¢/3 34c or 14 f.p.m. 53c or 2 f.p.m.
16e or c/2 35c or 13 f.p.m, 55¢c or 2 f.p.m.
32a or c 37c or 14 f.p.m, 53c or 24f.p.m.
B4a or 2c 42c or 2 f.p.m. 83c or 24f.p.m.

96a or 3c 47c or 2 f.p.m, 78c or 3 f.p.m.

It should also be observed that for many calcula-
tions even these times could be significantly re-
duced since, for example, if £ = n = 2 we obtain
approximate times of only about 17c + 4e t.u.
which for all the above values gives overall

times comparable with just one floating-point long
multiplication.

Rlthough any firm conclusions must depend on
hardware and architectural considerations, the
much less sensitive dependence on the table
look-up time (compared with the dependence on
discrimination time in [9]) suggests that this
approach is well worth investigating further as

a plausible hardware implementation of 2i ang

si arithmetic. As with the approach in {a] this
will be explored in a software simulation using
the ICL DAP at Queen Mary College, tLondon,

0f course, the case for using i or sfi arithmetic
does not depend solely on its implementability.

A full mathematical justificaticn in terms of its
closedness, smoothness of representation and pre-
cision is given in {[2],[3],[4] znd [8]. A
necessary complement to this is a practical just-
ification based on computational experience using
this system. This is an on-goirg project. The
early results on applications tc binomial proba-
bilities [3] and solving polynorial equations by
root-squaring [5] are very encouraging. 1In both
cases the need to scale to avoid over- or
under-flow causes severe problems for floating-
point arithmetic. Using s%i arithmetic results
of high precision are obtained from simple pro-
grams despite the fact that intermediate calcula-
tions have involved numbers from well outside the
floating-point range.

Acknouledgement

The authors are pleased to acknowledge several
helpful dicussions with and comments on this work
from C.W. Clenshaw and D.W. Lozier. The work of
one of us (FWJO) has been supported, in part, by
the US Army Research Office, Burham under con-
tract DAAG-29-84-K-0022 and the National Science
Foundation under Grant DMS-B4-19820.

References

[1] C.U, Clenshaw, D.W. Lozier, F.W.J. Olver and
P.R. Turner, Generalized exponential and
logarithmic functions, Comp. and Maths. with
Appls 12B(1986)1091-1101.

[2] C.W. Clenshaw and f.W.J. Olver, Beyond
floating point, J.ACM 31 (1984)319-328.

[3] C€.w. Clenshaw and F.W.J. Olver, Level-index
arithmetic operations, SIAM J. Num. Anal.
(1987).

[4] C.¥. Clenshaw and P.R.Turner, The symmetric
level-index system, manuscript.

[5] C.W. Clenshaw and P.R.Turner, Root-sguaring
with sfi arithmetic, manuscript.

[6] 3.8. Gosling, Design of Arithmetic Units for
Digital Computers, MacMillan, London 1980.

[2] k. Hwang and F.,A., Briggs, Computer Architec-
ture and Parallel Processing. McGraw-Hill,
New York, 1884,

[8] FeW.J. Olver, A closed computer arithmetic,
these proceedings.

{9] p.R.Turner, Towards a fast implementation of
level-index arithmetic. Bull.IMA, (1986),

[10]) 5. waser and M.J. Flynn, Introduction to
Arithmetic for Digital Systems Designers,
Holt, Rinehart and Winston, New York, 1982,

