SYSTOLIC UP/DOWN COUNTERS WITH ZERO AND SIGN DETECTION

Behrooz Parhami

Computer Science Department
University of Waterloo

ABSTRACT

Although a state encoding scheme for systolic counters
has been presented earlier, several important practical
problems such as zero test, sign detection, overflow,
underflow, and modulo-n (cyclic) counting have not
been dealt with adequately. In this paper, design princi-
ples for unary and binary systolic up/down counters are
presented. The unary counters, which are attractive
when dealing with relatively small counts, are based on
the systolic stack concept. The binary counters use con-
ventional binary number representation, with several tags
associated with each bit positior.. The binary counter
design presented can be generalized to counters with
higher-radix state encodings.

1. INTRODUCTION

Efficient exploitation of VI.SI technology in high
performance systems requires designs with cellular struc-
tures and short inter-cell communication paths. Kung’s
systolic arrays [KUNG79], [KUNGS82] capture these
requirements. As a result, the design of systolic systems
and systolic algorithms has been a very active research
area in computer science for the past few years.

Building up on the work of Leiserson [LEIS79],
Guibas and Liang [GUIBS82] have described a state
encoding scheme for a systolic up/down counter. Their
design is incomplete in the sense that they do not deal
with several important practical problems such as zero
test, sign detection, overflow, underflow, and modulo-n
counting adequately. Guibas and Liang use the digit
symbol set {b,0,1,c} with a binary positional number sys-
tem. This is in effect a special signed-digit (SD) number
system [AVIZ61] with the digit set {1,0,1,2} and binary
positional weighting.

In this paper, the above enccding scheme is shown
to be insufficient for bidirectional counting with positive
and negative counts. Alternative unary and binary
representations are then proposed. The proposed unary
counters, which consist of very simple cells, are useful
when the maximum count value is relatively small. In
such cases, the increase in the number of counter posi-

CH2419-0/87/0000/0174$01.00 © 1987 IEEE

tions may be compensated for by the simpler cell logic.
The proposed binary counters are based on the conven-
tional binary representation. Both types of counters can
be designed to be capable of zero, sign, overflow, and
underflow detection and to count modulo 7 .

Guibas and Liang [GUIB82] use the following
encoding scheme for the counter states. Initially, zero is
represented by 00 - - - 0. Each counter position can be
in one of four states {1,0,1,2}, with its next state deter-
mined by its present state and the current value of its
right-hand (less significant) digit. The rightmost, or least
significant, counter digit is assumed to be followed by:

1 when counting down
Oor1 when in steady state
2 when counting up

The transition table showing the next state as a function
of the present state and the state of a cell’s right neigh-
bor is as follows:

Right Neighbor - 1 0 1 2

1 0 1 1 2

Present 0 1 0 0 1
State 1 01 1 2 (

2 1 0 0 1

The following examples of up and down counting have
been constructed using the above table. Leading zeros
have been deleted for brevity of representation.

Up Down

0 0y
1 11
2 110
11 101
12 100
21 1111
102 210
111 121
Y o112 112

Using the standard binary weighting factors for different
positions, the correctness of counts for the above exam-
ples can be established and easily extended to the general
case.

This design is incomplete in the sense that the fol-
lowing problems have not been dealt with in the frame-
work of an actual design (only an informal argument is
presented for zero detection):

a. Zero detection

b. Overflow detection
¢. Modulo-n counting
d. Counter initilization

For non-negative counts, zero and underflow detection
are the same problem. However, to maintain negative
as well as positive counts, the following additional prob-
lems must be dealt with:

¢. Representation of negative vaiues
f. Underflow detection
g. Sign detection

Even though it may seem that because of the digit set
{1, 0, 1, 2} there should be no problzm in representing
negative numbers, the fact that zero has many different
representations if a leading 1 digit is allowed (0 = 12 =
11{} 1112 = 1212 = - -) makes the zero detection
problem nontrivial.

2. UNARY UP/DOWN COUNTERS

The challenge in the design of a systolic up/down
counter is that the counter cells mus! behave identically
for up and down counting (or even when not counting at
all, for that matter), so that no global control signal is
required. Thus, representing the value of n by a stack
containing n 1’s in a linear array of binary cells (see
below) fails on the account that the behavior of cells at
the boundary between 1’s and 0’s depends on whether
the counter is counting up or down.

0000011111111<—T0p0f81ack

For counting up, the rightmost 0 must change to a 1,
while for counting down, the leftmost | must change to a
zero.

The stack mechanism proposed by Guibas and
Liang [GUIB82] can be used for alleviating this problem.
Briefly, the stack is organized with a number of empty
cells, as shown in Figure 1. After each counting cycle,
two or three idle cycles (depending or. the stack design)
are required for the stack to rearrange its elements in
such a way that the next increment or decrement opera-
tion can be performed in a propagaticn-free manner. If
simpler cells requiring three idle cycles are used, the fol-
lowing string rewriting rules describe the rearranging pro-
cess, assuming that the string of actual values in the
stack is padded with a dummy 1 on the right and with a
dummy value which is always equal to the value in the
last cell, on the left:

011 —
100

101
— 010

175

- With two idle cycles, the rearrangement becomes more

complex.

Guibas and Liang [{GUIB82] have shown that such
a stack functions properly and is space-efficient in the
sense that an empty cell is needed only at the top of the
stack when it is full. Actually, when the stack is used as
a unary counter, no empty cell is needed at all when we
reach the maximum count. The example in Table I
shows the counter principles.

Zeros To increment, push a 1 here —¢

Bottom Top
of P 1 1 1 of
Stack Stack

To decrement, pop a 1 from here.-l

Figure 1. Systolic Unary Counter.

Table I
Unary Systolic Up/Down Counting Example.

Initial value (0):

0
Count up (to 1): 0
After 3 idle cycles: 0
Count up (to 2): 0
After 3 idle cycles: 0
Count up (to 3): 0
After 3 idle cycles: 0
Count up (to 4): 0
After 3 idle cycles: 1
Count up (to 5): 1
After 3 idle cycles: 1
Count up (to 6): 1
After 3 idle cycles: 1
Count up (to 7): 1
After 3 idle cycles: 1
Count down (to 6): 1
After 3 idle cycles: 1
Count down (to 5): 1
After 3 idle cycles: 1
Count down (to 4): 1
After 3 idle cycles: 1
Count down (to 3): 1
After 3 idle cycles: 1
Count down (to 2): 1
After 3 idle cycles: 0
Count down (to 1): 0
After 3 idle cycles: 0
Count down (to 0): 0
After 3 idle cycles: 0

SO OO OO O ki b = ek ek b P =l =2 O 00000000000 O
O O O b b bk el pd e ek e [l el e Ll ol R e S o I e W o S o
OO OO COOCOOCOOC i b= HE RO OO0 OCOoOOoOoCOO ©

DO O COOCO O = b [l el el S P o B e B e W e B R
OCORORORORORORD el el i e e e T
SO OO OOODOODOOOO- M EOROROROROROR, O

e i

This design is capable of performing all conven-
tional counter operations. Up and down counting were
illustrated above. To test for zero, simply test the second
cell for zero after the required idle cycles. To test for
maximum count, test the first cell for 1 after the
required idle cycles. Overflow and underfiow conditions
can also be indicated quite simply.

Modulo-n (eyclic) counting can be accomodated by
using four-state cells in a counter which can count up to
n —1. Denoting the state set by {0,R,1,S}, we simply
augment the up-count rule to change a "1" into "R", aug-
ment the down-count rule to change "0" into "S", and
add the following rewriting rules for rearrangements dur-
ing idle cycles:

1R -— R

RR — 00
SO — 1
0S ~— 8§
SS -— 11

Remember that the dummy cell to the left is assumed to
have the same state as the leftmost stack cell. For
instance, counting up from 7 in the above example, we
have:

Initial value (7):
Count up (to 0):]
After 3 idle cycles:]
Count up (to 1): 1
After 3 idle cycles: R
Count up (to 2): R
After 3 idle cycles: 0

1
1
1

1
0
0
0

COOOO - -
et pd O O i b
O OM O

CO T

Note that zero detection is still poss:ble by examining the
value in the second cell, even though the representation
of zero is no longer unique. The symbol "R" can be
thought of as reserting the string of 1’s to its left. Simi-
larly, "S" sets the string of O’s to its left. These two sym-
bols accomplish a gradual "inversion" towards the left
end of the stack which does not interfere with proper
counter operation up front.’

As another example, consider what might happen if
we cross the seven-zero boundary several times in succes-
sion:

Initial value (7): 111 1111
Count up (to 0): 111 1 1 1R
After 3 idle cycles: 1 11 R 0 0 0
Countdown (to7): 1 1 1 R 0 S 0
After3idlecycless R 0 & 1 1 1 1
Count up (to 0): R 0 &1 1 1R
After3idlecycless 1 1 1 R & 0 0
etc.

Again, both zero and maximum count can be tested for
by the previous simple procedures. In larger counters,
several R’s and S’s may be present at the same time.
This causes no problem, as they will move to the left
with equal speed, resetting and setling the digits in the
process.

Initialization to all Os or all 1s is done simply by
injecting an "R" or an "S" into the rightmost cell. To ini-
tialize to an arbitrary preset value, a state I must be
added to each cell. The rewriting rules

oI — Iq
I - Iq
1I — qq

ensure proper initialization, where ¢ is the wired-in con-
stant (0 or 1) associated with the initialization of the cell

currently in state "I" so that the final result represents the
desired initial count.

A final variation will allow the counter to count in
negative as well as positive values. The negative value
—i can be represented by i entries of 1 in a stack with
three-state cells. Counting up or down is accomplished
by inserting a 1 or 1, respectively, in the stack. The fol-
lowing rewriting rules for the idle cycles guarantee
correct operation:

111 — 001
111 — o001
011 — 101
011 — 7101
100 — 010
100 — o010

In this case, deletion from the stack is simply not
needed. Zero and sign detection can be accomplished by
examining the second cell after the required idle cycles.
Intuitively, the stack contains either 1s or 1s, but not
both, except possibly for a short period after the
insertion. The modulo-n counting modification in this
case is similar and thus will not be discussed.

Alternatively, one can use the original cells by
appending a sepcial "sign” cell to the rightmost counter
cell. The counter then operates according to Table II.

Table II
Updating the Sign Cell of a Counter.

Sign Zero? Count | Operation New Siég/
X Yes Up Increment Plus

X Yes Down | Increment Minus
Plus X Up Increment Plus

Plus No Down | Decrement Plus
Minus No Up Decrement Minus
Minus X Down | Increment Minus

3. BINARY UP/DOWN €OUNTERS

Before presenting the design of a systolic binary
counter, it is instructive to review several attempts at the
design which appeared in earlier versions of this paper.
These earlier designs were based on the binary signed-
digit number system [AVIZ61] utilizing the digit set
{1,0,1} in order to take advantage of its carry-free

addition and subtraction property. Since the sign of a
signed-digit number is determined by the sign of the left-
most nonzero digit, a representation scheme was needed
to make this digit readily available for inspection. The
initial attempt consisted of “folding" the vector of signed
digits so that both the least and most significant digits
were available to the update and test control circuitry
(Figure 2). The next design was based on manipulating
the count from the most significant end (Figure 3) and
required the introduction of special cell states to hold
pending increments and decrements which gradually
moved to the right, eventually affecting the two least sig-
nificant digits, and to temporarily accomodate possible
expansion and contraction in the number of digits. Even
though the cells were less complex than those for the ini-
tial design, each cell still required 13 times more states
than would be needed for straight storage of a single
binary signed digit. In addition, the formal proof that
the counter operated correctly was rather involved.

)

I
Empty cells

Least significant position
Occupied cells

Update

Test

—

A\

Most significant position

Figure 2. Folded Systolic Binary Counter.

Occupied cells ~+ +« Empty cclls

-—

Update
Test

t Most significant position 1 Least significant position

Figure 3. Counting from the Most Significant End.

The design to be presented here is based on conven-
tional binary representation with relatively simple cells.
The key to this simplification is the realization that the
count changes sign only when its value reaches Z€ro, so
that zero detection is all that is needed for proper
maintenance of a separate sign. Figure 4 shows the basic
arrangement of the counter cells storing the sample count
of +18. We assume the existence of a dummy cell to
the left of the counter which always stores the same digit
value as the most significant counter position and a
dummy control cell to the right of the counter which
always stores the complement of the least significant
count digit. These cells are physically nonexistent and
their effects are maintained by proper internal generation
of the left and right neighbor state signals respectively.

177

Sign
Dummy Control
Cell msb + | Cel
0 P 0] 0° 1 0 0 1 0_f1
1 N
Same Different

Figure 4. Systolic Binary Counter Design.

The state of each counter cell will be denoted by
d; where d €{0,1} is the count digit, the tag
T E{blank, b,c,r } is used to denote "borrow,” "carry,"
or a special "reset” state, and finally the superscript
o € {blank, s } which appears in exactly one counter cell
denotes the "sameness” of all the digits to the left of the
marked position. The count of zero is indicated by the
state 0° in the least significant position. The all 1s
count, which may lead to overflow or underflow in the
next operation, is detected by the state 1° is the least sig-
nificant position. The sign updating rules are the same
as those presented for unary counters in Table II.

Updating of the count corresponds to the following
rewriting rules which are applied in two phases:

Phase 1: 017 — 0°1, (t#r)
Superscript 107 — 1°0, (r#r)
Updating 00 — 00

1°1 — 171

0 db hand lb d
Phase 2: 1dy — 0d
Subscript 0d, — 1d
Updating 1d, — 0.d

d'd, — d',0

To increment the counter, the control cell at the right
end of the counter assumes the state X. , where x is the
complement of the least significant count digit as usual.
To reset the counter to zero, the control cell assumes the
state x,°. The control cell design must be such that the
T # r exception of the first two rewriting rules does not
apply to it. This causes the superscript s to move to the
least significant counter position and the proper final
state of 00 - - - 000° to eventually prevail.

Modulo-2? counting is achieved automatically in a
counter with n cells. If modulo-n counting for an arbi-
trary value n is desired, each cell can be provided with a
wired-in constant g which denotes the value to be
assumed by the cell if the counter is to hold the count of
n —1. Now, an additional superscript state m enables
the counter to count modulo # . Only one cell has the
superscript state m which denotes that from the marked
position to the most significant position, the count digits
match the digits of n — 1. The maximum count of
n —1 is reached iff the least significant position contains
d™ . In this situation, the next increment will reset the

counter. The following rewriting rules describe the
manipulation of m :
dm q — d qm
d q—m — q rm

o

In other words, when a matching ¢ digit appears, the
marker moves right and when a previously matching
digit changes to a non-matching digit, the marker moves
left. 'When the count of zero is to be decremented, the
control cell assumes the state 4™ , where g is the preset
matching bit for the control cell. This forces the m to
move to the least significant digit, indicating a count of
n —1. Even though the rest of the digits are not
updated properly, they eventually assume correct values
if and when the m moves left.

4. CONCLUSION

We have presented designs for unary and binary
systolic counters with zero, sign, overflow, and underflow
detection and with the ability to count modulo-n for an
arbitrary value of n .

Generalization of the designs to higher radix
counters is straightforward. Such counters will be more
efficient in the sense of requiring less overhead in the
form of tag storage.

ACKNOWLEDGEMENT

The author gratefully ackncowledges Dr. Farhad
Mavaddat of the University of Waterloo for bringing this
problem to his attention. The work reported here was
supported in part by the National Science and Engineer-
ing Research Council of Canada under grants G1140
and A5515.

REFERENCES

[AVIZ61] Avizienis, A., "Signed-Digit Number
Representation for Fast. Parallel Arithmetic," N
IRE Transactions on Electronic Computers,
Vol. EC-10, pp. 389-400, 1961.

[GUIB82] Guibas, L.J. and F.M. Liang, "Systolic
Stacks, Queues, and Counters," Proc. of the
1982 Conf. on Advanced Research in VLSI,
MIT, pp. 155-164.

[KUNG79] Kung, H.T., "Let’s Design Algorithms for
VLSI Systems," Proc. of the Caltech Conf.
on VLSL," Jan. 1979.

[KUNGS82] Kung, H.T., "Why Systolic Architectures?,"
Computer, Vol. 15, No. 1, pp. 37-46, Jan.
1982.

[LEIS79] Leiserson, C.E., "Systolic Priority Queues,"
Proc. of the Caltech Conf. on VLSI, Jan.
1979.

