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Abstract

Several options for the implementation of combinato-
rial shifters, multipliers, and dividers for a VLSI floating
point unit are presented and compared. The comparisons
are made in the context of a single chip irnplementation
in light of the constraints imposed by currantly available
MOS technology.

Introduction

Several previous papers '~ have presented and com-
pared various MOS implementations of carry acceleration
algorithms. For basic floating point instructions the sum-
mation of the two mantissas is only one of a sequence
of operations that are required for the implementation,
several of which may constitute the computational bot-
tleneck.

The purpose of this paper is to describe and com-
pare options for the VLSI implementation of three other
tajor building blocks: shifters, multipliers, and dividers.
The emphasis is on solutions that are feasitle for a single
integrated circuit that is implemented in the MOS tech-
nology that is commercially available in tle late 1980s.
The instructions considered are the four basic arithmetic
operations, i.e. addition, subtraction, multiplication, and
division. The formats considered are single (32 bits) pre-
cision, and double (64 bits) precision with an IEEE float-
ing point standard 5/ or VAX standard (6 breakdown be-
tween the fields.

The limitation to a single integrated circuit, and the
technology used, are the dominant factors in deciding
which of the hardware options will be chosen. There are,
however, other important factors such as the relative fre-
quency of the instructions and the maximum execution
time of a single instruction, that dictate how the available
silicon area should be divided among the various hardware
functional blocks. Due to the disparity of the applications
and their accompanying constraints, there is no universal
best solution, and the tradeoffs differ from case to case.
This paper presents some of the solutions and points out
their relative merits, but because of the the above reason
it does not attempt to define an optimal solution for any
of the units.
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Combinatorial Shift

There are two instances in the flow of the ADD and
SUBTRACT floating point instructions where a large
shift may be necessary (7. The first occurs at the begin-
ning of the operation and is necessary in order to align the
mantissa of the operand with the smaller exponent with
that of the other operand. The shift required is equal to
the difference between the operands’ exponents. The sec-
ond occurs at the end of the operation if, due to mutual
elimination of the mantissas’ leading bits, normalization is
required. The overall performance of the ADD and SUB-
TRACT instructions are strongly aflected by the speed
at which these large shifts are done. The hardware units
that perform these massive shifts in one cycle are combi-
natorial shifters. Fully populated versions of these arrays
can be utilized for performing rotation of the operands
and are commonly called barrel shifters. This section de-
scribes four options for implementing the shift function.
The first three options utilize full combinatorial shifters
and differ in the way the array is partitioned. The fourth
option uses a smaller array.

The simplest implementation of a shifter is as a one
level array 8. Figure 1 shows the diagram of an 8 bit
right shifter which can be expanded to accomodate any
number of bits. It shows the outputs rotated by 90 de-
grees in relation to the inputs. The layout of the mantissa
data path usually dictates that the inputs and outputs of
the shifter both point in the same direction. The addi-
tional 90 degree rotation which is required to satisfy the
preceding criterion is usually implemented as part of the
array and is not shown in the figures for the sake of sim-
plicity. It should also be noted that the same hardware
can be reutilized to perform both right and left shifts
by reversing the direction of the inputs and the outputs.
The operation of the array can be accelerated by using a
precharged solution, as shown in figure 2. This scheme
requires the data inputs to be ready ahead of time and
the shift control lines to be predischarged. The advan-
tages of the single level solution are its compactness and
simplicity, which facilitate a dynamic array implementa-
tion. Its greatest disadvantage is the loading it induces
on the data lines. This large loading is due to the fact
that a combinatorial shifter for double precision formats
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requires an array that can perform variable shifts from 0
to 55 bits. A single level implementatior. will load both
the input and the output lines with up to 56 transistors.
This will be the critical path in terms of shifter perfor-

mance. An additional disadvantage of this approach is
the need to fully decode all the shift control wires.

One alternative to the single level solution, that alle-
viates most of its problems, is to split it into two arrays.
This is demonstrated in figure 3 for an & bit shifter. It
has been split into one array that shifts by multiples of 4
bits; and another array that performs 0-3 bit shifts. This
approach has the advantages of significantly decreasing
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FIGURE 3 — A TWO LEVEL 8 BIT SHIFTER

the worst case loading on both the input and the output
lines and does not require full decoding of the shift con-
trols. Its obvious disadvantage is that the shifted data
has to traverse two transistors in series instead of one.
This may slow down the shifting and eliminate the per-
formance gain attained from reducing the data line load-
ing. It also complicates the implementation of dynamic
solutions, and, since two arrays are used instead of one,
the overall area required is usually larger.

There are several ways of splitting the one level array
into two smaller arrays. For example a 64 bit shifter can
be split so that the first array shifts groups of either 2,
4, 8, 16, or 32 bits with the second array performing the
complementary shift required to reach 64. Generally it
is advantageous to try and minimize the total number of
transistor drains and sources in any shift path. This leads
to a symmetric partitioning of the arrays as an optimal
solution in this context and has been used in the past ¥,
Regardless of the partitioning scheme used, the second
array is relatively empty. Significant area savings can be
realized if it is rotated by 45 degrees; and only the active
area is laid out.

The ”partitioning” approach described above can be
taken even further by splitting the shifter into more than
two levels. These multi-level solutions have the same gen-
eral advantages and disadvantages of the two level array
but they are manifested to a greater extent. It should be
noted that when the partitioning is taken to its limit, the
resulting arrays are just large 2 to 1 multiplexers, each of
which is controlled by one encoded shift bit.

A different approach to performing the shifts is by us-
ing a small array, capable of shifting the mantissa by only
a few bits at a time. In this approach large shifts are im-
plemented by sequencing through the small shifter several
times. This seems like a potentially slow solution, but it
has the obvious advantage of being the most efficient in
terms of area. Moreover the performance degradation is




data dependent, and it has been shown [19 that for sev-
eral applications the percentage of large alignments and

normalizations is relatively low. This stalistical approach
has had widespread use '], It was especially prevalent in
chips implemented in older technologies due to the lack
of silicon real estate for a full fledged shiftér. It is not a
feasible solution for cases where consistert data indepen-
dent performance is required, such as ir. fully pipelined
applications.

The use of large regular arrays to implement shifters
has some inherent problems. The first arid most obvious
is the large capacitance that the shift control lines have to
drive. This is due to the number of transisitor gates that
are driven by each line, i.e. a maximum of 56 for a 0-55
bit shifter. The resulting capacitance normally precludes
laying out the control lines in polysilicon due to the large
RC delay. The second problem is caused by coupling be-
tween the lines and is especially severe in dynamic arrays.
One instance of this problem, which is illustrated in figure
4, occurs if all the data outputs are initially precharged,
the control lines are initially discharged «nd all the data
inputs except for one bit are low. When -he control goes
high, the output nodes are discharged, and the output
node that was meant to remain high may erroneously be
pulled low by the capacitative coupling from the crossing
wires.
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Multiplier Array Alternatives

The relatively high frequency of multiply instructions
clearly justifies a substantial investment in silicon area
even for single chip implementations. This section de-
scribes four possible multiplier implementations and some
of the advantages and disadvantages of each with respect
to latency, area and complexity. The first option is a sim-
ple carry save adder (CSA) multiplier array which serves
as the baseline for comparisons. The second and third op-
tions are radix 4 and radix 8 modified Booth multipliers
respectively. The last set of implementations considered
are tree-like structures for more optimal reduction of the
partial products.

The straightforward implementation of a multiplier for
n bit operands is an n row by n column array of AND
gates and carry save adders (CSAs). This will be referred
to as a simple CSA array multiplier, a segment of which
is shown in figure 5. An interesting point to note is the
direction of the carry and sum outputs from the cells.
This is necessary in order to create a rectangular shaped
array which does not waste silicon area. One consequence
of this is that in successive rows of the array the same
physical bit positions have different weights. The n least
significant bits of the final sum are output on the right
side of the array, while an n bit carry vector and an n bit
sum vector are output at the bottom of the array. The n
most significant bits of the product are formed by adding
the corresponding bits of the final carry and sum outputs.

This implementation is noteworthy for its regularity
and simplicity in terms of both logic and layout. In addi-
tion there is no need to preprocess either of the operands,
i.e. only the multiplier and multiplicand are required to
start the passage through the array. Its major disadvan-
tages are that it is very costly in area, because it requires
O(n?) cells, and in addition the resulting performance is
not impressive, since it takes O(n) CSA delays. As a re-
sult of these two serious drawbacks it is not usually used
for single chip floating point processors. However its sim-
ple structure lends itself to fully pipelined, dedicated mul-
tiplier, implementations where the minimization of the
pipeline stage delay is the ultimate goal (1213l

X Xi=1
323 cIa
c Is ¢ {s
Yi
‘ c3A
c s
A
<

i
3.
3.
)
c s | s
i

1.2 HL23Y

caA 3

c: caRRY
sun
Adiscent Bite of Addend I

Adjacent Bits of Addend Y
Adjacent Bite af Addend 3

FIGURE 5 - A SEGMENT OF A SINPLE CSA ARRAY MULTIPLIER




The use of the radix 4 version of the modified Booth
algorithm [l reduces the number of rows required in the
multiplier array to O(n/2). Subsequently the propaga-
tion delay through the array is reduced to O(n/2) CSA
delays as well. The additional hardware required for its
implementation is the multiplier recode logic and a partial

product selector per CSA cell. In order to retain an array
with a rectangular outline, the carry bits propagate down
and are right shifted by one bit, while the sum bits prop-
agate down and are right shifted by two bits. This means
that one carry bit and two sum bits are right shifted across
the array boundary in each row. Since they can affect the
most significant bits of the product via carry propagation,
they cannot be discarded. An undesirable consequence of
this is that at the end of the computation a 2n bit carry
propagation addition of the final carry and sum vectors
must be performed, instead of the n bit addition required
by the simple array. One way to reduce the final carry
propagate addition from 2n bits to n bits is by adding two
bit adder cells to the right edge of each row of the array.
These cells perform the carry propugate addition of the
bits which are shifted out and inject the resulting carry
back into the low order CSA in the next row. They will
be referred to as LSB cells for the remainder of this sec-
tion. In order to maintain the facto: of two performance
improvement of the radix 4 modifiec. Booth algorithm, it
is necessary to design the LSB cells with the same delay
as a single bit CSA.

A more careful look at the implementation of the radix
4 modified Booth algorithm reveals a few additional draw-
backs. There is a one time performance penalty at the
beginning of the operation due to the fact that the mul-
tiplier must be recoded, and the outputs of the recoding
logic driven across the array, before any valid carry and
sum bits begin to propagate through it. The partial prod-
uct selectors increase the propagation delay of the carry
and sum bits in at least the first row of the array and,
depending on the exact implementation, may do so in
some of the subsequent rows too. The area gain is not as
promising as it initially looks, because the partial product
selectors and wiring interconnect are much larger than the
corresponding logic in the simple CiA solution. Overall
the area required for a radix 4 modilied Booth multiplier
which can multiply two mantissas wizh over 50 bits is still
prohibitively large for single chip processors. One way to
reduce this area is to use an array which has sufficent
rows for single precision operands and "double pump?” it
for double precision operands. This is a viable solution,
but it adds to the timing complexity of the design and
requires extra vertical busses for feedback of the interme-
diate Carry and Sum results. Despite these drawbacks,
the radix 4 modified Booth algorithn has been used very
extensively =7, The number of C$5A rows required for

the implementation of multiplication can be reduced even
more by the use of a radix 8 modified Booth algorithm.
Since it retires 3 multiplier bits per iteration it takes only
O(n/3) CSA delays and requires O(n?/3) cells in the ar-
ray. The advantages of the radix 8 solution are its higher
speed and smaller area, which are a direct outcome of the
reduced number of rows.

Most of the disadvantages of the radix 8 modified
Booth multiplier are similiar to those of the radix 4 im-
plementation. In fact, since the recode logic, the selec-
tors, and the interconnect are more complex in the radix
8 case, the additional delays will probably be longer. In
addition to these problems, which are common to both
implementations, there are additional drawbacks which
are unique to the radix 8 version. One of these is due to
the need for the precalculation of 3 times the multipli-
cand for its implementation. Another problem is that the
performance of the array is more severely limited by the
propagation delay of the LSB cells rather than the CSAs.
This is due to the fact that the LSB cell for the radix
8 implementation is actually a three bit carry propagate
adder. This makes matching its delay to that of the CSA
extremely difficult. However, it is always possible to avoid
this problem by not using the LSB approach and imple-
menting a 2n bit carry propagation addition for the final
product formation. Radix-8 based multiplier arrays have
been implemented in single chip floating point units 1!,
However, for radices larger than 8, the problems involved
in the implementation of the modified Booth algorithm
are exacerbated and do not look promising for VLSI im-
plementation with current technology.

A completely different approach to accelerating the
multiplication process is by the use of Wallace 18 or
Dadda 19! tree based algorithms. These approaches of-
fer a minimial number of logic gate delays in the critical
path of the array. However, the complexity and the ir-
regularity of the interconnect make the implementation
of these schemes difficult and extremely area consuming.
An additional drawback is due to the relatively unordered
way in which the partial products are summed. This pre-
cludes the efficient use of LSB cells and usually necessi-
tates that the arrays be 2n bits wide for n bit operands.
As a result of these area-consuming characteristics, tree
solutions have been used almost exclusively in dedicated
multiplier chips 2921,

There are several ways in which the tree structure can
be modified in order to attain higher layout oriented regu-

larity without completely sacrificing its high performance.
One of these ['7l uses a ” pseudo Wallace” tree to achieve a
delay which is proportional to the square root of the num-
ber of operand bits. An illustration of a typical "slice”
used for the summation of 16 bits appears in figure 6.




The analysis of this approach shows that the maximum
propagation delay for adding n? summands is 2n-1 CSA
delays. Furthermore, the resulting structure is very mod-
ular and consists of only three types of culls with both
horizontal and vertical connectivity built into the slice.
The disadvantage of this approach, relative to any of the
highly ordered arrays already discussed, is that the inter-
connect between the cells gets longer as you proceed down
the slice. Another drawback is that like most other tree
based solutions, LSB cells cannot be used, This requires
the array to be 2n bits wide for n bit operands.

Another technique, which has been used in a dedicated
multiplier chip 2% and is even better adapted to VLSI
implementation, breaks the regular array down into odd
and even CSA rows. The outputs of the odd rows skip the
even rows and connect to the next odd row The same is
done with the outputs of the even rows and is illustrated
in figure 7. This parallelism cuts down the number of CSA
delays to about one half of what is require: in a normal
array without compromising its regularity. Retaining the
regularity also enables the use of an LSB type solution in
order to avoid having a 2n bit wide array.
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Division Implementation Options

In most applications, division is the least frequently
used of the basic floating point operations, and it is defi-
nitely the most difficult to implement. One consequence
of these facts has been that, in the past, its execution
time has usually been much longer than that of multipli-
cation and addition. There are several applications for
which significantly longer execution time is unacceptable.
In some cases this may be due to system oriented re-
quirements, such as the need to minimize the interrupt
response time. In others, such as computer graphics, this
may be driven by the need to avoid a computational bot-
tleneck in a highly macro instruction pipelined environ-
ment. For these applications, which are sensitive to the
speed of their slowest instruction, it is important to ac-
celerate the floating point division operation.

There are two basic approaches that can be taken in a
VLSI implementation to accelerate the computation of di-
vision. The first is to reutilize the fast hardware used for
the implementation of the other operations, while adding
a minimal amount of extra hardware for division acceler-
ation. The second is to use a dedicated hardware divider.
The intent of this section is to present variations of both
options while keeping in mind the constraints of a single
chip solution.

The most basic method is to implement an iterative,
restorinig or non-restoring, radix 2 algorithm. If this ap-
proach is taken, the extra area that would have been dedi-
cated to the acceleration of division can be utilized for the
implementation of an extremely fast adder. This has the
significant advantage of accelerating all four basic float-
ing point operations at a relatively low price in silicon
real estate. Its main disadvantage is due to the fact that
single and double precision floating point division require
26 and 55 iterations respectively. Thus, fast as the adder
may be, division will remain at a significant performance
disadvantage relative to other operations. However, due
to the method’s simplicity and the overall performance
gain, it has been used extensively in the past 1.




One interesting way to improve the performance is
by implementing normalizing division *3. This is done
by examining the partial remainders’ high order bits. If
these are all Os (in restoring algorithms), or are either all
Os or all 1s (in nonrestoring algorithms), the magnitude
of the partial remainder is relatively small compared to
that of the divisor. In these cases the partial remain-
der can be normalized by several bits 'n one iteration,
These multi-bit normalizations correspend to the com-
putation of several of the quotient bits in a single iter-
ation. This algorithm’s most striking advantage is the
small amount of additional hardware required (detection
logic on the most significant bits of the partial remainder,
and a variable length shifter, which is usually necessary
for the implementation of addition and subtraction any-
way), while yielding a relatively significunt performance
boost. It has been utilized in a single chip floating point
accelerator "I with a reported average speedup of 50%.
Its disadvantages are the data dependenty of the perfor-
mance speedup and the worst case execution time which
remains the same.

One way of attaining data independer.t acceleration is
by implementing higher radix divison. The brute force
method of doing this is by the use of sevaral adders that
perform concurrent magnitude comparison of the partial
remainder with all the relevant multiples of the divisor.
This technique has been used to implement radix 8 di-
vision in a dedicated divider chip 4. Its major disad-
vantage is that it requires n-1 adders and a large n to 1
selector in order to implement radix n division. Multi-
ple fast adders are extremely expensive in terms of silicon
area and effectively rule out this sort of mplementation
for a single chip solution.

A more attractive option for VLSI implementation is
the SRT algorithm which eliminates the need for carry
propagate addition during the iterative division steps. A
radix 2 implementation of this scheme is illustrated in
figure 8. In this particular implementation a carry save
adder (CSA) is used instead of a carry propagate adder
to form the partial remainder. A small, four bit carry
propagate adder (CPA) is used to sum the corresponding
most significant bits of the partial remairder. This sum
is used to select the correct multiple of the divisor for the
next step. The CSA adds the sum and carry portions
of the partial remainder from the previous stage and the
selected multiple of the divisor. This scheme attains rel-
atively high performance at a low price in silicon real es-
tate. The high performance is due to the ~elatively short
critical path which consists of only the CSA delay, the
four bit CPA delay and the selection logi: delay. In one
implementation of this algorithm 117 the total delay for
the critical path is reported to be only about one eighth
of a corresponding carry propagate adder. The additional
hardware required per stage is relatively small and con-
sists of a one row CSA, a 4 bit CPA, and a 3 to 1 selector.

Higher radix implementations of the SRT algorithm
5] may have the potential of providing even higher
performance, as has been demonstrated in a multi-chip
ECL solution [?6!, The additional hardware required for
the higher radix implementation is relatively small. To
demonstrate this, the radix 2 SRT implementation of fig-
ure 10 can be readily adapted to accomodate radix 4 by
using: a 7 to 1 selector instead of the 3 to 1 selector, a 7
bit CPA instead of the 4 bit CPA, and more complex logic
to select the correct multiple of the divisor. In order to
realize the gains from the higher radix implementation,
it is necessary to verify that its critical path takes less
than twice the radix 2 critical path. In terms of area it
is definitely more attractive than the radix 2 implemen-
tation. Both radix 2 and radix 4 SRT implementations
require the insertion of an additional carry propagation
adder and selection logic adjacent to the high order bits
of the data path. This additional logic does not fit well
into the data path and causes a "bulge” in the layout
of the high order bits. This normally translates into a
significant amount of unutilizable area in the low order
bits.

The last algorithm considered for the implementation
of division is multiplicative approximation. It has been
used extensively in multi-chip and externally sequenced
solutions [*7.%8], However due to the area required for the
seed lookup table and the large number of iterations re-
quired to attain the accuracy defined in both the IEEE !
and VAX 6] standards, it does not appear to be a promis-
ing technique for single chip solutions.
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Conclusion

This paper has described and compared options for
the VLSI implementation of combinatorial shifters, mul-
tipliers, and dividers. The emphasis has been on a single
chip MOS solution with the goal of attaining high overall
floating point performance. At current integration levels
it is not possible to use full sized arrays for the imple-
mentation of all three units. As the optimal solution is
application dependent, the hardware tradeoffs are most
heavily affected by the relative frequency of the instruc-
tions. As technology advances, due to larger chip sizes,
smaller critical dimensions, and additional interconnect
levels, it will become feasible to implement algorithms
that are currently limited to multi-chip solutions. When
this occurs it is expected that additional acceleration will
be attained mostly by a higher degree of computational
parallelism.
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