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ABSTRACT

Much attention has been recently given to VLSI and
WSI processing arrays: systolic arrays are often
adopted to execute @ wide class of algorithms, e.g
for matrix arithmetic or signal and image processing.

In this paper a fault-tolerant architecture is
proposed to allow reliable computation of systolic
arrays by wusing physical redundancy and residue
number coding. Such architecture supplies also
information for fast reconfiguration.

1. INTRODUCTION

Array architectures ccisist of a number (usually very
high) of identical processing elements connected by a
regular interconnection grid £11,131; these
characteristics make arrays well suited for VLSI and
WSI integration. They are extensively studied for a
wide spectrum of hich-computing applications ranging
from signal and image .rocessing to matrix operations
to relational data bas. support.

The continuing growth of interest in such computing
architectures, their great complexity, their VLSI or
WSI integration and their wuse 4n dangerous or
critical applications give more importance to the
problem of reliabil®ty of their computation. Since
each processing elemci't in such a system executes a
part of the whole com, utation, the failure of one of
them may Llead to uicorrect results. The systolic
array has to work correctly even if some processing
elements are faulty [4,6,7]; besides, it has to
supply enough infor..:jon to allow an easy, fast
reconfiguration of th. whole array when a permanent
fault is detected in processing element [15].

High reliability and availability of arrays may be
achieved by means of “ault-tolerance techniques. Two
main methodologies msy be found in literature: the
first approach is rec.ndancy (either physical or time
redundancy) [171, the second one is coding [3,14,22].
In physical redundancy additional circuits are added
to the basic architccture to allow error detection
and correction, while in time redundancy the
computation is repez:.d more times and results are
compared. These solutions present two drawbacks:
silicon area for addi:ional circuits may be great and
delays required by r.iundant computation may became
unacceptable. On the .ther hand, by properly coding
input and output datz it is possible to detect and
correct errors due to faults; but, also in this case,
the greater number of bits dntroduces execution
delays and additional .rea occupation.
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Whenever a fault is detected, it may be masked by
correcting the results or it may be ignored and the
array may be reconfigured to exclude the faulty
processing element [15]J. Permanent faults may be
usually treated by wusing off-line testing and
reconfiguration; while, transient faults and critical
applications require techniques which are able to
assure the correct functioning of the whole system
and to supply data for the identification of faulty
elements allowing a fast reconfiguration.

In this paper a mixed approach to fault tolerance for
processing arrays is presented: physical redundancy
due to vreplication of computational elements is
associated to the adoption of a residue number code
019,201 for input and output data. Redundancy allows
to detect and correct errors and to generate data for
reconfiguration, while residue data representation
bounds the dincrease of sjlicon area and the
computation delay. In this way it s possible to
exploiting the properties of modular redundancy
without replicating the whole processing element.
This approach to fault tolerance was firstly proposed
in [16,18] for multipliers; here, it is shown how it
may be adapted to processing arrays. Error detecting
and correcting architectures are proposed for Llinear
and bidimensional systolic arrays: additional
circuits are also dintroduced to allow a fast
identification of faulty elements and, then, an easy
reconfiguration. The definition of the error models
and the choice of the bases of the residue number
system are discussed: constraints upon them and
mathematical properties are presented to assure the
correction of outputs.

Fault-tolerance may be locally introduced in arrays:
for example, it is possible to design fault-tolerant
processing elements or it s possible to repeat
computation on different neighboring elements and
compare results. This approach requires a wide
silicon area and high delays; moreover, unregularity
may generate difficulties in circuit design.

A more profitable approach is the definition of
globally fault-tolerant arrays: in this case the
whole array is replicated and results at the edges of
the array are examined to detect errors due to
faults. In particular, the basic architecture that is
here considered consists of a usual processing array,
in which operations among integers are performed in
binary representation without truncation or rounding,
and of a residue network able to correct errors and
to outline the faulty elements. In the residue
network a set of processing arrays perform the same
operations of the wusual binary array, but using
residue representations of data: the results of the
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of the
then, a
correction newtwork allows to correct the results of

binary array are compared with the results
residue arrays to detect errors and,

the binary array. The residue network may identify
also the faulty processing elements for
reconfiguration.

Several architectures may be designed by using this
approach to achieve different degrees of fault
tolerance; for example, the following policies with
different complexity and cost, may be adopted:

- error detection followed by reconfiguration;

- error correction without reconfiguration (one or
two faults may be tolerated in the whole array);

- correction of the first error, detection of the
second error and, then, reconfiguration;

- error correction and reconfiguration after the
first or the second fault.

The main features of proposed architectures are: the
strong regularity of the whole structure (allowing an
easy VLSI or MWSI dimplementation), the bounded
increase of computation time and of siljcon area due
to redundancy, the minimization of hard-core (i.e.
the unprotected area).

2. ARCHITECTURE OF PROCESSING ELEMENTS

An array is composed by a set of simple processing
elements connected by a proper network [11,13]: thus,
the characteristics of these architectures depend on
the properties of processing elements and on the kind
of 1interconnection network. Before presenting the
overall architecture and its properties of
self-checking and fault-tolerance, it is necessary to
discuss the structure of each processing element to
introduce its features, which allow to achieve the
desired behavior of the whole array.

The fault-tolerant processor array is composed by
processing elements of two kinds: the elements of the
first kind operate 1in binary representation and
belong to the binary array, while the elements of the
second kind belong to a residue arrays of residue
network and use a representation of data in a suited
Residue Number System [19,20]. Here, the structure of
such processing elements is briefly described.

From literature it is possible to extract a simple
common structure of the processing elements belonging
to the binary array (see fig. 1) [11,13]. Usually
three inputs are supplied by the environment external
at the element: one is the data coming from the host
computer into the binary array, the second one is the
result of the computation performed by the adjacent
element, the third one is the weight for combining
the other input data. The outputs of each element are
the input from the host, the weight and the result of

the computation executed in the element itself.
Computation 4in a processing element is a Llinear
weighted combination of the data from the host

computer and the result of the adjacent element: data
from the host is multiplied by proper weight and,
then, added to the result of the adjacent element.
The direction in which data flow may be changed to
implement some classes of algorithms, without
modifying the results of this paper.
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By using this structure t is possible to execute a
wide set of algorithms for different applications
characterized by re. larity (i.e. repetitive
computations on large se- of data) and high computing
[111. In digital signa: and image processing this
processing element may b adopted to implement, via a
suited interconnection n. work, FIR or IIR filtering,
1-D or 2-D convolution, discret Fourier Transform,

and other operations [7'. Some problems in matrix
arithmetic may be sclved with such processing
elements, e.g. mat "’ x-vector multiplication,

multipli~-tion, matrix triangular-
1gular linear systems [10].

matrix-matrix
ization, solution of tri

The processing elements ¢ residue arrays are similar
to the processing elemer’': of the binary array; they
are structurally equiva':nt to binary elements, but
they execute all the operations in the adopted
Residue Number System ["~,20]. Therefore, the binary
multiplier and the bi 'ry adder of fig. 1 are

substituted by devii ‘s working in residue

representation (fig. 2.a"

2.1. Implementation 0. the residue processing
elements

Many techniques were proposed to implement residue

arithmetic devices [19,271; for example, the simplest
circuit s a ROM or [LA, whose inputs are the
operands and the output is the result of the
operation. Nevertheiess, these structures are highly
area consuming. Very compact solutions may be
designed for particular hHaises, such as low-cost bases
[1]. For other bases sp2:ial-purpose devices may be
considered. A general soiution for a modulo-b adder
consists in adding tc the inputs the constant
(2*xlog,(b=1)-b): it a ci~ry is generated, the result
has to %e corrected by ~cding b to it and discarding
the new carry; this stru:-ure is compact and fast.

An alternative soluticn is shown in fig. 2.b;
muttiplication and sum zr= performed by usual binary
devices: the fina. recult ds the dnput of a
correcting circuit whes? output s the residue
representation of its innut.

Anyway, the area used by the residue processing
element s smaller than the area of the binary
element, because the number of bits of data is less.

On the other hand, the additional delay in
computation, due to modulo correction, is shorter
than the reduction of computation time due to the

minor number of bits: thorefore the result of residue
element will be approximately available at the same
time of the result of binary processing element.




3. ERROR ‘i DELS OF PROCESSING ELEMENTS

Before discussing the detection and correction
mechanisms in the array architecture, it is necessary
to define the errc- model, i.e. the influence of
faults on computaticn, for processing elements.

Let us assume that = fault (stuck-at-0 or stuck-at-1)

in a gate of a processing element causes in the
result an additive error of the type "power-of-2"
[16,18]: i.e. for :ny possible fault, the correct
result is derived 1-om the output of the processing

element algebraicall~ added to the amount of error.

The number of bits = fected by a fault depends on the
considered device; .. this paper it is always assumed
that a fault can onlv produce a single error. If P is
the correct result and P' the wrong result, it s
P'=pt K.Z’, where .€{0,1>. The exponent "i" is
related to the poei:%on of the fault device, while
the sign of the er.r depends on the input data. The
coefficient K, deperds on the input data; a fault in
a processing elemer.. may not appear in the output of
that element: errci detection depends also on the
input data that can nask the error. In this case the
fault remains late-:. until it will be detected.

An error may tc¢ identified by examining the
difference between .he correct result and the wrong
one. When a set o osases €k, |k=1..n} is considered,
the n-tuple of th: residues of such difference is
called the syndrom: s . of an error:

k k T - Bl _
S, .=Ri - = . k=1..n}.
Sy s-hlwi1 R P]by RL K12 ]bk,
Since the error i some arithmetic dnits may depend

on the input data,
to the input data

‘tso the syndrome may be related
-183. Usually, circuits with one,
two or three diffe .nt syndromes for each error are
considered; these errors will be referred as
single-syndrome er..rs, double-syndrome errors and
triple syndrome err s respectively.

If two faults occu
in the result of
are still additive
they are always su:..
error is

double errors may be introduced

processing element. The errors

; for the single error case, i.e.

of powers of 2 [18]. The global
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‘cular values of thg input data,
two faults may be equal to a
gle fault or may not detect any
itk same magnitude and opposite
the Residue Number System have to
previous events are detected.

le-

If more than two .u there are multiple

ults oceur,
errors in the out. - of the processing element. The
error is a linear .ombination of powers of 2 with
coefficients equal . +1; also in this case masking

or coincidence wit
faults are possibl

syndromes due to minor number of

When two or more
partitioned in two

‘ors are considered, they may be
.asses [18]:

- consecutive p manent  errors (or, briefly,
consecutive e~ rs), due to permanent faults
which takes . ace in different times. The
syndrome prod. i by the first failure may be

stored in a ¢ ‘ister: correction of a second

permanent failure may be performed more easily.

- "any kind" errors, i.e. due to permanent,
transient or intermittent faults occurring either
in the same time or in subsequent times.

Generally, it is possible to assume that errors are
consecutive since the probability of contemporaneous
occurrence of more faults 1is very Llow: this fact
allows a wvery efficient error detection and
correction.

Many arithmetic units satisfy the above error models,

e.g. adders (SN7483, Lai and  Muroga 0121,
multipliers (Dadda [5], Wallace [213, Jayshree and
Basu [81) and more complex networks of full-adders.

The unique constraints are that data flow must pass
only once through each full-adder and all bits has to
be processed in a parallel fashion, so that a fault
in one of them produce an error equal to a single
power of 2.

Every processing element described in the previous
section satisfies these error models, because it is a
full-adders network in which a data word passes once
through each of full-adder. The models are correct
also if buffers or Llatches are introduced in the
processing elements: in fact a stuck-at fault of a
bit produce an error of the type power of 2 at the
output of such devices. Note that all the assumptions
are still satisfied when the processing elements are
connected in an array: therefore, a fault in a
processing element produces an error equal to a power
of 2 at the edges of the array (if input data do not
mask it) and error models discussed above hold.

4. ARCHITECTURES FOR FAULT-TOLERANT ARRAYS

The processing elements previously described may be
connected by a interconnection network to obtain an
array, i.e. a regular architecture for
high-computation applications [11,13]. When a fault
occurs in a processing element, the computation may
produce erroneous outputs. In this section an
approach is proposed to achieve fault-tolerant arrays
by means of modular redundancy and the properties of
Residue Number Systems: these architectures are able
to detect and, possible, correct the errors due to a
bounded number of faults when given constraints are
satisfied. To allow the survival of the array when
more faults occur, the host computer, which drives
its computation, must stop the array and reconfigure
it. Reconfiguration [7,15] consists in reconnecting
the processing elements to exclude faulty ones by
sending suited signals to the interconnection
network. Then, the computation may be restarted. The

capability to output the correct resutts, even if
faults occurred (but Lless than the upper bound),
reduces the frequency of the reconfigurations and,

therefore, increases the availability of the system.

To decrease the time required by reconfiguration and
to assure a greater availability of the system, it is
necessary that the architecture itself is
self-checking, i.e. it has to identify the faulty
element. In this way the host computer acquires the
position of the faulty element, selects the new
interconnection of processing elements and generates
the corresponding signals for the interconnection
network. Otherwise, it has also to test the
processing elements to 4identify the fault: but this

operation may require too much time.
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Different types of arrays are here considered: linear
arrays and bidimensional array (fig. 3) [11,133. Two
structures are identified for bidimensional arrays,
accordingly with the direction of transmission of the
results. In horizontal-computing bidimensional arrays
the results of computation are transmitted in
horizontal direction, while in vertical direction
only input data are passed. In
bidirectional--computing bidimensional arrays the
results of computation 1is passed horizontally and
vertically to the adjacent processing elements.

Note that interconnection networks are not drawn in
fig. 3 and in the following ones, since they depend
on the reconfiguration capabilities introduced by the
designer. Basic fault~tolerant architectures for
linear arrays are presented: their behavior and their
performance are discussed. Then, bidimensional arrays
are considered; the solutions considered for Llinear
arrays are extended to horizontally~computing
bidimensional structures and an effective sotution fs
proposed to icentify the faulty processing element <n
the array. Characteristics and properties of
fault-tolerant bidirectional-computing bidimensional

arrays are derived immediately from
horizontal-computing architectures: in fact in
bidimensional-computing arrays also data passed

vertically are the result of a computation performed
in the processing elements, which are a simple
extension of the processing elements presented above.
Details on all these architectur:~ will be discussed
in the next section.

4.1. Linear arrays
Here, the architectures for fault-tolerant Llinear

arrays are presented. The most simple solution to add

fault-tolerance capabilities to the Llinear array of
binary processing element is shown in fig. 4.
The binary array executes a computation

same data are converted in a Residue Number.System:

each set of binary-to-residue converters generates

the inputs for the corresponding residue ar
residue array executes the same computatio
binary array, but all operations are in modu
fault occurs, its output is the residue of th
of the binary array in the corresponding bas:

The output of binary array is, then, conver
residue representation by others binary
converters. The occurrence of errors may.
by examining the output of the syndrome
i.e. the differences between each res%
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Fig. 4 - Fault- olerant linear array

array and the output of
corresponding residue ar ~ay. If all these differences
are z2ro, no error occ:rs or, better, no error is
detected: in this zise he multiplexer controller in
the error correction n--work selects the output of
the binary array as the sorrect output.

output of the binary

ffer nce is not zero, an error is
detected: its syndr me the input of the correction
generator in the errcr correction network. The
correction generato~ prciuces the correction that has
to be added to the ou*H>ut of the binary array to
obtain the correct resu't of the computation. Then,
the multiplexer cor:roll:r selects the output of the
adder as the final o tput of the fault-tolerant
array. Note that in “ig. 4 a very simple error
correcting network is s own: it may be used only to
correct single errors. irror correcting networks for

When 2zt least one ¢!

more compltex error models will be presented in the
following section.
This architecture i3 able to tolerate a given number

of faults accordinc wit: the syndrome generator and
the error correction network adopted. But no
information is suppliec about the position of the

faulty processing elemeits in the array. As already
said, such data are ver, important to allow a fast
reconfiguration and to ~ssure a high availability of
the system. To overcor2 such problem, additional
circuits are required: a possible solution is
proposed in fig. 5. In t:is case the error correcting
network is able to wanac- only single errors.

In th's architecture the intermediate results of the
computation, d.e. the outputs of each working
processing element, are tested. The outputs of the
binary elements ~2re -onverted 1in the residue
representation anc¢ th: differences between the
residue of the output of every binary element and the
output of the corresponding residue element are
computed. If all these differences related to
processing elements in & given position in the arrays
are zero, no error s detected: otherwise there is a

faulty processing el ment in that position.
Reconfiguration alaoritim takes advantage of this
information and cxclules the faulty processing

element.

:Both these architectures minimize the hard-core, i.e.

he unprotected area; in fact, it is reduced only to
he last stage corposed by the error correction
while the syndrome generator itself s
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Such network may also signal the row of the processor
matrix containing the faulty processing element, in
fact the output of each row is separately verified.
But, the faulty element may not be identified because
the whole output of the row is tested. To overcome
this problem, an architecture like that presented in
fig. 5 might be adopted. Nevertheless, the number of
wires and the number of binary-to-residue converters
are too high: therefore this solution is not suitable
for VLSI or WSI integration.

To reduce the numbers of wires and converters the
intermediate outputs might be Llatched and passed
along the columns of the arrays: they should be

compared only at the low edge of the arrays. In this
case two clocks and register files (one for each
column) are required: moreover, also this solution
requires too much silicon area and it is not suitable
for intergration.

An  attractive architecture for fault-tolerant
horizontal-computing bidimensional arrays based on
residue arithmetic is shown in fig. 7: intermediate
outputs of each column of processing elements are

added together to generate the output Yéut'

To compute such sums the basic processing elements
have to be modified, as it is shown in fig. 8.a; in
each processing element an adder is inserted: 4ts
inputs are the output of the basic processing element
considered until now and the partial sum produced by
the adder of the element in the previous row and in
the same column.

Note that the sums Yéu computed by the additional
adders are obtained ~with an algorithm which is
similar to the target algorithm executed by the

array, since they are sum of products of the inputs X
Besides,

and W. all conditions on the data flow
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Fig. 8 -~ Processing element for fault localization

through the circuits are still satisfied: therefore,
the error models are valid and, thus, these sums give
information about the state of the processing
elements of the corresponding column.

The additional sums produced by the binary array are
converted in their residue representation; the set of
the differences between the residue representation of
one of those sums and the sums produced by the
corresponding column in the residue arrays are
similar to the syndrome generated by the syndrome
generator of the architecture in fig. 6. The syndrome
obtained at the right edge of the array allows to
detect an error and to identify the row of the faulty
processing element; in a similar way, the additional
syndrome generated at the bottom of the array allows
to identify the column of the faulty processing
element. These two information are enough to identify
uniquely the faulty element for a subsequent
reconfiguration of the whole architecture.

It may happen that the input data of the array mask a
fault in the row test, but not in the column test (or
vice versa): in this case the fault has to be
considered latent, even if the host should store the
position of the column (row) containing a faulty
element to identify it as soon as possible.
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On tk- cther hand, b
elemer - in fig. §
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acceptable since the output of
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the cclumn with th- fzilty element disappears.

To «c-ercome th3 irawback two solutions are
availaole. First, * {:. possible to add a third adder
in the basic struc Jur of the processing element as
it is shown in fig & 5. The output of this adder is
the voive Y 2 wh le its inputs are Y! (computed
by the ceLLOQEseLT 2 1 the value YV gqual to the
output Y of the orcsious cell). I1F a fault occurs
in the s¥%6nd adde "t may be detected by examining
the output Y" at t'e edges of the arrays, since
also in this case <.l :onstraints on the structure of
processing element an{ on data flow are satisfied.
Therefore, the ¢ lur- of the faulty processing
elemer: may be i nt fied by examining the output
Y!, . ©° the bottom of the arrays; while the row may
b8Y5b- 2 ined from Y . nd, eventually, Yout®

An alt 'rnative solt ic is shown in fig. 8.c. The two
addit” nal adders rc¢ here substituted by a unique
adder with three ir u- jts computes a check sum for
each nrocessing el me t. Its inputs are the target
output function Y . ¢ the processing element, Y!
equal to the ch® ¢ um of the upper processiﬁs
element, Yg equal to the check sum of the leftmost
processing element. Tiis structure allows to detect

errors in a similar
a car=ful hardwar
smaller silicon are:.

wa

Fault tolerance
bidire:tional~compu
by adcnting soluti:
horizciital=computin

ay
in

of the previous solution, but
sign may allow to obtain a

be easily introduced in
bidimensional architectures
similar to those proposed for

¢~ chitectures by adding another

error correction ne:zwo k at the bottom of the binary
array: error detec:ior and correction are performed
in  the same w.y  as in  horizontal-computing
bidimensional array:.
“. RROR CORRECTION

In this section c:ta ls of the architectures for
error detection a d :orrection are presented and
analyz:d: for ea'h type of error model, the
constriints upon bises of the adopted Residue Number
System are given t a sure correction. First, error
due to a single “‘ault 1is considered; then, the
occurr:nce of two faults 4§s discussed. It has be
pointes out that :re:<:ntation deals only with the
architactural  aspoct: of error detection and

correction, since tleo:

well-known [19,20].

5.1. Single error cor:
The architecture whic
error in a linear arr: .
only o4e residue arra:
binary array. The re
consists in the recid. :
base. The alternati e

(with a single residue

:tical foundations are already

>ction

allows to detect a single
is shown in fig. 9.a, where
is used in parallel with the
"idue representation of data
of the data in the selected
olution presented in fig. 9.b
array) is able to supply the




position of the faul'y processing element in the
linear array for recorfiguration. Similarly, the
architectures of figg. 10.a and 10.b (with only one
residue array) may uve adopted for single error
detection 1in bidimensional architectures. Whenever
the residue of a result of the computation of the
whole binary array differs from the result of the
computation of the whole residue array, the error due
to a fault is detecte: snd the host computer has to
reconfigure the faulty array.

Binary, -
Array! ‘
——
o R e e PR EIE ST Ry J SN 1
a) ! I i
| i
i L ;
; A~Ej] :
O e |
Syndrome Generatc
b)

Generator

Fig. 9 = Single error jetection in linear array

Binary .| ...

a)
Symdrome
Generator
Fig. 10 - Single error ic::ction in b d‘mensional arrays
Nevertheless, these a:::i:iectures : not allow to
correct the result ot (.2 binary a-ray, since no
enough information ‘. available. As in usual

structures based upon T-i.:le Modular ::dundancy 017,
triplication of computition modulec is required to
correct a single error hy voting the r results. Thus,
to tolerate a sing.e fault the architectures
presented in figg. 4, 1, 4 and 7 may be used, where
two residue arrays are :=di=d to the 2inary array. The
first architecture anc -he seconi one implement
linear array, while :n¢ others z-e bidimensionat
architectures; the seccd architectu-e and the fourth
one signal also the “-ulty pro-essing element,
allowing easier and fac = reconfigu z:ion.

When the data word of ary array has n bits, the
syndromes of all power: ¢t 2 with e':tier positive or
negative coefficient mis: be uniqus to correct a

single error, i.e. the cuuple of bases (b1,b2) must

satisfy [16,181:

1.a) St # sij' ¥i=1,2,...,n,%j=1,2,...,n,¥i#j,
1.b) Sy # s_j, ¥i=1,2,...,n,¥j=1,2,...,n.
In this case the correction generator is able to

produce, without ambiguity, the correction which has
to be added to the actual output of the binary array
to obtain the expected result. The correction
generator may be implemented by means of a
combinatoric circuit (ROM, PLA or a custom circuit):
its input is the syndrome, while its output is the
correction.

The coverage assured by a couple of bases, ij.e. the
number of bits which the couple is able to correct,
may be evaluated for odd bases with a simple
algorithm presented in [16].

5.2. Double error correction

The architectures for single error correction are
also able to detect two errors, but not to correct
them, as in modular redundancy. Besides, if two
errors occur, two residues in the syndrome may be
zero, not allowing detection of the error. To avoid
this problem, it is possible to select a couple of
bases generating a non-zero syndrome for any
combination of two errors; but the required bases
have high values, i.e. residue processing elements
are too great. An alternative solution consists in
adopting a triple of bases such that no more than one
residue is null for any couple of errors.

To correct two errors, three residue arrays are
required in the structures presented in figg. 4, 5, 6
and 7. Also in this case the architectures of figg. 5
and 7 allow a faster reconfiguration fin comparison
with the other two structures.

As already said in the section about error models,
there are two types of double errors: consecutive and
"any kind"” errors. Accordingly with the type of the
double-error model, it is possible to design the
correction generator and to identify the constraints
to which the bases must satisfy to allow the error
correction.

Let us consider "any kind" errors; the correction
generator is similar to that designed for single
error correction: it consists of four combinatoric
circuits (such as ROMs, PLAs or a custom circuits),
one for double errors, the others for single errors.
To correct single and double errors, it is necessary
that the triple of bases satisfies the following
constraints which allow to identify uniquely the
error in n-bit outputs [16,18]:

1. any couple of bases must be able to correct any
single error;

2. S' 0}y s = P, where S$'=(s 7.} is the set of the
syndromes due to single er*ors and S"={s,. i'} is
the set of the syndromes due to two erroFl} J

3. the syndromes in S" must be unique, i.e. all
combinations of powers of two must have different
syndromes,

s,. .. s for (ith V j#k) A (igk V j#h)
3 h,xk . . ’
1,13 h,t ¥i=1,2,...,n,¥j=1,2,...,n,
¥h=1,2,...,n,¥k=1,2,...,n;

4. 1if a double error takes place, one residue can be
zero at the most.




consecutive

The architectures for correction of
errors are more interesting because the probability
of contemporaneous faults 1is very low in comparison
with the probability of consecutive faults, even if
the Llatter architectures are not able to manage
transient or intermittent faults. The structure of
correction generator and the constraints on the
tripte of bases for consecutive errors depend on the
number of different syndromes produced by a permanent
fault.

Let us consider single-syndrome errors. They may be
managed by the correction generator shown in fig. 11.
when no error occurs in the arrays, the signal «

allows to select the output of the binary array
directly. As soon as the first error arises, it is
recognized by a suited combinatoric circuit (as in
single error architectures): such circuit produces
the corresponding correction, which is stored with
the syndrome in a register. The signal £, controls
selection of the correct output. Until no other fault
occurs, the output of binary array is corrected by
the above combinatoric circuit, but corrections and
syndromes are not stored. When a second fault is
detected, the circuit for single errors is not able
to manage it. In this case, the difference between
the stored syndrome and the syndrome generated after
the second fault identifies the new correction in a
second combinatoric circuit; such second correction
is added to the sum of the stored correction and the
output of the binary array to obtain the correct
result. The signal &_ selects the correct output.
This technique allows %o implement compact correction
generators: in fact the combinatoric circuit for "any
kind" errors is surely greater than the circuits
required by two consecutive single-syndrome errors.

Binary Array

Syndrome _J Register
Generator | | s | ¢

P [ _______ 3
s

o] ()

a
2 °
= MuX E

Controtter| |

< L3 I

i 1

LAdder Adde_f__]

[ Multiplexer }——
S 1......,“,“‘____.__,__,,,A,A.,:

Fig. 11 - Correction generator for
single-syndrome consecutive errors

To correct two consecutive single-syndrome errors,
the triple of bases must satisfy the following
constraints [16,181:

1. any couple of bases must be able to correct any
single error;

2. S'n s =@;

3. the syndromes in S' must be unique, i.e. all
powers of two must have different syndromes; this
condition allows to identify the second error
when the previous one holds;

4., if a double error takes place, one residue can be
zero at the most.

Let us constisr  now rsuits  in which a fault
produces dou!’ = syndrom the triple of bases must
satisfy the same constr: ~'s of single-syndrome case

. nerator is similar to the
circuit presz=nted for i1gle-syndrome errors, but
there are <two vregist: = to store the possible
syndromes of the firs: :rror detected and their
corrections (fig. 12). 1 signals &, and &, allow to
select the suited corr: ton for eLch output after
the first fa.l:u, while signal «, select correct
output after the second zult. Also 7n this case the
silicon are: required correction generator is
smaller than the area fo- "any kind" errors.

{_Efﬂ;m ;j. Syndrom -
L “‘"‘/__] T Generato
i ag
s h—
«

[16,18]. The correction

EM [s™a MUX
ajy |Controllor
c PLs PLA3[ T

ion generator for
-onsecutive errors

Fic. 12 = Corr
double-syndrom

Finally, when triple-syn irome errors are considered,
the triple of bases must :atisfy the same constraints
of single-syndrome err s and the following one
[16,181:

5) sirosi NSy, 0

were 1F1 ..
where S;_{slej» v2,eea,nY ¥x€(1,-1,i41),

The structu =z of correc:ion generator is an upgrade
of the sircuit fcr double-syndrome errors.
Nevertheless this more .omplex structure and the
degradation in performa :¢ can justify the choice of
full-adders with a low tan-out, i.e. with no more
than two different syndr:ies for any fault.

To compute the coverage zssured by a triple of bases,
i.e. the number of cor-sctable bits, properties of
residues of powers of 2 rave been investigated and a
computer program has been written considering odd
bases and cdouble=syndr~m: errors [16]1. The results
obtained are presented ir. tab. 1: when more triples
supply the same coverag . the triple with the minimum
sum of the r~quares of ti - bases has been selected.

The archite:.tures discu-s:d above may be extended to
consider the cases of -2e or more errors. But the
silicon ares required t. :mplement such architectures
is too great in compari:c:n with benefits obtained by
error correction,

6. COIC.UDING REMARKS

The great interest in array architectures, their
great comolexity and their use in  critical
applications give more importance to the problem of
reliability of their computation. High reliability
and availability of arravs may be achieved by means
of fault-toiLerance technrijues. Two main methodologies
may be found in Lliter:ture: the first approach is
redundancy {either physical or time redundancy), the
second one is coding.

237




Bases Single
correc
of bas

LI I T I S I B
3 13 23 | 12

9 |
9 | 25 | 29 60
23 | 25 | 27 | 220
11 | 35 | 49 60
11 ] 23 35 110
17 | 19 | &7 72
23 | 29 | 35 | 250
21 | 23 29 66
9 | 29 | 47 84
23 | 25 ] 29 | 220
17 | 19 | 23 72
23 | 37 ) 59 | 250 ;|
11 ] 23 ] 49 | 110 |
23 1 29 | 39 | 250 |
19 { 23 1 29 | 198
23 | 25 | 37 | 220 |
23 | 33 | 47 | 110
11 | 37 | 49 180
27 | 41 | 49 | 180
31 | 37 | 53 | 180 |
23 | 25 1 s9 | 180 |
23 | 47 | 53 | 220 |
29 | 47 | 59 | 250 |
45 | 47 | 53 | 250
19 | 53 | s9 | 250
23 | 47 | 59 | 250
25 | 49 | s9 | 250
Tab. 1 ~
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