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ABSTRACT

Fault-tolerance in dense high-speed arithmetic
units that calculate convolutions between arrays of
data is introduced through cyclic codes which are
defined over the rings and fields commonly employed
by such units., New systematic encoding and data
manipulation techniques make the application of
these generalized cyclic codes to error detection
straightforward and efficient. The necessary
overhead parity computations have complexity
proportional to the number of parity symbols
squared, whereas the error-detecting capability for
both random and burst errors is directly related to
this parity number,

INTRODUCTION

As digital electronic implementations of
arithmetic units become more dense through shrink-
ing VLSI technology and as their speed of operation
increases, internal fault-tolerance will be needed
within arithmetic systems., In particular, error
protection against soft errors is a critical
requirement. Erroneous calculations must be
detected as close to their source and as soon as
possible to avoid propagating their effects beyond
certain hardware and data boundaries.

High-speed convolution of data arrays is one
common and important class of arithmetic processing
which needs adequate protection. Properly defined
linear codes can protect the addition and scaling
of data arrays. However, the convolution of such
arrays, while constructed from basic simple
operations, requires more structured cyclic error-
correcting codes. This paper demonstrates how
generalized cyclic codes, defined over the rings
and fields usually employed in such processing, may
be incorporated directly and quite naturally within
the implementations of such arithmetic systems.
Furthermore, new encoding and parity manipulation
methods are developed which permit straightforward
and efficient mechanizations. Errors are detected
immediately at the conclusion of the processing
pass, allowing appropriate error control actions
may be initiated. Typical responses to detected
errors may be to retry the calculation or to enter
a subsystem testing mode.

The central operation in signal processing or
digital filtering is the convoluticn of data sample
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sequences. These samples' arithmetic values may be
viewed as algebraic elements in finite rings such
as the integers modulo an integer q, denoted by Z ,
or as real or complex numbers, labeled respective?y
by R and C. Typical ring representations include
two's complement, where q = 2™ or one's complement
with q = 2M-1, The machine format can be either
fixed or floating point,

The fundamental convolution operation may be
displayed using mathematical symbols, starting from
the two data sequences.
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Their convolution involves the wel]-defined
operations in the underlying ring or field

s
c, = a.b. .
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J=0,1, 2, ..., (s+t). (1)
t
c, = a. .b.
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In these defining equations, any sample with index
outside the prescribed range is considered to be
zero. See Figure 1 for a schematic representation
of the basic operation to be protected.
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A modern view and the main point of departure
for several recent texts [1-3] considers these
sequences as polynomials in an indeterminant X.
Then convolution is intrinsic in the normal
definition of polynomial products.

¢(X) = a(X)b(x) (2)
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The polynomials in these cases belong to an
algebraic structure, the commutative ring of
polynomials, usually given the respective symbols
Zq[X], R[X] and C[X].

Many fast signal processing algorithms rely
upon the mathematical properties arising from this
polynomial view. For example, when an exponent k
is chosen sufficiently large, an equivalent form of
equation (2) makes the algebraic structure even
richer by introducing residue class rings modulo
(xk-1), T11.

c(X) = a(X)b(X) modulo (XX-1) ; k » s+t+1  (3)
The potential for protecting such operations with
cyclic error-correcting codes is obvious in Tight
of this equation. Cyclic codes are defined and
manipulated as polynomial residue algebras, and
their common fundamental processing operation
involves polynomial products [4]. Thus it is
natural to investigate cyclic codes as a powerful
means of detecting errors in these types of
operations.

In order to apply cyclic codes to the
arithmetic setting being considered here, two
hurdles must be overcome. Firstly, most cyclic
codes are defined over finite fields, primarily
because their design depends upon roots of
polynomials in extension fields. Secondly, and
equally as important, no previously known data
encoding format exists which leaves the data
symbols in their unaltered form while appending
the proper parity symbols when passed through
the polynomial product operation. The data and
parity positions become intermixed when processed
in this way. The first difficulty is resolved by
generalized cyclic codes which have just recently
been presented in the literature [5,6]. These
types of codes will be reviewed here. The second
problem is solved by a new encoding approach to be
introduced here.
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GENERALIIED CYCLIC CODES

Cyclic codes represent a powerful and wide
class of codes with easily determined guaranteed
distance properties that can be used for detecting
both random and burst errors, They are naturally
defined in a residue class ring of a polynomial
algebra using the modulus (XN-1), where n is the
code length [4]. Their defining feature states
that every cyclic end-around shift of the elements
comprising a code polynomial is alsc a code
polynomial, That is the purpose of the modulo
(XN-1) reduction,

The salient features of generalized cyclic
codes will be explained using a generic algebraic
structure r which is at least a commutative ring
with identity. Such a structure also covers the
fields of real numbers R and complex numbers C.
The ring of polynomials r[X], the set of
polynomials in indeterminant X, can be reduced
to a residue class ring using (XP-1). This new
structure is written symbolically as r[X]/(xn-1).

A generalized cyclic code is defined by a
single generator polynomial, g(X), whose leading
term is a unit in r., The code is a principal ideal
generated by g(X), denoted by ((g(x))), and
formally defined as

((9(x)))
{p(X) = q(X)g(X) modulo (XN-1)

2 q(X)erlx1y (4)

The degree of g(x) is (n-k), the number of parity
positions supported by the code. Construction
techniques for the generator polynomial depend on
the exact nature of r. Nevertheless, the Euclidean
Algorithm is one common underlying principle. It
guarantees unique quotients and remainders for
division, provided that the highest indexed
oefficient in the divisor g(X) is a unit
(invertible) element of r. Since this general
result will be cited Tater, it will be stated here
[8]. For any f(X)er[X] the exist polynomials q(X),
the quotient, and r(X), the remainder, such that

f(X) = q(X)g(X) + r(x)
; degree {r(X)} < degree {9(X)} (5)

The Euclidean Algorithm also shows the burst
detecting capabilities of a cyclic code. A burst
is a consecutive segment of a code word's elements
which have the beginning and ending elements of the
segment in error, permitting any number of
erroneous position in between [7]. Since the code
is cyclic, a burst can also occur in an end-around
sense. A burst can be modeled by adding an error
polynomial of the form XUe(X) to the code word.
However a disruption like this can always be
detected as long as g(X) does not divide e(X).
(Remember every code word by construction (4) is a
multiple of g(X), and thus a burst divisible by the
generator polynomial is undetectable.) When the
polynomial part, e(X), of the burst error
polynomial has degree less than that of g(X), this
division is impossible, providing the burst
detecting ability of {n-k) positions.




Cyclic codes over the real or complex fields
are defined by using consecutively indexed powers
of the nth complex roct of unity, e.g.,

Cexp(j 27/n)p], where j = y -1  and p is any
integer modulo n, The funda mental construction
techniques are given by Marshall [6], and use the
discrete Fourier transform domain in which
contiguously indexed transform coefficients
determine the generator polynomial, By requiring
conjugate roots be included, real generator
polynomials are constructed. In the more general
case of complex numbers, maximum distance separable
codes [4] (analagous to powerful Reed-Solomon
codes) are easily established. Such codes can
detect erroneous positions equal in number to the
degree of g(X), the maximum permitted by the
Singleton bound [4].

Generalized cyclic codes over finite integer
rings, 7 m can be defined by first examining roots

in some gxtension field of the finite field Zp, pa
prime number [5]. Primitive elements in this
extension field are studied as members of a
multiplicative cyclic group in Z m* Again,

consecutively indexed roots and their conjugates
are used in constructing the generator polynomial
with the desired error-detecting parameters. The
most general situation for Z, involves fields and
rings associated with the prime factors in the
integer g. The Chinese Remainder Theorem [1]
allows components over 7 m Lo be reassembled,

defining a generator polynomial over Z . The
Tengths of segments of adjacently indexed roots
guarantee the detecting performance of the final
code.

These techniques along with others [9-12]
insure the availability of a variety of generalized
cyclic codes that can provide a wide choice of
random and burst error-detecting abilities. With
the existence of good cyclic codes over the proper
rings and fields established, the second problem of
efficient systematic encoding and parity
manipulation of the code word symbols will be
addressed.

SYSTEMATIC DATA ENCODING AND PARITY MANIPULATION

One important requirement of any protection
scheme is the location and manipulation of the
original data and associated parity symbols without
additional processing. There are several methods
for encoding data code words with this feature,
generally referred to as systematic encoding [7].
However when two such encoded code words are
producted (to implement the convolution), the
corresponding parity symbols are not easily
distinguished except with complicated processing.
This section will first demonstrate a standard
systematic encoding technique from which the
respective data and parity may be extracted easily.
Then a new approach will be given for processing
and combining the respective parity parts to yield
the new parity values corresponding to the
convolved data segments.
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A common systematic encoding scheme relies on
the Euclidean Algorithm for uniquely defining the
parity positions [7]. The data portion, say a(X),
is placed in the higher indexed positions, by
multiplying by Xn-k| effectively shifting to data
to inclusively indexed positions, (n-k), (n-k+l1),
«evs {n-1). The uniquely related parity symbols
are represented by the polynomial ry(X), derived
from equation (5) with g(X) as the divisor.

0" Kalx)) = q,(09(x) + r_(x)

3 deg r,(X) < deg g(X) (6)

The code word affiliated with data a(X) is given
by

a(x) EERGrynkarx) - r (x)]

A simple transposition in equation (6) shows that
this is indeed a multiple of 9(X}, the defining
property of a cyclic code word (see equation (4)).
Furthermore the parity values represented by ra(X)
do not interfere with the original data, now shown
as XN-Ka(X), in their shifted positions. A similar
encoding also applies to data b(X), where rp(X) is
the unique remainder analogous to equation ?6).

b(x) ENCODE Fyn-ky(y) . ry ()]

The protection of the convolution of two code
words is considered. If the two respective code
words for a(X) and b(X) are producted, it is easy
to see the intermingling and overlapping of parity
and data parts. However the data portions are
easily extracted and producted. Then the question
is: how can the parity parts ra(X) and ry(X) be
processed to yield the correct parity? In symbols,
what relationship exists between ra(X) and ry(x),
and the new parity ry.(X) related to the product
a{X)b(x)?

Ca(0b (0] 2R X" ra(x)p(x)1 - v, (%))

This new parity part is the remainder in the
division by g(X).

rap () = X" Ka(x)b(X) T mod g(x) (7)

The answer, to be demonstrated conclusively in the
next paragraph, is computationally straightforward.

(8a)

Hl

rap() = FOOr, (X)ry(X) mod g(X)

where

k

f{X) = X" mod g(X) . (8b)

The validity of the above claim revolves
round showing that the expression
X" KLa(x)b(x)7 - rp(X)3 is a multiple

of g(X), modulo (XN-1).
identities need to be compiled.

In this regard two
The first comes




from equations (8) which imply that there is a
quotient qap(X) satisfying

Pap () = Xr (X0ry(X) = g, (X)g(X) (9)

The second needed expression follows from the coded
form of b(X), similar to equation (6), this time
implying another quotient qp(X).

b(X) = x"(X) = X" Kp(x)y mod (x-1)
: qub(X)g(X) + xkrb(x) mod (X"-1)  (10)

These identities when combined with equation (6)
permit the following series of equalities,

K"KLa0p ()7 - r 00

= La,(09(x) + r, (0109, (0500 + x*r, ()]

-Xr, (R0 (0) - 40 (X)9(X)] mod (x"-1)

(11)
900 X g5 (0ay(X) + X S (X)r, (1)

e

+ X56,(X)ry(X) + q, (X)) mod (x"-1)

The very construction of rap(X), equation (8a),
guarantees that

deg rab(X) < deg g(Xx) .

On the other hand, the Euclidean Algorithm asserts
a unique remainder polynomial associated with the
encoding of [a(X)b(X)]; equations (8) provide that
polynomial and it has degree less than (n-k) also.

The use of this systematic encoding in a
fault-tolerant realization for convolving sequences
represented by a(X) and b(X) is shown schematically
in Figure 2. The steps in forming the new
Systematically encoded code word are easily
identified with straightforward manipulations. The
protection overhead is governed by the modulo g(X)
operations, which in turn are proportional to the
degree of g(X), the number of parity positions
employed by the code. Even the regeneration of the
parity symbols, needed in the totally-self checking
comparator [13], depends on the code generating
polynomial g(X). The complexity of the modulo
reductions will be discussed in the next section.

There are situations where one of the
Séquences to be convolved is fixed and known in
advance., For exanple, b(X) could be the impulse
response of a digital filter [1,2]. The previous
technique can be used to store the known sequence
and its precomputed parity positions. For a
predetermined sequence represented by b(X), the
stored positions correspond to the code word
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X" b(X) - 1 (X)), One simplification allows
the parity po?itions ro (X) to be combined with
be combined with f(X), equation (8b), reducing the
number of operations required for rab(X). However,
there is an alternate, equally effective method
for handling this special circumstance.

The known sequence, say b(X), is also stored
in its reduced form modulo g(X). Then the

systematically encoded code word related to
La(X)b(X)] is given by

X" KLa()b(x)] - ry(x)
where the parity positions are defined uniquely as
ro{X) = B(X)ra(X) mod g(X) (12a)

8(X) = b(X) mod g(X) (12b)

The correctness of this approach is easily
demonstrated by noting that equations (12) insure
the existence of a quotient G(X) and remainder
rO(X) giving

BX)ry(X) = qo(X)g(x) + ry(x) (13)

After cancellation of terms, the code representa-
tion for [a(X)b(X)] is clearly a code word.

X"KLa(0b(X)] - ry(x) =
9()La,(X) + q;(X)] mod (x"-1)
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Thus this abbreviated method stili produces a code
word, with all the error detecting potential of
the code, but with a simpler formula for the parity
portion,

This reduced special case occurs because only
one of the parity parts ra{X) emanates from
Xn-ka(X), allowing ease in separating the effects
of data and parity. The slightly less complex
implementation of this method is depicted in Figure
3. The residue of the fixed sequence g{X) is stored
as well to expedite the parity formation.

COMPLEXITY OF PARITY GENERATION

There are numerous ways to realize the
convolution and modulo reductions prescribed in the
previously described methods. They range from
distributed arithmetic processors to time-
multiplexing a high-speed ALU resource. In order
to study the general complexity, a realization as
shown in Figure 4 is considered. The basic
principles are easily adapted to many other
configurations including one which uses general
addressable memory and a microprogrammed
controller. There are (n-k) storage locations and
the leading coefficient of the code generating
polynomial g(X) is taken as 1, without loss of
generality. The lower portion of this figure
implements the product ra(X)rp(X), while the
feedback path in the upper part performs the mod
g{X) reduction simultaneously.

One complexity measure may be a count of the
number of multiplications and additions required.
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On the other hand, the modulo reduction is heavily
influenced not only by the degree of g(X), but also
by the number of nonzero coefficients. The
notation [g| will denote the number of nonzero
terms in g(X), including the Teading coefficient
presently assumed to be 1. Then the additional
number of multiplications and additions for the
feedback part may be estimated.

MULTIPLICATIONS: (n-k-1)(|g}-1)
MODULO
REDUCT ION
PART

ADDITIONS: (n-k-1)(|g]|-1)

These estimates will be helpful in projecting

the overall complexities. There are two different
approaches that may be taken in realizing the
parity calculations dictated by equation (8a). One
approach would first form the triple product
{F(X)ra(X)rp(X) 3, yielding a polynomial with
possib?e highest degree B?n-k-l), followed by the
modulo reduction. This approach uses more interim
memory locations. An alternate method would
interconnect two series of operations as depicted
in Figure 4. With this realization equation (8a)
is implemented in two stages., say first producing

d(X) = ra(X)rb(X) mod g(X) ,

and then completing the calculations with

rap(X) = d(X)f(X) mod g(X) .

Straightforward estimates show that either approach
employs on the same respective orders of multipli-
cations and additions.

ORDER OF PARITY GENERATION COMPLEXITY

gl-1)
[-1)]
The dominant factor in both items is (n-k)2, a

quantity related to the rumber of parity positions
in the code.

MULTIPLICATIONS: 2[(n-k)2
ADDITIONS: 2(n-k-1)[

+ (n-k-1)
(n=k) + (|

l
g

CONCLUSIONS

Recent coding theory results, which permit
generalized cyclic codes over rings and fields
commonly employed in arithmetic formats, may be
applied in protecting convolution-type array
calculations. Of course, any ancillary array
additions or scalings are also protected because
cyclic codes possess the usual linearity
properties., New systematic encoding and processing
techniques make their application straightforward
and efficient. The methods may be combined in
numerous ways offering a wide variety of powerful
techniques for introducing error detection directly
in the realizations of such operations. One such
configuration for employing these techniques is
shown in Figure 5,
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