ERROR DETECTION AND CORRECTION FOR
ADDITION AND SUBTRACTION, THROUGH USE OF
HIGHER RADIX EXTENSIONS OF HAMMING CODES

James E. Robertson

Department of Computer Science
University of Illinois at Urbana—Champaign
Urbana, Illinois 61801

Abstract

The properties of Hamming codes for error detection
and correction can be extended from the binary parity check
to addition, modulo 2r. Malfunctions in hardware during
addition, modulo 2r, can be detected and corrected. Since
carry-save and signed-digit addition, radix r, are included in
addition, modulo 2r, this extension of Hamming codes tnakes
possible new techniques for detection and correction of
hardware malfunctions during signed-digit and carry-save
addition.

1. Introduction

Binary Hamming codes are currently limited almost
exclusively to detection and correction of errors during
transmission or storage of information. Little or no use is
made of the fact that binary Hamming codes can be used for
detection and correction of errors resulting from hardware
malfunctions for the Boolean operations of EXCLUSIVE OR
and complementation.

It is the purpose of this paper to indicate that errors
resulting from malfunctions in hardware for performing addi-
tion and subtraction in radix r, can be detected and corrected
through use of Hamming codes extended to addition, modulo
2r. The first observation is the obvious one that the parity
check, the Boolean EXCLUSIVE OR, addition modulo 2, and
subtraction modulo 2, are identical operations. The generali-
zation used here is therefore from addition, module 2 to
addition, modulo 2r. The second observation is that the fact
that binary Hamming codes can be used for detectior and
correction of hardware malfunctions during addition modulo
2 can be generalized to extended Hamming codes being used
for detection and correction of hardware malfunctions during
addition, modulo 2r. The third observation is that the
operations of carry-save and signed-digit arithmetic, radix r,
are subsets of addition, modulo 2r.

The details of the generalization for Hamming codes are
given in Section 2. In particular, it is shown that the gen-
eralization deperds only on the associativity of addition,
modulo k.

In section 3, the discussion is particularized in several
ways. The Hamming codes are extended to addition, modulo
4, for checking binary arithmetic. The eight digit single
error correcting, double error detecting code is described in
detail. In section 4, a specific numerical example is discussed
for the radix 4 single error correcting, double error detecting
extended Hamminyg code.

CH2419-0/87/0000/0226$01.00 © 1987 IEEE

[n section 5, the considerations determining the
representation of a radix 4 digit by two binary digits are
given. This lends to a specific logical design. Section 6 sum-
marizes the problems encountered when negative digital
values are employed.

2. Extension to Addition modulo k.

Let X represent an n-tuple of digits X; (i=0,1,2,...,n-1)
in radix k. One or more of the digits X, say X;, is not
independent, but is related to the other digits by the expres-
sion:

X;=)'X; (modulo k), where s; designates a subset of
s

5
all possible values of i, excluding j. The n-tuple Y and Z are
similarly defined, with digits Yj and Z]» related by addition
{modulo k) of similarly designated subsets of Y and Z, respec-
tively,

Consider the transformation Z = X + Y meodulo k,
which means Z; = X;+Y; modulo k for every i. In particu-
lar, Z; is formed as X;+Y;, modulo k. Therefore
Z;=X;+Y; (modulo k) = LXi+5Y; (modulo k). By

3 5
associativity of addition modulo k, Z;=3 (X;+Y;) (modulo

S5
k) = 37Z; (modulo k). Therefore, in the absence of error,
85
the error protection properties associated with X; and Y;
apply also to Z;.

A check digit C; is generated as Ci=—Z;+5Z; In
sl
the absence of an error in the digits Z; (i=j, or ies;), the
check digit C; is zero.

All of the equations in this section reduce to the binary
Hamming codes if k = 2 and if it is recognized that addition
modulo 2 and subtraction modulo 2 are the same.

3. Extension to Addition (modulo 4) of The Single Error

Correcting, Double Error Detecting Hamming Code, With n
= 8.

For the single error correcting, double error detecting
Hamming code, the equations of the previous section for the
extension to addition (modulo 4) become: n==8,
i=0,1,2,3,4,5,6,7

j=0,1,2,4 50 = 1,2,3,4,5,6,7

S1=357 5,=367 s,=2567

g
Xo= 3 X; modulo 4

‘ Eqn 3.1a
i=1
X =X;34+X54X; modulo 4 Eqn 3.1b
Xy=X3+X¢+X; modulo 4 Eqn 3.1c
X =X;+Xg+X; modulo 4. Eqgn 3.1d

Similar expressions are applicable for the Y;

If each Z; (i=0,1,2,....,7) is defined as Z;=X;+Y;
(modulo 4), then, for example,

Z\=X,+Y (modulo 4)

= X3+ Xs+X7+ Y3+ Y5+ Y; (modulo 4)

= (Xst¥3) + (Xs4Y5) + (X7+Yy) (modulo 4)
= Z4+Z5+7; (modulo 4)

The associated check digit C| is

C'1=—‘Zl+Z3+Z5+Z7 {(modulo 4)

For error correction and detection, assume that the n-
tuples X and Y have been checked and are free of error. An
error £ (E;#0, modulo 4) is introduced for one value of i
during the addition Z;=X;+Y;, modulo 4, so that
Z;=X;+Y;+E; (modulo 4). When the check digits C; are

generated from the Z;, there are two cases:

1) i=3,5,6, or 7

Coy==E; Eqn 3.2.1a
C, = E (i=357 C;=0 (i=6) Eqn3.2.2a
C,=E, (1=3,6,7) Cy=0 (i=5) Eqn3.2.3a
C, = E, (i=567) C,=0 (i=3) Eqn3.24a
2) i=0,1,2,4

Co = E; (=124 Co=-E, Eqn 3.2.1b
C == (i=0,2,4) C,=-E, Eqn 3.2.2.b
Cy == (i =0,1,4) C,=-E, Eqn 3.2.3b
Cy= =012 C,=-E, Eqn 3.2.4b

In the first case /i = 3,5,6,7}, a single error is indicated by
the value of the error E; in Cy, and by the same value E; in
two or more of €'y, Cy, and C, in a pattern indicative of the
value of i, and hence the location of the error. In the second
case {i=0,1,2,4) a single error is indicated by the value -F;
in C;. For i=0, the only error indication is Co=—Ey; for
i==1,2 or 4, the error is indicated by Co=E; and C;=—F,.

4. A numerical example.

A numerical example of the binary addition 7+5+3 is
given in table 4.1. For addition purposes, column 7 is
assigned binary weight 8, column 6 is weight 4, column 5 is

weight 2, and column 3 is weight 1. Row 1 is therefore the
binary operand 7, row 2 is the operand 5, and row 9 is the
operand 3. For these rows, the values in columns 4,2,1, and
0 are obtained by addition, modulo 4, of appropriate subsets
of columns 7,6,5, and 3, in accordance with equations 3.1. [t
is assumed that all digits in rows 1,2,4 and 0 have been
checked and are free of error, within the limitations of the
error correction procedure in use.

A single binary addition requires the use of two simpler
binary operations; the half-adder bo*—a0+a0, followed by
the carry generator 2a°+a%—p%440 (reference 9.2).
Theoretically, each digit in row 3 could be obtained from the
corresponding digits of rows | and 2 by addition modulo 4; in
practice, the arithmetic digits of columns 7,6,5, and 3 would
be obtained using the simple hardware of the half adder
b%—a%+4°. Malfunctions in the hardware used to generate
the digits Z;, of row 3, shou'd be detectable and correctable
(equations 3.2), within the limitations of the error correction
method in use.

The X; of row 4 are the Z; of row 3, and the Y; of row
5 are zeroes. The addition of the operands 7 and 5 is com-
pleted by combining rows 4 and 5 to form row 6, using carry
generators for the arithmetic digits of columns 7,6,5, and 3,
and using addition, modulo 4, for the check digits of columns
4,2,1, and 0. The sum, 12, is represented by the digits in row
6, as 8x0+4x2+2x1+1x2.

It is imperative that the digits in row 6 be checked and
made free of error. Each of the radix 4 digits in columns
7,6,5, and 3 of row 6 are split into two binary digits, one a
carry which is shifted left to appear in row 7, and the other a
binary sum which appears in row 8. For example, the 2 in
row 6, column 6, becomes the carry of 1 in row 7, column 7,
and the binary sum digit 0 in row 8, column 6. Thus the
value 12, represented as binary-weighted radix 4 digits in
row 6, becomes two conventional binary numbers whose
values are 10 in row 7, from the shifted carries, and 2 in row
8, the binary sum digits. Because of the shift of the carries,
it is necessary at this point to calculate, using equations 3.1,
the digits of columns 4,2,1, and 0, of rows 7 and 8.

1 7 [H 3 4 2 1 0
Rov
1x o 1 1 1 2 2 2 1
2y 0 1 o 1 1 2 1 2
2¢-- a? el L ey (mod. 4)
3z 0 2 1 2 2] 3 3
4% 0 2 1 2 3 0 3 3
5 ¥ 0 0 0 0 0 0 0 0
0 Ul
22 +a <--a +b c° - c° + ¢ (mod, 4)
[T [2 1 2 3 [3 3
7K 1 0 1 [2 1 2 3
8 Xy 0] 1 0 1] 1 3
sy [0 1 1 1 1 2 2
0 9
b <--a +a co-:ooco (mod. 1)
10 74 [[3 1 2 1 3 1
11 X3 [[2 1 2 b 3 1
12 1y 1 0 p! Q 2 1 2 3
0
2 +a ¢--a bo r:o L <:o * co (mod. 4)
11 2y 1 0 k 1] 2 1 0
14 Ky [1 0 [b 1 0 3
15 Xy 1 0 1 1 2 2 3 2

Table 4.1 A numerlcal example of binary additloen.

Thereafter, the addition of the third operand, of value
3, is performed in a manner similar to that of rows 1 through
8. The sum digits in row 8, of numerical value 2, are added
to the third operand of value 3 in row 9, using a half adder,
to generate the sum of value 5 in row 10. This sum, copied
without change to become row 11, is added to the carry
digits of value 10 in row 12, copied from row 7. The sum,
whose value is 15 is represented as binary-weighted radix 4
digits in row 13, and collectively by the two binary numbers,
the shifted carries of value 4 in row 14, and the binary sum
digits of value 11 in row 15.

5. Representation of digits and logical design.

The problem of representation is one of establishing a
correspondence between the four values of the radix 4 digit
set ¢¥ = 10,1,2,3} and the four states 00,01,10 and 11, of two
binary variables n and y. Clearly, there are 4! — 24 possible
correspondences, which fall into 3 groups of 8 each under per-
mutation and negation of 7 and y. For addition, it is reason-
able to impose the condition that the value 0 of digit set ¢’
shall be represented by state 00. This reduces the number of
correspondences to the six shown in Table 5.1, which form
three pairs of correspondences under permutation of nandy.

noy Ca Cp Ce

Table 5.1
Correspondencies between four states and four values.

Under permutation of 7 and vy, ca°=c,?,c,,°:c,0, and
c,0=c/o. Since permutation reduces to a matter of nomencla-
ture, further consideration is given only to cf,cbo, and cco.

The final consideration which determines the correspon-
dence is that of separability of the radix 4 digit ¢° into two
binary digits, a carry and a sum, as exemplified by the gen-
eration of rows 7 and 8 from row 6, (and of rows 14 and 15
from row 13} in Table 4.1 Separability requires the relation-
ship ¢ =27n+y, which indicates that the correspondence indi-
cated by column ¢, in Table 5.1 should be used.

The other correspondences ‘x:bo and cc0 can be made
separable with very !i‘tle hardware (an EXCLUSIVE OR

gate in each case), but this hardware would have to be used
at a particularly critica: point. With reference to Table 4.1,
the digits ¢” in row 6 (or row 13} can be checked and
corrected, implying that the individual binary digits are also
correct. If the corresperdence is separable, it is reasonable to
assume that the binary digits in rows 7 and 8 (or rows 14 and
15) are correct, and that it is sale to compute the check
digits of columns 4,2,1, and O for these rows.

The logical design for a radix four adder (mod. 4) is
completely determined unce the correspondence cf of Table
5.1 is chosen. In terms of states, the addition table is that of
Table 5.2.

Yy (ni’yi)
00 Q1 10 11

00} 00 01 10 11

Xi 01) 01 10 11 00 sum zg

(£.,x.)10| 10 11 00 01 (z.,z.)
YY1l 11 0001 10 10E

Table 5.2
Addition table for ¢2=C2+¢ (mod.4)

Table 5.2, in turn, can be converted directly into the truth
tables necessary for logical design, and leads to the design
equations:

S EDn:Pr; y, Eqn. 5.1
% = 5;Dy; Eqn. 5.2

The notation for these equations is given by Z;=X;+Y,,
modulo 4, Z|'=2§"+Z", ,Y'-=2f,‘+13|', and Y,=217,+y,

All of the additions (modulo 4) implicit in the opera-
tions of Table 4.1 are of the type given by Equations 5.1 and
5.2.

6. Extension to negative values and subtraction.

If all variants of half adders and carry generators are to
be used, consideration must be given to digit sets with nega-
tive values, as exemplified by those in Tables 6.1 and 6.2.

a
e w

0 1 2
Cq] o

HIN|W]O

Table 6.1. Format a for four—valued digit sets.

1)
T

a
a-

&

0
3
2
1

WINN| =] O

Table 6.2. Format b for four-valued digit sets.

In the previous section, it was noted that separability
requires that the format choice cf=217 + y be made. Simi-
larly, for digit sets with negative values, separability necessi-
tates the unique choices cl,l=27] -y c,?=-—2n + y, and
c,,3=—2n ~y. Tosummarize, format a must be used for even
values of offset and format b must be used when the offset is

odd.

ki S R A e

Consider Table 5.2, the addition table for 2, =zr;+y,,
modulo 4, when the digit sets for 2;,z;, and y, are all of type
C“?. It can be shown that when 2;,z; and y, are all of format
a, regardless of offset, then table 5.2 applies, and therefore
the same logical design of equations 5.1 and 5.2 should be
used. Similiarly, table 5.2 and equations 5.1 and 5.2 are
valid if 2;,z;, and y; are all represented using format b. If
the formats of z;,z;, and y; are mixed, then a different addi-
tion table, and hence a different logical design, will result.

It is proposed that all adders, modulo 4, used shall be os
the same logical design. This choice necessitates that the
inputs to a carry generator must be of the same format as

0 a cf n y cbl n Y
0 0 0 0 0 0 0 0 0
1 0 1 1 0 1 1 1 1
2 1 0 2 1 0 2 1 0

3 1 1 1 0 1

Table 6.3 Two interpretations of digit set 5°.

that of imposed by the output. Table 6.3 is an example to
illustrate thas this is possible. For format a, boecao, and the
adder inputs are n=a and y = a. For format b, boec,,l, and
the adder inputs are n=ava and y = a. The fact that all
inputs to half adders and carry generators are either two—
valued or three-valued indicates that an interpretation for
either format choice can always be made.

7. Comments on the Radix 4 Example

Of the two bits which comprise a radix 4 digit, the least
significant, or sum bit, is also a parity bit in the sense of the
binary Hamming code, for the particular representations
chosen in the example. Thus the properties of the binary

Hamming code apply, independent of the most significant, or
carry, bit.

With proper account taken of the negative values in
equations 3.2, it seems possible to identify both the amount
and the locaticn of any single error E;, and hence to correct
it. It also seems likely that a single sum error E; = L anda
single carry error E; = 2, can both be corrected, whethéi'op
not i=j. When E; = 1 and EJ- == 1, with i#j, th conse-
quent carry indications provide additional information:not -
available for the binary Hamming code. This case wa :
further investigation.

The hardware cost of generating the carry digits
adders modulo 4 is roughly twice as great as the:bi
ity check. Another disadvantage is that, for general
different interpretations of the same digit set are’y
as exemplified by table 6.3.

8. Conclusions

The previous sections represent a prelimin
tion into higher radix extensions of Hamming:
directions for further investigation suggest the‘

i

It is also evident thnt all the Boolean operations, when
performed in parallel, can be checked and corrected, since the
AND operation is implic’: in the half adder, and the NOT
operation is a special case of the EXCLUSIVE OR.

The approach here :iso suggests that the binary parity
check be considered a count modulo 2 of the errors that have
occurred, and suggests that the effect of counting the errors
to a greater value than two be investigated.

The extensive research inspired by Hamming’s original
discoveries should be revi-wed with higher radix applications
to arithmetic in mind.

9. Bibliography

9.1 Hamming, R. W.; Error Detecting and Error Correct-
ing Codes, Bell System Technical Journal, Volume
XXIX (April, 1950) pp. 147-160.

9.2 Robertson, J.E. A Systematic Approach to the Design
of Structures of Arithmetic, Proc. 5th Symposium on
Computer Arithmetic, May 1981.

Acknolwedgement:

This research was supported in part by the National Science
Foundation under grant NSF MCS 83-08576.

