Vector Computations on an Orthogonal Memory Access
Multiprocessing System

Isaac D. Scherson and Yiming Ma

Department of Electrical and Computer Engineering
University of California
Santa Barbara, Ca. 93106

ABSTRACT

An Orthogonal Memory Access system
allows a multiplicity of processors to con-
currently access distinct rows or columns of a
rectangular array of data elements. The result-
ing tightly-coupled multi-processing system is
feasible with current technology and has even
been suggested for VLSI as a “reduced mesh'".
In this paper we introduce the architecture and
concentrate on its application to a number of
basic vector and numerical computations.
Matrix multiplication, L-U decomposition, poly-
nomial evaluation and solutions to linear Sys-
tems and partial differential equations, all show
a speed-up of O(n) for a n-processor system.
The flexibility in the choice of the numher of
PEs makes the architecture a strong competi-
tor in the world of special-purpose parallel sys-
tems. Actually, we prove that the machine exhi-
bits the same performance as any other sys-
tem with the same number of processors within
a factor of 3.

KEYWORDS: Parallel algorithms, Parallel architecture,
Numerical analysis, Time complexity, Performance
analysis.

L. INTRODUCTION

With the fast development of VLSI technology, vari-
ous high speed computer architectures have been pro-
posed. Problems that were too large in the past are now
solvable. As a result, people try to solve larger problems
and are asking for even faster computers. Nowadays,
however, it appears that the speed of the electronic
compunents is reaching its physical limits. Improving
the hardware is no longer an attractive way to achieve
higher speed. For the last two decades, researchers have
paid more and more attention to the structure of the
computer system so that certain operations can be exe-
cuted in parallel or at least in an overlapping manner.
The results of these efforts have brought forth various
commercially available multi-processor systems. In
parallel with the growth of parallel computers, parallel
algorithms have gone from theoretical games to practi-
cal interest.

Perhaps the biggest difference between serial and
parallel aigorithms is that parallel algorithms are
machine dependent. An excellent parallel algorithm for
one machine might not apply to another machine at all.
Thus, one problem might be neatly solved in one
machine but poorly solved in another. Because of this
problem oriented nature, most of todays parallel com-
puters are specjal-purpose or semi-special-purpese. This
is especially true for systems composed of a large
number of processors.

CH2419-0/87/0000/0028%01.00 © 1987 IEEE

28

In this paper, we shall first describe an orthogonal
memory access {OMA) machine, which was proposed
independently by two groups, Tseng, Hwang and
Kumar{1] and the other group led by Isaac Scherson[3].
We shall analyze the communication problem of the
machine in some detail. The main result of the analysis
is that the OMA is at least as fast as any other multipro-
cessor system within a factor of 3.

Another issue of this paper is to develop some paral-
lel numerical algorithms for the OMA computer. The
serial versions of these algorithms have been thoroughly
discussed and reflned during the last one hundred years.
Many techniques were developed. Some of which were
proven to be optimal; while others were attractive for
their simplicity or for their superior behavior at some
special cases. The choice of the problems and methods
to be implemented are based on the following criteria :

1. They are most commonly used.

2. The variety of problems cover the basic tech-
niques of numerical analysis.

As a result of our decision, flve topics will be discussed :
1) matrix multiplication, 2) L-U decomposition, 3) tri-
angular systems 4) partial differential equations and 5)
polynomial manipulation. They can be found in any rea-
sonably comprehensive numerical analysis book (e.g.
[2]). Some restricted or unrestricted parallel implemen-
tations are scattered over a number of references (e.g.
[4] and [8]). All of the algorithms presented here have
linear speedups over the corresponding serial ones.
Since our machine has n processors, a linear speedup is
all one can expect. Some more numerical algorithms
with linear speedups can be found in [1]. Thus, it is not

difficult for one to see that the new system serves as a
semi-general purpose machine at least in the field of
numerical analysis.

TI. ANALYSIS OF THE OMA

Due to the nature of numerical vector computations
in a parallel processing environment, concurrent access
to elements of a rectangular array is often desirable.
Simutaneous access to a row or a column or a main diag-
onal in a two dimensional array are good examples of
operations of this type. These occur when we try to com-
pute a dot product, do a Gaussian elimination, transpose
a matrix or calculate the trace of a matrix. In ILLIAC IV
[18] like machines, such as STARAN [19] and MPP [20],
skewing or scrambling of the elements of the array was
used to achieve vector accessability. This idea motivates
the design of an orthogonal memory access machine
{OMA) to facilitate parallel manipulation of rows and
columns.

2.1 Brief descriptions of the OMA

An n-processor OMA has nXn memory modules
organized in the way depicted in Figure 1. We shall use

er.l —J

=
=

2
G

P 3/‘

4 [Mn,: @5

F isvr. 1: The schematic diagram of the CMA machine.

the symbol My, for the memory module on the i-th row, j-
th column, and P for the i-th processor. For our discus-
sion, we shall omit any part that does not concern us,
including the 1/0 portion of the system. There is a mas-
ter processor for control. It can initiate or mask off any
of the processors and provides two memory mapping
modes:

Processor P; has access to and
only to any of the memory
modules in the i-th row.

RM (Row mapping) :

Processor P; has access to and
only to any of the memory
modules in the j-th column.

CM (Column mapping) :

Given an n by n matrix Q = [qy] stored in the nxn
memory array such that g & My. Zln a RM mode, any
column can be accessed simultaneously, that is each P;
can fetch a qy. Similarly, CM allows parallel access to
rows of Q. Furthermore, we note that the diagonal of Q
can be concurrently fetched in either memory mapping
mode. It is also noted that for a matrix of size larger
than n, a fragment of a row or column or diagonal vector
can be accessed in parallel.

Each processor P, is capable of puting an element in
the same address of all memory modules in the i-th row
when the machine is operating in a M mode, and con-
versely, does the same for the i-th column when the
machine is operating in a CM mode. Thus each processor
can broadcast to any other processor(s) in two memory
cycles.

Another optional feature whioh is easy to implement
is the shifting operation. In a RM mode, processor P; can
set up a shifting channel such that the content of the
appropriate address in each memory module within the
i-th row gets shifted to the next memeory module within
the same row in one memory cyele. Of course, one can
do the same thing for columns when the machine is
operating in a CM mode.

A two way switch is attached to each memory
module My with i not equal j to allow either P or P to
have access to it. For an OMA of size n, there are n hor-
izonal buses. Bach bus connects P; to the n-1 two-way
switches of M;; with i not equal j and to My directly. Simi-
larly, n vertical buses link the processors and the
switches of memory modules in the same column. All the
p? - n switches are controlled by a single bit, which is set
or reset by the master processor.

29

2.2 Communication analysis

A network does not have path conflicts if any pair of
nodes can have a dedicated path to communicate if both
of them are idle. Let us define the distance between a
pair of processors to be the minimum number of steps
necessary to move a piece of data from one processor to
the other. Assume bidirectional links, so that we don't
have to distinguish between the source and destination.
The diameter of a network is the maximum distance
among all pairs of processors. For example, the diameter
of an nXn mesh-connected network without wrap-around
is 2n-2. A multistage switch network with logn stages
(e.g. Benes network, Shufile-exchange network, -
network and cube network) has a diameter of logn. It is
obvious that for networks without path conflicts the
shorter the diameter, the less communication overhead
the system will suffer. It is also true that both the net-
work complexity and the communication overhead
increase with the number of processors. Let us look at
the OMA. Since every processor can put or fetch data in
any of the memory modules within the same row or the
same column, the diameter is 2. Let us analyze how the
diameter affects the communication complexity. We
shall distinguish two types of steps: 1) Computational
steps (COMPS) and 2) Communication steps (XFERS),
respectively.
Theorem 1: Let N be the number of COMPS of an unres-
tricted parallel algorithm A, and let r be
the maximum number of operands that
any operation in A could have. Then at
most (r + 1)N steps are needed for the
OMA to execute A.

At the end of each step, insert XFERS {or broad-
cast) if necessary. Each XFERS makes one
operand available to every processor. Since each
operation needs at most r operands, at most r
COMPS will make every processor ready for the
next operation. Therefore a total of rN XFERS
are needed, in addition to the N COMPS of the
unrestricted algorithm. The total execution time
for algorithm A in OMA becomes then (r + 1)N.

Theorem 2 :

proof :

Assume each COMPS is either unary or
binary (as conventional). If N is the
number of steps for some n-processor sys-
tem to execute a parallel algorithm A, then
at most 3N steps are needed for the OMA
with n processors to execute A.

Let R be the number of COMPS of an unres-
tricted version of A. Then R<N. Since each
COMPS has at most two operands, r in Theorem
1 equals 2. By Theorem 1, OMA needs at most
3R < 3N steps to execute A.

Most of the problems that are of interest in a mul-
tiprocessing environment require the processors to know
some information from other processors every few
COMPS to continue processing. To be more specific, let
us assume that for a particular algorithm A, the proces-
sors need to do ¢ XFERS every o COMPS Let k be the
average number of steps needed for each communica-
tion. Then the average communication overhead for Ais

. ck

Co(a) = o+ ck
To illustrate this concept, let us pause to prove the fol-
lowing theorem.

Theorem 3: For a mesh-connected machine of n? pro-
cessing elements. The average number of
steps for each communication is Nmesh >
n/2 -1,

proof :

proof : Let p; be the probability that a random pair of
PE's has distance i, i = 1,..,2n-2. We shall first

prove that p; = pp—j, i = 1,...,n-1.
Define
Tl) = x+n/2 if x€sn/2
®=lx-ns2 it x>n/2.

Notice that T*(x)=x, so T is a one to one
correspondence. Let {Py, Pin} be any pair of
PE's with distance 1. Without loss of generality,
we can assume j + k > 1 + m. Since T is a one to
one correspondence, so is the following map-
ping:

R: {ij- le} ———— {PT(j),T(k), Pim]

But since the distance of the pair {Pry)r(). P}
bhas distance n - i, we conclude that the number
of pairs with distance i equals the number of
pairs with distance n - i. Therefore, the equation
Pi = Pn-i follows. Write Ay for the sum of the first
k pi's. L.e.

Ak=im. k=1,.,2n-2
i=1

As a consequece of p; = pp-4, We get

A+ Apoi = Ay k=1,..n-1 (*)
The average distance is given by
2p=2
Nmesh = 1,_4 pil (Kl)
=1

By Abel’s identity

-
izaibi=snbn - nZ Si(bje1 — by,
i=1

i=1

X
_ Nhere Sg =) a; k = 1,..,n. Eq. (K1) can be written as
i=1

2n—-3
Nrmesh = 2n — 2 —) A; (K2)

i=1

Now apply (*) to the above equation, we obtain

Nmesh >2n -2~ (n/2+n—-1)=n/2 ~ 1.
Thus we completed the proof. »
Therefore, for a mesh-connected array,
ck e(n/2-1) _ _ eln-2)
o+ck " otc(n/2-1) 2o+c(n-2)

COmesh =

COmesh approaches 1 even for moderate n. Which means
this type of machine is heavily loaded by the communi-
cation tasks. Such system cannot be made general-
purpose even for any reasonable n.

For alogn stage network (Isn), k = logn. So

COin(8) = 18D

o + clogn

Again, COp, tends to 1 as n becomes significantly large,
which means the system spends most of its time execut-
ing communication steps for large n. This is better than
the mesh network. But still, they are not efficient for a
large number of processors on the average, even though
they could be made special-purpose to utilize the best
cases.

For the OMA, since k = 2,

_ _Rc
COous = o+ 2c

1 2 3 4586 7 8
9 10 2

1,5 2,8 371 4,8
33,37 ' |34 38 35, 39 36, 40

9, 13 10, 14 11, 15 12, 18
41, 45 42, 48 43, 47 44, 48

17, 21 18, 22 18, 23 20, 24
49, 63 50, 54 51, 55 52, 56

25, 29 28, 30 27, 31 28, 32
57, 61 58, 82 58, 63 60, 64

Figure 2: The matrix A wrapped-around in the OMA with four processors.

which is system size independent. Hence an OMA
machine could be made large without affecting the com-
munications complexity.

2.3 Storage schemes

For the OMA architecture, we consider two main
storage schemes: wrap-around storage and block
storage. Assume that we have an OMA with n processors,
and let A = (a;) be an pnxqn matrix, which is to be
stored in the OMA.

a) The wrap-around scheme

The elements a;; are stored in memory module My,
Where

1= (i-Dn + 1
k=(-1)n+1
The content of memory module My is shown below.

Mij 8y
&4 n+j

8;,(q-1)n+
Bn+yf

Bn+i,(q-1)n+j

a(p—fl)n‘v-i.(q—l)n;j |

An example of how a-8%8-matrix is-wrapped-around in a 4
processor OMA is shown in Figure 2.

b) The block scheme

We first write A in the block form. Each block is of
size pXq. We have nxn such blocks. The block in the i-th
row j-th columw ig stored in Mj;. Figure 3 shows the
memory contents when storing a matrix in block mode.

1I. MATRIXMULTIPLICATION

Matrix manipulations are frequently needed in solv-
ing linear systems of equations. Important matrix opera-
tions include matrix multiplication, 1-U decomposition,
matrix inversion and matrix transposition. 1-U decompo-
sition will be tackled in the next section. We shall not
give an algorithm for matrix inversion explicitly. Instead,
we shall give a method for solving linear systems via L-U

—‘—

ey —— —" P Pz e P,
L e T “art e 555 gt b — — rl P,: by
= e B
1 P,: by
Serrotpeny rtastdyenn S S AP : :
33 i s s 8y | ap 8ip : .
it sty e
— — P,: L by]
i b). Fetch a column of B {or a
.) , fragment of it in the wrap-arround case).
T || e e el A . 5 ’
a1 lpag st Apaag | wmoenitme] Ciyy Cit2 Cua
: ’ ¢ Ci23
Figure 3: The block storage scheme. Pl c“’ Gz 2
decomposition and solve the resulting triangular sys-
tems. Matrix transpose is relatively easy for the OMA, Pe: Cizj
and will not appear as an independent algorithm in this
paper, but the reader should have no difficulty in deriv-
ing it out in either this or the next section.
Pn : cmj
Given two nxn matrices A and B, distributed with ay), Cini Cinp Cina
by in My;. As in the following configuration : ©). Parallel compute ¢y = ay by, —
d). Parallel compute the sum
& = X Cuge
Figure 4: Matrix multiplication. k=1
C11by, C12.012 | | ayn.b,
Algorithm 1 (MatMul) :
b Step 1: REPEAT Steps 2 to 5 for i = 1.togn
221,02, 222z Qon.bzn Step 2 : CM fetch a fragment of a row of A in row
memopy a,J+,,...,a,.J+n.
Step 3: RM REPEAT Steps 4, 5 for k= 1to gn
Step 4 - RM fetch the corresponding
fragment of column of B
! ! ' : in a column memory
M, .
SILTH iy ST R P B
Step 5 : RM compute

Cijrrk = Aijibje k. put it

o . back in Mi mod nk mod n-
C= 1 b, | '
The product C = AB is given by the expression Step 6: CM REPEAT Step 7 for k = 1 to gn

h hlaﬂ(bkj W=1..n Step 7: add all the Cik's up to get ;. ie.
Since processor Py has access to both aj; and by, it can oy =0;
compute Cjj = cjj + Cijk.

ik = apcbyg. iLjk=1,.n

[
and put the result in My Next, observe that Py has Theorem 4 : The time complexity of matrix mubltiplica-

access to all My, k = 1,..,n. The summation ¢ = », Cikj tion on an OMA is 0(q%n?), which has a linear
k=1 speed [th iprocessor conven-
can then be computed by P, and the result put in M;. A t&nzll:rxzetl:':g. ¢ @ uniprocessor conven

typical iteration is shown in Figure 4.

The resuit is easily expanded to the case when both proof : With fk e.x_ecu:.ing in parallel k = 1,..,n. to com-
A and B are of degree gnXgn. This time A and B are pute ey Ljkc = 1,..qn.. E?ach' progesssorz does .tw.o
stored in a wrap-around manner. Since aj resides in My, fetches and one multiplication. So 9'n" multipli-

and by resides in Mp,, where i, L k, m, j and s satisfy the cation steps are required for the first phase of

ing: computation. To sum the Ciy's up, another g%n?
followmlg.= (i-1)modn+1 add steps are required, Tliig 2q§’n2 is the total
m=(k-1)modn + 1 operation time.
s={j-1)modn + 1) Let us analyze the communication problem for the
P has access to both ay and by, Therefore it can com- matrix multiplication algorithm. From step 1 to step 5,
pute cgy = aby;, and put the result in Mjm. Then since Py we see that each fragment of a row is communicated for
has access to all Cilj In Mim, it can compute the sum every an multiplications. There are q?n communications
¢y = 3 cyq and put it in M, and g%n® multiplications. For step B and step 7, there are
k=1 no communications required, only g°n® additions. So
0=g¢°n? + ¢°n? = 2¢°?, ¢ = ¢®n, and

31

Uy 5-1

Yji-1

P, By Pn

Pj:
Iil l‘J

Pa:

Py: Ci,1,j~1
Py: Ciji-1
P,:

a). Fetch a portion of a row of L (j < i).

P, Pa Pn
Ciy,j~1 Ciin
Cizj~1 Cien
Cijj-1 Cijn

d). Parallel qgg{lpute
Wy = 25~ 2, Cig:
j = By L Ciki
Figure 5 L-U decomposition.

2c_ _ 2¢°n - 1
o+ 2c 2q_3na + 2qzn gn+1

COom(MatMul) =

Notice that qn is the size of the operand matrices. This
means that for the algorithm given above, the CO value
is inversely proportional to the operand size.

IV. 1-U DECOMPOSITION

The classical Gaussian method for solving a linear

system of equaticns
Ax=b

where A is an nXn matrix, x and b are nx1 vectors, is to
transform the matrix to a lower iriangular matrix via
successive row transforinations. Equivale-tly. one can
decompose A into two trianglar matrices and then solve
the resulting systems. The L-U decomposition problem
is to find two matrices L and U of the form :

1 o . . 0 u;; Uiz
l2y 1, . 0 ‘ 0 |uz
L= AU=
. 0 ..
In1 lne lnn-1 1 o 0 . 0

LY
such that A = LU. Then to solve Ax = b, we could, instead,
solve two triangular systems
Ly=b
Ux=y.

b). Fetch a portion of a column of U.

Wy

Uzn

Upn

32

c). Paraliel compute Ciig = by

In our OMA, A is initially spread out in the memory
modules with a; in M. The resulting L and U will be
finally stored in the form :

Un Uz Uyn
121‘. Ugze Ugpn
ln 1 11’12 1n,n—l Unn

The factorization takes n iterations. On the i-th
iteration, the i-th row of U will be evaluated, and then the
i-th column of L is evaluated, via the following formulae:

uy = ayj j=1,..n
Iy = ap/upy j=2..n
uﬂ = au-:(Zi lﬂ(ukj j = i,...n (U)
=1
=]
ljl = [aﬂ—lz_fllp(uhl/ Uj j=i+l,..,n (L)

To compute (U), note that it is an inner product from
elements in a row memory with elements in a column
memory. As in matrix multiplication (Section III), it
takes 2i computing steps. equation (L) is similar to (U)
except that now we take advantage of the broadcasting
feature. We first put uy in the i-th column memory by
processor P, then proceed like (U). Finally, division by
uy takes two additional steps. one for the broadcast, the
other for the division. Figure 5 shows the diagram for a
typical i-th iteration.

The result is easily generalized to the case of qnxgn
matrices. The wrap-around storage scheme can be used
and the argument is similar to the discussion in Section
Ill. We can summarize the method into the following algo-
rithm.

Algorithm 2 (LUDec) :

INPUT : a3, i,j = 1,..,qn. Wrap-around in OMA of n proces-
sors.

OUTPUT : lower triangular matrix L, upper triangular
matrix U. Such that A=LU.

STEP 0: Initialize L = 0, U = 0, ¢j = 0, i=1,..,n, j,k=1,..,.q.

STEP 1: Fori=1to gn do STEP 2 to STEP 14.
STEP 2 : For j= 1 to q do STEP 3 to STEP 5.
STEP 3 : CM mode. Parallel fetch

L -1)q+1s

li.(]—l)q-ﬂ’r

STEP 4 : RM mode. for k = 1 to q do STEP 5.
STEP 5 : Paraliel multiply

Cikj = Li(~1)g+ 19G-1)q+ 14+ (k-1)q

Cnlg = b, g-1grnU(i-1)gsni+k-1)q
STEP 6 : For k =1 to q do STEP 7
STEP 7 : Parallel

W k-1)n+1 = 84 (k—1)n+1 =~ 2 ‘2 S (k~-1)n+1m
1

I=ilm=

Y, (k-1)n+n = 8lm — i i: Climm

l=1m=1

STEP 8 : CM mode. P; pass uy to every memory
module in i-th column.

STEP 9 : For j = 1 to q do STEP 10 to STEP 14.
STEP 10 : RM mode. Parallel fetch

Ui-1)q+1.4

U(j-1)q+nt

STEP 11 : CM mode. for k = 1 to q do STEP 12.
STEP 12 : Parallel multiply

C1q = b Ge-na(-1a+ 1(-1g# L

.

Crk = bir(k-1)g.(-1)a+n-1)g+n

STEP 13 : For k =1 to q do STEP 14
STEP 14 : Parallel

l(k—‘;l)nH.i = (ﬂ(k—l)nu,i - li: i‘ Cl,(k—l)n+1.m)/ Uy
=1lm=1

Yge-1ynins = (s — 12 :?: Clicm)/ Wy
=lm=1

Theorem 5 : The LU decomposition of a gnxXgn matrix

proof :

takes 0(q%n?) steps.

During the i-th iteration. Each of the y j o=
i,...qn. requires 2i steps. Since the matrix is
stored in a wrap-around manner. The gn-i+ 1
evaluations have a parallelism of n. Thus
2i{gn-i+ 1)/n < 2qi.
steps are required to compute all uj, j =1i..qn.
1t takes 2q more parallel steps to compute Iy, j=
i+1,..qn. So the total time for LUDec is :

T= §(4qi+2q) = 0(c®n®).
i=1

This yields an computation time of

o= g(l&qi +2q) = 4qmgr21—+1)—+ 2¢®%n = 2¢°n? + 4¢%n.
i1

with a total communication time given by :

¢ =2¢®n

33

Thus the CO value becomes
4g°n - _2
2¢°n® + 49°n + 4¢°n an + 4

COoua{LUDec) =

V. TRIANGULAR SYSTEMS
Let A be an invertible lower nxn triangular matrix.
The problem of solving a triangular system is to solve a
system of linear equations of the form :
X = Cr1.

Xz = Cz1X1tcgg.

Xp = Xt +Cppno1Xn-1tCpn.

To achieve this in OMA, store the matrix C = {ey)
with c;; in M. The proposed algorithm takes n iterations,
and does the following in the i-th iteration :

1. Broadcast x; in the i-th column memory.
2. Processor P; for j > i computes cjixj+ey and the
new value is assigned to cj.

Notice that at the end of the i-th iteration, Xi+17Ca1,j+1 1S
stored in Mj4y j+;. The i-th iteration is illustrated in Figure

The algorithm can be generalized without difficulty
to the case of systems of size gnxqgn.

Algorithm 3 (TRIS)
INPUT: C = (cu), Lj=1,..qn withcy = 0ifi<j.
OUTPUT : Solution %{i = 1,..,qn of

X) = Cy1-

Xz = Cz1X;+Ca.

Xn = cniXyt..+Cppn1Xn—1+Cpp-

STEP 1: Fori = 1to qn do STEP 2 to STEP 4.
STEP 2 : CM mode. P; pass cy to the i-th column
memory.
STEP 3: For j = 1 to q do STEP 4.
STEP 4 : Parallel multiply and add

C-1)qrL(i-1)a+t = C-1q+1{-1)q+1 T C{i-1)q+1.iCi

Cli~1)gin.(j~1)g+#n = C(j-1)g+n.(j-1)q+n + C{-1)g+n.iCii

STEP 5: Fori=1toqndox; = ¢y.
Thus we obtain the following theorem.

Theorera 8 : A triangular system of size qnxgn can be
solved in the OMA using 0(q®n) steps.

In each iteration, there are at most qn computa-
tions of type ax + b, with a parallelism of n. So
O(q) steps are needed in each iteration. There
are qn iterations. Therefore the total time com-
plexity is O(q®n).

Corollary 1:

proof :

To solve a linear system of equations Ax=b
on OMA, 0(g%n?) steps are sufficient.

First apply L-U decomposition to A. By theorem
2, it takes O(g®n®) steps. Then solve two triangu-
lar systems Ly = b, Ux = y. By theorem 3, each
of them takes O(g’n) steps, giving a total of
0O{a%n?) steps are required.

proof :

P,

Ca.1 C2.2

H
nn

a) Initial memory contents.

b). Communicate cy to other procesors.

Now we update the x's and o'
the following equations :

L] * -
8p.qUp-1,4+PpqUpe1 gt €p.qUp.q = f1>.q""31>.qup.q—l_dp.q‘lp.q*(tI 1)

s alternatively according to

old _

old
Upgq =

new _ —y,0ld:
upq)tupg

W = wup o+ (1-w) (upq (12)
Where p = 1,3,..,2n-1, when updating odd rows: and p=
2,4,...,2n when updating even rows, q 1,..n, and

1< w < 2is a chosen relaxation factor.

Notice that (11} consists of n tri-diagonal systems
(see Figure 7c). So if processor P, can solve the p-th
system by using STRI, then (11) takes O(n) parallel steps,
Before we can do this, we must make all the necessary

—
Py: | data available to P,. We must first move the data in the
line below (or in the line above, depending on whether we
are updating o's or x's) to the row memory of P, (see
Figure 7b). To do this we set the machine in CM mode,
Py Cidr 108 7 Cierint and pass the o's down one row (or x¥'s up one row if
updating o’s). This takes n steps (if the shift option is
available, then one step is sufficient). It then requires a
P, oot o total of O(n) steps.

Pl p2 Pu

P, X X X

c). Parallel compute. 1 0 o e °
x x
o o
Figure 6: Triangular systems. X x

Pzz X X X
N . X o o e [¢] X X
In view of algorithm 3, we did one communication | © o
for each multiplication and addition. So :—= -1—= 2. The L X x

communication overhead for this algorithm is thus :)
2¢ 2 2 Fa: t o e o x
COoma(TRISY) = = = =1/2 °.° d x
oua() o+ 2c 0 2+ 2 sz ! — o 0
‘._+ 2 a). Initial configuration.

V1. PARTIAL DIFFERENTIAL EQUATIONS

Two methods will be discussed in this section. The
iterative method and the transform method. The latter is
also called the "direct method" in the literature.

The iterative method
Consider the partial differential equation
2
?..4- D(x_y)g%'l- E(x,y)u = F(x.y).

¥

which by finite difference approximation over a sxt mesh
of points becomes

2
AGey) T+ Blxy) 2t Cly)

Bp.qUp.q-1 + bp.qUp.gr1 + CpqUp-1,q + dpqupsyq + €p.qip.q = fpq
with the convention that elements of non-positive
indexes are zerc. Now the ;)roblem becomes one of solv-
ing a linear system of 2n? variables. We shall assume
that the serial algorithm to solve tri-diagonal systems
(STRI) is available for use. For better system utilization,
we choose a mesh of size 2nxn. Initially, every two rows
were stored in one row of memory with each memory
module containing two elements, as in the following
configuration :

X X X
P, 0 o - o
X X X
Py [o o
X X X
Py [} o " o

34

b). When updating o's, move the x's
adjacent to the upper row memory up.

Py: [X X X |
¢ o . o
X X X
Pa: X X X
o o . (o]
X x X
Py X X X
o c [o)

X X x'

f ——

¢). Now each row can solve (8.1.3) use
the serial tri-diagonal algorithm.

Figure 7: Iterative method of solving PDE
It takes three steps to update uf%" in view of (12).
So 3n parallel steps are enough to get through with (12).

To check the termination condition, we let

—]
Upq

(13)

then |¢|, the absolute value of the first term of (12) is the
error. During the computaion of (I2), ¢ is obtained as a
side product. Each processor replaces its own J¢| by the
bigger one as it computes upq’ along the row. Upon the
end of each iteration, the |¢| in P; is the maximun among
the errors in the i-th row. If any of the processors discov-
ers its le| is greater than the given tolerance, it issues a
signal to the master processor to continue the process.

- ¢ _10ldy —~ . new
¢ = o{upg-ugy) = upy

If none of the processors issues such a signal at the end
of an iteration, the procedure terminates successfully.

This type of method is known as Successive Line
Over Relaxation (SLOR). The approximate number of
iterations needed to obtain the error within 1077 is given
by

tsLor M np/ 4.

The method introduced here applies also to a mesh
points of size knxIn. The block storage scheme can be
adapted to reduce data movements. Under this scheme,
only the last and the first rows in each row memory
needs to be moved during the successive updates. No
other parts of the method needs to be modified.

Algorithm 4 (IPDE)

INPUT : Initial approximation U = (1), and coefficient

matrices

A = (ay), B = (by). C = (cy), D = (dy), E = (ey), F = (£y).
i=1,..kn, kis even; j= 1,..In.
And tolerance gg.

OUTPUT : Final approximalion W

STEP 1: flag = STOP;

STEP 2 : CM mode. For i = 1 to n-1 do STEP 3.

STEP 3 : Move the ki-th row of U to the (i+1) -th row
memory.

STEP 4 : RM mode. Update ali the odd rows via egs. (I1)
and (I2). and e according to {I3).

STEP 5: CM mode. Fori = 1 to n-1 do STEP 8.

STEP 6 : Move the (ki+1)-th row of U to the i-th row
memory.

STEP 7 : RM mode. Update all even rows via egs. (11) and
(12). and & according to (I3). If ¢ > &, for some
processor P, then Pp set the shared variable
flag = CONTINUE.

STEP 8: If flag = CONTINUE then goto STEP 1 else exit.

Theorem 7: The algorithm presented above has a linear
speedup over its corresponding serial
uniprocessor version.

In each iteration we move n-1 rows (either up or
down according to even or odd row update). This
takes 1(n-1) parallel steps. Using Crout’s method
[2] to solve (11), it will take BIn-3 steps. Fach
processor has to solve k/2 of them. Thus, the
time complexity becomes (8In-3)k/2. 5ln more
steps are needed to cornpute uf%" and check the
termination condition. Therefore the total time
is

T = I{n-1) + (BIn—3)k/ 2 + 5in = O(lkn).

proof :

The serial time to do this would be O(knxIn). Therefore,
the theorem follows.

To compute the communication overhead, we see that
each iteration consists of I{n-1) communications angd
4lkn + 5In - 3k/2 operation steps, So
_ 2i(n—-1) 1
COou(TPDE) = 4lkn + 5in — 3k/2 + 2l{n—-1) 2k + 3
Note that CO, depends only on k, which points towards a
better efficiency in grids with more rows than columns.

A

The Transform Method

Consider the difference equation (11). We take the
special case when

Bpq = bpg=Cpq =1, gpq= -l

35

So (I1) reduces to

Upgqt + Upger + Upgq + Upyyq = Epg p.g=1,.,n(T1)

Let v*! be the double Fourier transform of Upq . and
g"* be that of fp 4

=1
4. 1 '\L‘: ~2mi(sprtq)/n
vt = = up qe
P.q=Q

n—

1
—2ni(sp+tg)/n
_Ofp,qe

1
z
Npg

gs-" =

By taking the double Fourier transform on both
sides of (T1), we get

2cos(2ms/ n)+2cos(2mt/ n)-li}v'" =g

To solve (T1). we first take the double Fourier transform
of fpq . which according to [1], takes O(logn) steps. Then
each entry is divided by the expression in the square

bracket. Finally, a double inverse Fourier transform is
performed. The first step takes O{logn). Each division
takes a constant time. There are n divisions for each
processor, so O(n) is needed for the division step. The
last step takes the same amount of time as the first step,
{i.e. O(logn)). So the total time is O(n). Since the Fourier
transform algorithrn in [1] works for knxkn mesh points,
this direct method applies to the knxkn case as well. So
actually we proved Theorem 8.

Theorem 8: The equation given in (T1) can be solved in
time 0(k®n).
The method described above may be summarized
into the following simple algorithm.

Algorithm S (TPDE)

INPUT: F = (fy), Lj = 1....kn;

OUTPUT : The solution uj; of (T1).

STEP 1: g% = Double_F-transform(f,).

STEP 2: v** = g*'/[2cos(Rms/ n) + 2cos(2mt/ n) — 4)].
STEP 3: y; = Double_Invers_F_transform(v®t),

ViI. POLYNOMIAL EVALUATION
2

-1
Let P(x) = 'E 2, X* be a polynomial of degree n® - 1.
k=0
and xp be any given number. To compute P(xp), a
modified Horner’s method is appropriate for the OMA.

Rewrite P(x) in the form :

P(x) = i; al-jx(i“)“*j'l

Lj=1
. f}(iaijx(i—x)n)xjﬂ
=1 i=1
Hence the problem of evaluating a polynomial of degree
n? - 1 is reduced to the evaluation of the following n + 1
polynomials of degree n.
h i-
by = ‘5_,*11‘1'(13)' ! (H1)
izt

j=1,..n
and

Plxg) = Jf;lb]xé-l. (H2)
Observe that the n equations in (H1) can be executed in
parallel. Since for fixed j, a; are in the same column of
memories, we let processor Py compute the j-th equation
in (H1). By using Horner's method to evaluate (H1) at
X", 4n parallel steps plus logn steps to compute x¢" are

needed. To evaluate (H2), another 2n steps are required.
So a total of 4n + logn steps solves the problem, whereas
2(n® - 1) steps are neccesary if done serially. Thus a
linear speedup is achieved. Figure 8 shows a schematic
diagram of the algorithm.

The method can be generalized to the case when
P(x) is of degree (gn)? - 1. This time a3 1j = 1,.,qn are
stored in a wrap-around fashion. Equation {H1) now
becomes

b = gza,](xé‘)i"l j=1,..q9n (H=')
and (H2) becomes
P(xg) = Jz;bjxg—l. (H2)

(H?') differs from (H1) in that here we have qn evalua-
tions instead of n, and each polynomial is of degree gn.
Since wrap-around storage is employed, the coefficients
of each polynomial in (H1’) are still in the same column
memory. Therefore the time complexity to evaluate
(H1'), with every processor executing in parallel
becomes :
g(2gn + logn) + 2qn = 2g®n + logn + 2qn = 0(q®%n)

Since the serial time is 2(qn)? we arrive at the fol-
lowing theorem.
Theorem 9 : A polynomial of degree {(gn)? - 1 can be

evaluated in 0{q®n) steps.

Algorithm 6

INPUT : A = (ay), Lj = 1,..,qn. the coefficient matrix of
P(x). wrap-arounded in the OMA of n proces-
sors.

QUTPUT : a = P(xg).

STEP 1 : |Parallel. P; evaluates byg =ajq,

bij =gy + bj'jq.lxo.

STEP 2: P, evaluates cqy, = bgp1, ¢ = by + cje1x§

STEP3:a=rc,.

As two consequences of the polynomial evaluation,
we shall present the iterative methods of finding zeroes
of a given polynomial.

1. Newton's rnethod

Let xo be any given initial approximation and ¢ be
the given tolerance. For i21 keep evaluating the following
expression

P(x-1)

until |5 — x_4| < &.

We have an algorithm to evaluate P at any point. To
evaluate P’ note that

(g a:ijx(i~-l)n i1y
P(x) = R (N)

Where a'y; = [(i-1)n + j~1]a.

Equation (N) doesn’'t make sense when x = 0. To
take care of this problem, we first test x', the point
where we are evaluating. If it is 0, then P'(x') = 2a;3. Oth-
erwise, we go ahead and compute a'y, use these as
coeflicients, and evaluate at x'. Finally, we divide by x'.

To check the termination condition, we can use the

same strategy as we did in the iterative method of solv-
ing PDEs.

2. The bisection method
Let a and b be any two numbers with a < b, and let &
be a given tolerance. Suppose P(a)P(b) < 0. Then by the
intermediate value theorem of continuous functions,
there is an xg in (a,b) such that P(xg) = 0.
b—-a
2 -

Nowletc = One of the following must be true

1} P(a)P(c) <O.
2) P(b)P(c) <.

3) P(c)=0.
If 1) is true, and |c - a| > &, then we let b <- c. Repeat the
process. If 2) is true, and |b - ¢| > £, then we let a <~ c.
Repeat the process. Finally, if 3) is true, we found the
rootl.

This method is nothing more than evaluating polyno-
mials and making assignments.

Pix§: |ay a0 an
Poxf: |ag azg ... apn
Pox$: lag ane 8nn

8). Using Horner's method for each row evaluate at X§.

P, P, . P,

L R

b). Using Horner's method for column evaluate at Xo-

Figure 8: Polynomial evaluation.

VIII CONCLUSIONS

The analysis of computer architectures and com-
puter algorithms has always been concentrated on the
speed, cost and the ease of application and implementa-
tion. For the issue of parallel algorithms, speed is
obtained by utilizing all of the processors while reducing
unnecessary communications. In spite of the fact that
the communication pattern and complexity varies from
algorithm to algorithm, the diameter could serve as a
rough measure, and is ideally 1. But a unit diameter
implies that the network is completely connected, which
is cost-prohibitive. Therefore 2 is the practical minimum.
In this sense, the OMA machine proposed here is optimal.

We have proven the correctness of the algorithms
presented in this paper. Cornpared to algorithms for
most proposed parallel the ones studied here are simple,
both for understanding and implementation, and exhibit
linear speedups in the OMA machine. The question of
how the OMA behaves compared to other parallel
machines was answered in the begining of this paper: it
can't be worse than any other system with the same
amount of processors beyond a factor of 3. The proof of
this provides a way of producing algorithms for OMA out
of algorithms for other machines.

References

[1] P.S Tseng, K. Hwang and P. K. Kumar A VLS/-
based maultiprocessor urchitecture Jor imple-
menting Parallel algorithms. Proceedings of the
13-th International Conference on Parallel Pro-
cessing, Aug. 1985.

[2] Richard L. Burden, J. Douglas Faires and Albert C.
Reynolds. (1978), Numerical Analisis(second edi-
tion). PWS publishers, Mass.

[3] Gulbin Ezer, Brad Hoyt, Sandeep Sen, J.S.
Sreekanth and Isaac Scherson 4 parallel process-
ing architecture for image generation and pro-
cessing. Preliminary report, ECE 84-20, Univer-
sity of California, Santa Barbara. Aug. 1984

[4] R. W. Hockney and C. R. Jesshope. (1981), Parallel
Computers. Adams Hilger Ltd, Bristol.

[5] E. Horowitz and S. Sahni. (1978), Pundamentals
of Computer Algorithms. Computer Science
Press.

[6] K. Hwang and F. Briggs. (1984), Computer Archi-
tecture and Parallel Processing. McGraw Hill.

[7] Louis A. Hageman and David M. Young. (1981)
Applied fterative Methods. Acadernic Press.

(8] Roland C. Le Bail. (1972), Use of fast Fourier
transforms for soluing partial differential equa-
tions in physics. Journal of Cornputational Phy-
sics 9, 440-465,

(o]

[10]

[11]
[12]
[13]

[14]
[15]
[18]
[17]
[18]

[19]

[20]

37

Paul N. Swarztrauber. (1973), The direct solution
of the discrete Poisson equation on the surface of
o sphere. Journal of Computational Physics 15,
46-54.

Roland A. Sweet. (1973), Direct Method Sor the
solution of Poisson equation on a staggered grid.
Journal of Computational Physics 12, 422-428,
Vargar R. 5. (1962), Matriz iterative Analysis.
Prentice Hall, England Cliffs. N. J.

Alfred N. Aho, Hoperoft and Ullman, (1982), Data
Structures and Algorithms, Addison - Wesley.

Alfred N. Aho, Hoperoft and Ullman, (1974), The
design and Analysis of Computer Algorithms.
Addison - Wesley.

Leon S. Lasdon. (1970), Optimisation Theory for
Large Systems. MaCmillan,

Knuth. (1973) The Art of Computer Programing,
volume 1 (second edition). Addison - Wesley.
Knuth. (1981) The Art of Computer Programing.
volume 2 (second edition). Addison - Wesley.

Jean Loup Baer. (1980), Computer Systems Archi-
tecture. Computer Science Press,

W.J. Bouknight, S.A. Denenberg, D.E. McIntyre,
J.M. Randall, AH. Sameh and D.L. Slotnik, The
liliac IV system. Proc. IEEE. vol. 60, no. 4,
Apr.1972, pp. 369-388.

K.E. Batcher. The flip network in STARAN. Int'L
Conf. Parallel proc. Aug. 1978. pp.85-71.

K.E. Batcher. Design of a Massively Parallel Pro-
cessor. IEEE Trans. on comp., C-29, Sept. 1980.
pp- B36-840.

