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Abstract Occasionally, we will denote a member

of an interval A by A.
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from [4].

AoB:={ao b‘l a € A, b € B}
U ........ convex union operation for two inter-
vals A,B € IS:
AUB:={x€S |Ja€A beB:
a{x<{b V b<x{a)

d(-) ..... diameter of an interval, i.e.
A =[a,b] € IS = d(A) := b-a
m(*) ..... midpoint of an interval

(in our context m(A) may take any point
out of an interval A € IS)

O :PR-IS rounding from PR into IS with the pro-

perty

/\ CA=nN{XeIs | AcCKX)
A € PR

For vectors and matrices this defini-

tion applies componentwise
®,9©, ... interval operations in IS,IV,sS and IM.S
O, defined for T € {S.VnS.MsS} by

ANVA

ABEIT o€(+,-,,/}

A®B .= O(AoB)

Throughout this paper we consider the following
problem:

"Let £ : D - V,R be a continuously differentiable

function, D C V4R. We seek an x € V,R with f(x)=0,
or more practically, we ask for an inclusion X €

IViR of x, where the diameter d{X) is sufficiently
small."”

We restrict ourselves to the case where the com—
ponents of f are arithmetic expression with opera-
tions +,-,+,/ and integer exponentiation. The al-
gorithm to be introduced determines an inclusion X

of the solution x and performs an automatic veri-
fication of conditions such as the existence and

-~

uniqueness of a zero x of f within X. These
methods are called E-methods (E is the first
letter of the three German words "Existenz” for
existence, "Eindeutigkeit” for uniqueness, and
"Einschliefung” for inclusion.




For this purpose, the problem of finding a zero x
of f is transformed into a fixed point equation
g(x) = x (see [7]. [11]. [12]). An inclusion of
the solution of this fixed-point problem is com-
puted iteratively in the space IV,R starting with

an approximate solution x € V,R. By use of ‘rési—
dual correction techniques the diameter of the
resulting interval is diminished more and more.

1. Theoretical foundations

We summarize some theorems from [7]., [11], [12]
concerning the existence 2nd uniqueness of a
solution of a system of equations. At first, we
need the following

Lemma 1: (Schauder’s fixed point theorem)

Let £ : X > VR be a continuous func-
tion on X C VhR, X nonempty, convex and
compact. Tf f(X) C X, then, the equa-

tion f{w} = x hzs at lecast one solution
~
®x in K.
Proof: see [0, e.g. O
From this lemw: we have immediately

£
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/N /Nt ermy. (o
A €PX x €A
If F(X) € X, then the equation f(x)=x

has at least one solution x in X and

N\ 7 e Xy

k20
where FO(X) =X, Fk(x) ==F(Fk—1(x)) .

Proof : From X € IVhR we have: X # ¢, X compact
and convex. From the definition we have
F(X) := {f(x) | x €X} CFX)CX.
Therefore, Lemma 1 delivers the exis-
tence of a solution x € X of f(x) = x.
The rest is shown by induction. a

F may be arbitrarily chosen to satisfy (1.1). In
practical applications F will be any interval ex-
tension of f. ,

Theorem 1 allows no conclusion about the unique-
ness of the solution. For this purpose we define

/\ A§32<:?A§B,\A;£B

A.B€IR

We also need the following two lemmata from [15]:

Lemma 2: Let A = (( a”)) € MiR , x = (xi) € ViR
and x>0. Then for the spectral radius,
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requires an exact summation algorithm as stated in
[8]. With such a tool the critical residual term

O(I ~ R « J(x U Y)) may be evaluated with only
one rounding in each component.

Next, a theorem can be formulated directly appli-
cable on computers. For a better understanding of
the following corollary it should be remarked
that, in practical application, the inclusion of

the absolute error x - x of an approximate solu-
tion x leads to better results than an inclusion
for x itself. This is summarized in the following
Corollary: Let x € V.S, Z € IVyS, and

f e Cl((x<+>2) U x). For every arbitrary

but fixed Y C (x ©® Z) U x, let J(Y) €
IMnS and assume that for every set of n

vectors A SRRERS AN €y,
afl af
a0 e )
1 n
. . € J(Y)
of af

s ) o 5= )
1 n

holds. Let H : IPZ - IV,S be defined as

H(Y) := -ROOF(X) ®
O(IRJ(x U (x©Y)) )0 OY

(1.5)

for Y € PZ, where R € MpS is an arbi-
trary but fixed matrix. If

HZ) G Z . (1.6)

O has one and
only one solution x in x@Z and x - x €
#%)z) .k o.

then the equation f(x)

2. Equation solving with error control

The corollary provides the second of the two basic
steps in computing verified bounds for the solu-
tion of a system of equations:

1) an approximation step to determine a

sufficiently good estimate x.
2) an inclusion step to determine the

enclosure Z of the absolute error x - x
with respect to x.
In this chapter we will discuss some implementa-

tion aspects of these two points. Let us start
with the inclusion step.




2.1 Implementation of the inclusion step

According to [11] we define an e-inflation for an
interval A € IS by
A+ [-1, 1] - e « d(4) for d(A) # 0
Aoe =
A+ [-n, +1] for d(A) = O
Here 1 is the smallest positive floating-point
number of the computer in use. For interval vec-
tors this definition applies componentwise. e-in-
flation is indispensable to assure the convergence
of the interval iteration. In practice, 0.1 turned
out to be a good value for e.

Using the corollary, a verified inclusion may be
obtained by performing the following iteration in
the space IV,S:

Y :=0; count :=0 ;
repeat
count := count + 1 ;
Z 3=Y°(—.;

Y := -ROOE(x) @
O(I-R-J(x U (x92)))®Z

until (Y g Z ) or (count = count_max);

If the termination criterion Y § Z is satisfied,
then by corollary 1 it is verified that the exact

solution x lies in x®Z and that no other solution
lies between these bounds. (The integer variable
count is used to prevent infinite looping in cases
where the iteration is not convergent).

2.2 Performing the approximation step

There are a large number of different methods for

obtaining an approximation for x (see e.g. [9]).
In the following any of those principles may be
used. Here we describe only the "classical”

Newton's method

D) e By L e By (206

since the problem of evaluating the function f at
a point x(k) with high accuracy is common to all
methods. If

< k
residual term f(x( )) accurately, we have no
measure how near we are to the exact solution.

it is not possible to compute the

As stated above, the components fi of f are con-

sidered as arithmetic expressions. The computation
of fi(x) is wusually done on a computer step by

step, i.e. using an algorithm which performs one
operation in the formula after the other. The
results of the operations are stored in some

intermediate variables Zyee.-0Z,, say.
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high accuracy to guarantee a sititciently

sharp inclusion. This is also possible for

systems arising from arithmetic expressions

by applying the exact scalar product as

developed in [8]. For this purpose a

"division equation” 7, = zy / z‘j has to be
=2z

transformed into z, 11 =z -

In most cases it is not necessary to compute the
value of the partial derivatives with the same
effort as the function value since the success of

(2.6) mainly depends on the accuracy of f(x(k)).
Nevertheless, it is also possible to determine the
partial derivatives with comparable accuracy. (For
the technique of computing the partial derivatives
of a function we refer to [10]).

With the methods for linear systems from [7], each
Newton step may be performed with high accuracy
since each step is the solution of a system of
linear equations

f‘(x(k))'(x(k) - x(k+l)) = f(x(k))

The methods from [7] are specializations of the
method described here, and so this way of perform—
ing a Newton step may be considered as a recursive
call of the procedure in this paper. The possibi-
lity to do that is important in the cases where
the Jacobian is ill-condi tioned.

9.3 An algorithm for the solution of a system of
nonlinear equation with maximum accuracy

We use the following notations: x denotes the
exact solution of the system of nonlinear equa-
tions f(x) = O, b is the base of the floating-
point system in use, t the length of the mantissa.

~ k .
The approximation of x in the k-th step is 2 x(i)

i=o

~

where x(i) € S, i=1,...n. This form of our appro-

~

ximation x is usually called a "staggered correc—

tion form" of x since all values x(i) are actually
stored and the summation will be done when we have
finished. To this approximation we compute an
inclusion Z of the next correction
~ k-1.. .
ML I e

i=o

In step (N3) of this algorithm, least bit accuracy
is forced. This may be weakened if t is replaced
by some positive integer to < t. In case one of

the components of the exact solution is zero, some
refined termination criterion may replace the one
stated here. This should be done since the compu-
tation of an inclusion [-n.,n] of zero is rather
expensive.




Algorithm:

k =0 ; { correction counter }

k-1.,.
Solve £( 3 x(1) « x(K)y _ g
i=o

(N1)

approximately for the unknown x(k)

using Newton’s method (2.6) with
formula evaluation technique; in ill-
conditioned cases perform each step
with high accuracy using the linear
techniques from [7]; call the appro-

ximation x

(N2) Compute an approximation R of

k .
£ 3 xUyL
i=o
J =0 ; { iteration counter }
ko~ i
Z:=Y; X:=<>(Ex( ));
i=o
re

J:

E

J+1;

Z:=Y o e;

Y =W & O(I-R-J(X U (X02)))OZ :
success = (Y g Z) ;

until (3 = 10);

i

success oOr

(N3) 1if success

then dm := d(X®Z) ;
if dm < [x®Z] - b ! goto (N4)
else
k := k+1 ;
if k> 10
hen

ct

write('No solution

achieved’); stop
lse goto (N1)

td

(N4) Result: x € X®Z

3. Examples of application

The following two examples demonstrate the typical
behaviour of the equation solver presented above.
They will show the need of an exact scalar product
and, furthermore, a formula evaluation technique
using this scalar product.

Example 1:

We define the following system of equations for an
unknown vector x € VpR:

f(x) := a(Hx + y(x)) =0

where H € MR is the Hilbert matrix of degree n,
i.e. H= ((hij))' hij = 1/(i+j-1), 1,3 = 1,...n.

¥ ¢ VaR - VR is defined by
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the ACRITH ge.
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90 | ©
100 | ©

20

40

50

60

70

80

places per step.
‘ts for X without

'n table 3.2b when

¢ e of evalu- ation

correct digits are

done on an IBM

‘z obtained by using

values for the

: values of column 2
= 0.3, A = 0.95.

tal

r.on by

.rerva! arithmetic

12
08
8
0.9“184‘1
43.3
-31.2

"overf low"
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e T system
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[3,]

). 9336(:3886103744
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W O W»
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— N

[eo]
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O -
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o ®
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