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ABSTRACT

Algorithms for the high speed binary arithmetic operations
of addition and multiplication in a VLSI environment are analyzed
for area-time efficiency. It is shown that some schemes for
addition and multiplication, although good for stand-alone designs,
fail to provide both area and time efficiencies simultaneously.
Solutions that yield area-time efficient practical implementations of
these arithmetic functions are described.

1. INTRODUCTION

The advanced VLSI capability available to system designers
gives them the responsibility to evaluate and chcose algorithms
that yield regularity in the design and give rise to overall higher
system performance. It is not sufficient to choose algorithms that
maximize the speed for the individual modules of the system;
rather, the system must be considered as a whole. This is
analogous to finding a globally optimal solution in the presence of
many local optima. For example, to design a high performance
and regular data-path with its arithmetic elements connected to
data buses as shown in Fig. 1, one has to consider the flow of
control signals, buses passing through the eclements, etc.
Therefore, the floor-plan for each element may not be chosen
freely; instead, it is often determined by other factors as shown in
Fig. 2 where the data-buses and the control signals constrain the
floor-plan of the multiplier in Fig. 1. Similar considerations hold
for all other units too.

In this paper we will consider mainly the problem of
choosing the appropriate algorithms for the design of multipliers.
But adders, as will be shown later, often limit the speed of
multiplication as well as other arithmetic and logical unit (ALU)
operations, we will also discuss them. Many authors have
considered the design of stand-alone multiplicrs [BrKu80l,
[Prvu8il], and [AbAn80]. Similarly, the problem of adder design
has been addressed by [BrKu82], [OnAt83], [OkBa85], and
[NgIr85]. In these studies, the authors have assumed that all the
gates have identical delay irrespective of their complexity so as to
simplify the derivations of area and time bounds for the
algorithms. However, the above assumptions can lead to erroneous
conclusions about timing.

Here we will focus our attention on the analysis of the
schemes for implementing multipliers using the modified Booth’s
algorithm [Hwan79]. In Section 2, we analyze and compare the
area-time complexity of fixed-point multipliers and show that the
final adder used to form the product is the main speed limiting
element. In Section 3, we study the problem of fast addition in a
VLSI environment and show that the carry-lookahead scheme for
a properly chosen number of bits provides an area-time efﬁc'iem
practical solution. The main results of our study are summarized
in Section 4.
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2. MULTIPLICATION: ALGORITHM ANALYSIS AND
IMPLEMENTATION

To multiply two numbers
X=Xyt ) Xyep s v , X1 , Xq) and
Y= (Ut s V2 s oo » ¥1, yol represented in 2's complement

notation, using the modified Booth’s algorithm, M

partial products are generated {Hwan79] and then added to get an
(m+n)-bit product. Although higher radix algorithms can be
derived, they are not attractive from the point of view of layout,
since they require the generation of terms that are not powers of 2
and need more logic. Therefore, we will not consider such
algorithms here.

For the modified Booth’s algorithm, the partial product is
recursively given by (1)

R, =R;_, +Xf, and
Si=yaua tyu =2y, )

where i =0,1,2,...... ,ﬂz_—l and R, = y_; = 0. Note that R; is
the (n+1)-bit partial product at the i* stage of recursion. The
algorithm generates the complete product in -‘;’— recursions with 2

bits being produced at every stage and (n + 1) bits generated in
the final fast adder. To implement this recursive algorithm
sequentially, the three least significant bits of Y are examined, the
value of the function f; is determined, and one argument for the
adder is then generated; the other input to the is adder is formed
by R;-,. While the addition is being performed, the next three
least significant bits of Y are examined and the process continues
until all the bits of Y have been used. The interconnection pattern
for this implementation is simple and yields a regular and area

efficient layout [Shar85]. But, it is slow since it takes —-

iterations to complete the multiplication. The multiplication time
can be reduced by generating all the partial products and their
sums in parallel as described in the next section.

2.1 Parallel Implementations

All the partial product bits PPij» as given by (2), can be
generated simultaneously.

ppy=fi.x;, 2)
where f; and x; are defined above and ppij are the individual bits
of R, ie, R = [ppi,n+l » PPin s PPin—1 + oveeee » PPit s PP.‘,O]-

These partial products can be summed in many different ways:
Wallace’s carry-save adder tree [Wall64], Dadda’s parallel
counters [Dadd65], recursive carry-save adders [Kuck78], etc.

2.1.1 Wallace and Dadda Schemes:
In the Wallace and Dadda schemes, a large number of
inputs are reduced successively to a smaller number until only two




inputs are in every column. The main difference between these is
that Wallace’s scheme uses full adders whereas Dadda’s scheme
employs multi-input adders (counters). If counters are used that
take d-inputs and produce e-outputs, we have found that the
general relation between the number of inputs and outputs (<
inputs) for any stage is given by (3)

oulpuls = e lE!;L”J + inputs mod d . (3)

Here, [x| ([x]) represents the smallest (greatest) integer >
(<) x, respectively. However, the use of complex parallel counters
to realize multipliers requires more wiring, which would further
increase with the incorporation of control signals and buses in a
VLSI system. Therefore, a simpler counter such as a full adder
should be used. Under this condition, Dadda’s parallel counter
scheme reduces to the Wallace tree. A block diagram of a
multiplier using the Wallace tree is shown in Fig.3. For the
Wallace tree, the number of inputs and outputs at every stage and
the number of stages needed for final reduction can be obtained
from the following algorithm.

ko=~K; /* initial number of inputs */
s=0; /* initialization of stage counter */

/* n[ ] is the number of adders (counters) at s** stage */
/* Assume d = 3 */

while(k,>2) {
k

nls]l= “;— ;
/* k, is the number of inputs to s** stage */

kg =2nls 1+ k, mod3;
/* kg4, is the number of outputs from s stage */

st
/* s gives the number of stages needed for final reduction */

The flow of signals for a 2-bit slice in the middle of the tree
to accomplish the summation of the partial products is shown in
Fig.4. The complexity of the signal flow increases with m. To
reduce all the partial products to final summation, a tree of
n+Dm—-1)

2
final adder of length (n + m — log m) bits is required to generate
the product. Thus following a typical approach [BrKu80], it can
be seen that the multiplication time for this algorithm is
O (max (m,n)) and it needs O (mn) adders. The overall area-time
efficiency for this algorithm is O (max (m,n)mn).

> adders with a depth of log m is neceded. A

2.1.2 Recursive Schemes:

Other schemes for reducing the partial products to final
summation use recursive algorithms [Kuck78]. Here we describe a
recursive algorithm that yields a regular layout and can
accommodate the buses and control signal gracefully. The addition
is both distributive and associative. Therefore Kuck’s algorithm
can be modified to the following recursive algorithm (R-
algorithm}, given by (4), to reduce the partial products to the final
summation.

qij = PDij ® gi-1j+2 @ €i-1,j+1 » and
Cij = PPij - 4i-1,j+2 + ppy; + Gio1j+2) . Ciotgar - @
In (4) g; and ¢; are the bit-level partial sum and carry,

respectively. Note that gy ; = c_;; = 0 for all j’s. Eq.(4) is a
nonlinear recurrence in Qi-1,7+2 and ¢;_ ;4;, with the terms PDij
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regarded as known constants. We can solve it directly using an

(n+1) m—-1)

array of - bit level adders as shown in Fig.5a.

The signal flow for this scheme is shown in Fig.5b. A typical cell
contains the logic for generating pp;; as well as a full adder as
shown in Fig.6a; its layout is shown in Fig.6b. In Fig.5a, the final
add operation is done using a fast adder similar to the one used for
the Wallace tree. Note that the recurrence is solved using O (mn)
adders in O (max (m , n)) time. Thus, the area-time efficiency for
this design is O (max (m , n)mn).

2.2 Comparison of R-Algorithm and Wallace Tree Schemes

Area-time efficiency estirates are useful for reducing the
choices in algorithm design, but when two algorithms have nearly
equal O()’s, a careful analysis of the details is needed. For
example, it is generally believed that the Wallace tree is the fastest
design for a multiplier [Hwan79), and one such implementation
has been reported [GGAGS86]. However, from the above area-
time analysis we see that the R-algorithm and the Wallace tree
algorithm have the same O()’s. Further, we will show that the
R-algorithm yields a more area-time efficient design in practice,
especially when constrained layout is to be dome. This is
demonstrated as follows:

1. From Figs. 4 and 5b, it is seen that the signal flow for the
R-algorithm is much simpler than that for the Wallace tree
and hence leads to a simpler realization.

2. The number of carry-save adders for the R-algorithm and
Wallace tree, Ng and Ny respectively, are given by (5)

(n+1)(m—1)

Ng = — )

2
(n+1)(m—l)J

Ny >
¥ 2

(s)

It is clear that Ny >Ny and therefore that the Wallace tree
will occupy more area than the R-algorithm.

3. The depth of the Wallace tree is log m whereas that for the

(m

R-algorithm is —;—Z;log m. However, the latter can

m —

generate 2 ! ] products as compared to log m for the

Wallace tree.

4. The Wallace tree algorithm needs an (n + m ~log m)-bit
fast adder whereas the R-algorithm needs an (n + 1)-bit fast
adder and thus generates the final product faster. The
multiplication times for these two algorithms are given by

(6).

log m
Tw(nxm) = max (Typp, Ty) + Taux + ZTcsai+ Tiwam

i
Tr(nxm) = max(Type, Ty) + oy
m—1
2

+max| 3 TCSA,-,Tz[’"z“] +Then - ©)

In (6), Typg is the time needed for the modified Booth’s
encoder, T, is the time needed to stabilize the X-input,
Tyyx is the time for generating one of the inputs to the
carry-save adder, Tcgy; is the adder delay for the i stage,
and T, is the time needed to do fast addition of i-bits, Note
that for the R-algorithm, the Tcsai are identical for all
stages; this is generally not the case for the Wallace tree.
Assuming that the first two terms for Ty (nxm) and
Tx(nxm) are equal, all the carry-save adders take the same
time of 0.5nsec, the fast adder adds in an average time of
0.3nsec/bit, and the number of bits in X and Y are equal,

—logm) >




ie, m=n, then we can plot the last two terms of (6) as
shown in Fig.7. From the figure it is clear that Tp(nxm) is
always less than Ty (nxm). Thus, the R-algorithm leads to
a faster and more regular multiplier design.

It should also be noted that the fast adder required to
generate the final product is crucial for the overall speed of the
multiplication process. We will analyze the fast addition in the
next section.

3. ADDITION : ALGORITHMS AND IMPLEMENTATION

The add operation is primitive but important since the
performance of many complex modules like ALUs, multipliers,
etc., depends on the speed of addition. Many authors have
analyzed the problem and suggested some solutions for speeding up
the add operation [BrKu82], [OnAt831, [OkBa85), and [Nglr85).
For fast addition, the carry-lookahead (CLA) scheme is the most
obvious, but if carried out dirsctly it results in an irregular design
with large fan-in and fan-out gates. To overcome this difficulty, a
tree based CLA scheme is suggested in [BrKu82] that solves the
large fan-in and fan-out problem. Another solution with area-time
efficiency of O(n (log n)? is given in [NgIr85] where negative
logic is used to generate block carries. In all these o0
calculations, one generally assumes that the gate delays are the
same irrespective of gate complexities. Because of this the results
obtained do not hold good in practice. The approach of using a
variable number of bits for different groups as suggested in
[OkBa85] is also not very practical from the layout point of view.

We consider the adder design problem under the following
conditions:

1. The design is to be implemented in either NMOS or CMOS
high performance technologies.

2. No more than two devices are to be connected in series from
cither supply rail to the output node so that circuits can be
used with low supply voltages (2-3.5V).

3. The design is to be highly modular to increase the layout
efficiency.

4. The signal propagation delay along silicide wires is
proportional to the square of the length. This is in contrast to
the assumptions made in [NgIr85] when metal is used to
route the signals. Thus, increased device sizes cannot make
the delay along wires constant.
With the above constraints, we will analyze the binary addition
using the carry-lookahead carry-select adder scheme and show that
it provides a design that is highly modular and area-time efficient.

Let 4 = {a,_,a,;...a,a,}) and B = {bp1bpieby b} be
two binary numbers that are to be added to produce their sum
S = (5,-18y-3....8150). The sum and carry from the " bit
position can be expressed by (7).

[ Cx’n
=g +pcy
Si=a;®b &, @)

where g, = a; b;, and p; = a; + b; are the generate and propagate
terms, respectively. In (7), ¢; is expressed recursively. It can be
used as such to design adders, but this leads to a slower adder
[OnAt83]. The fastest way to add is to generate the carry and
sum for all the bits simultaneously. However, this is obviously not
a practical solution, and a compromise must be made in terms of
the number of bits the carry is looked ahead; typically it is chosen
between 4 to 8 bits. As the number of bits are increased in the
group, the fan-in and fan-out problems become important. For
example, the maximum fan-in or fan-out for a gate is (m + 1)
when m bits are used in the group.

In (7), the ¢,’s can be expanded to see the effects of fan-in
and fan-out.
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Co=poc-1 t+go,
CiL=pipoc-ytprgteg,
Cr=Pap1Poc-1tpPaprgoatprrg g,
€3=P3PaP1Poc-1+P3papigotPsprgi+Pigr+ e,
So-ﬂo$bo$l}_l N

Sy=a, &b Dy,

S;=a, Db, ®c,, and

53-a3$b3$82. (8)

In (8), the maximum fan-out is from the c_, signal, and the
maximum fan-in is to generate the c signal. In both cases it is 5.

Although we can use multi-level carry generation logic to
speed up the operation, it results in a disproportionate increase in
the area and the wire length. The binary tree structure of
[BrKu82] has a similar problem of routing; moreover the number
of gates in its signal path is not different from the case when we
use one level of carry-lookahead over a 4-bit group only. The logic
for the 3rd bit position as given by (8) is shown in Fig.8. Here,
we have used 2-input NAND gates, multi-input NOR gates, 2-
input XOR gates, and inverters only. The carry-out from the 3rd
bit becomes the input for the next 4-bit group, and so on.

A 32-bit adder using this 4-bit carry-lookahead scheme has
been designed. It requires 7 levels to generate the sums in bit
positions 28 through 31, which is the same as for the Brent-Kung
adder [BrKu82). However, their scheme has the distinct feature
that the carries for bit positions 2/, where i = 1,2, . , can be
generated faster than others. This can be used with advantage to
design large modulo adders, say for 64, 128 or 256 bits. We can
also mix the binary tree adders and the fixed carry-lookahead
schemes to take advantage of both.

For the fixed lzength carry-lookahead scheme, the area-time

efficiency is O ( % ) as compared to O (n (log n)?) reported in

[NgIr85] and O(a log n) in [BrKu82). The area-time efficiency
for out design is not affected whether it is used in the constrained
or unconstrained layouts; this is not true for the other designs.
From Fig.8 it can also be shown that the adder delay T, is given
by (9)

n

Tn = max (TNRZ ’ TNDZ) + [2TNRm+l + Tlnv]

+ 2 (Txor + T)) ()]

where Ty, is the gate delay for an i-input NOR gate, Tnpa is the
gate delay for a 2-input NAND gate, Tyop is the gate delay for a
2-input XOR gate, and T, is the delay for an inverter. Note that
in CMOS technology we would use n-channel devices to
implement the logic and a p-channel device for the load in multi-
input NOR gates in order to satisfy the assumptions made above.

4. CONCLUSIONS

In this paper we have analyzed the algorithms and the
implementations of two important arithmetic elements: the binary
adder and multiplier. The analysis has been done to help
determine which algorithm is best suited for VLSI system designs.
It has been shown that

1. The structures and algorithms good for discrete module
design may not provide efficient design for VLSI systems.

2. The theoretical studies for area-time efficiency can only give
general direction.

3. For multiplication, the R-algorithm is better suited for large
VLST system designs and results in a higher performance
solution than the Wallace tree.




4. Carry-lookahead over a small and fixed number of bits, e.g.
4-bit slices, results in a regular layout and high speed adders.
To improve the speed for larger size adders , say 64 to 256
bits, this should be used along with the binary tree carry
generation scheme of [BrKu82).
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