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Abstract

A methodology is presented for synthesis of area-efficient,
high-performance VLSI modules for vector and matrix multiplica-
tion. Three fundamental computational elements are employed in
the composition of these architectures: memory register, multiplexer
(1-from-2 data selecter), and carry-save add-shift computer. Two’s
complement serial/parallel carry-save accumulation provides perfor-
mance, while the use of symmetric-coded distributed arithmetic
eliminates redundant computation to effect area-savings.

1. Introduction

Digital signal processing is a prominent applications area which
stands to benefit from VLSI realisations of high-performance integer
arithmetic. Computation of vector and matrix products - fundamen-
tal operations in modern signal processing - is usually executed on
dedicated arrays of scalar multiply/accumulators. This functional
partitioning is forced on the designer by available standard parts.

We demonstrate that an alternative functional partitioning,
using symmetric-coded distributed arithmetic (DA), exists to scalar
multiplication in the VLSI computation of vector products, bringing
demonstrable area savings with no loss of performance. DA pro-
vides the facility to compute the sum of several products con-
currently, in architectures which exhibit the same structure, regular-
ity and modularity as do scalar multipliers. In fact a scalar multi-
plier is a trivial case of a DA architecture.

Index of abbreviations

In the interests of brevity, the following acronyms and abbrevi-
ations are used:

CSAS  carry-save add-shift PP
DA distributed arithmetic PPS
DSP  digital signal processing  PIP

partial product
partial product sum
partial inner-product

P inner-product PIPS  partial inner-product sum
LS least-significant PISO  parallel-in-serial-out register
LSB least-significant bit SIPO  seral-in-parallel-out register
MS most-significant S/P serial/parallel

MSB  most-significant bit VLSI  very large scale integration
OB offset binary 2C two’s complement

2. Overview of vector computation
A multiplication is an unconstrained 1-D) sum of (weighted)

PPs. The dimension represents one of the two input operands - the
weight of whose bits is a function of dimension index. We refer to
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the input operands as data and coefficient respectively, and note two
common differences of usage in DSP applications. Firstly, the coef-
ficient is often known a priori (unlike data which either arrive from
external sources or are freshly-derived from previous computations).
Secondly, the precision of representation may differ (the coefficient
is often represented by fewer bits). In S/P architectures, one compu-
tational dimension (usually the data-bit index) lies along the time
axis.

A fundamental form of vector product is the dot, or inner pro-
duct (IP) [1]. The IP of two vectors is formed by summing the pair-
wise products of the vector elements. An IP is then an uncon-
strained two-dimensional sum of PPs (the 2nd dimension being vec-
tor length). Once again, we note the difference of usage between
data and coefficient (in this case vectors). By permuting and/or fac-
toring summation indices, several different approaches are made
possible. Classical multiply-accumulate techniques [2] put the vector
index outermost, while DA [3,4] has the data-bit index outermost.
By factoring the index of vector length, architectures may be realised
which yield an optimal mixture of these two techniques.

Matrix-vector multiplication extends the list of favourable pro-
perties associated with coefficients, in that there are often further
properties of symmetry in the coefficient matrix to be exploited. We
shall demonstrate these advantageous properties in later examples.

2.1. Some carry-save approaches to vector computation

The properties of carry-save arithmetic seem particularly well
suited to the computation of vector products, i.e. the unconstrained
summation of single-bit products in three dimensions. Bit-level sys-
tolic arrays [5] are an efficient means of implementing such architec-
tures. Here computation is executed concurrently on processor
arrays tailored to the problem, and communication between proces-
sors remains local.

Denyer and Myers [6] proposed arrays of carry-save adders
which accumulated inner-products across each bit plane in bit-
parallel carry-save fashion (MS-plane first), using the free inputs of
the next-plane computer for accumulation, Cappello & Steiglitz [7]
formalised this concept. Danielsson noted that families of con-
volvers could correspond to S/P multipliers, as convolution has the
same structure at word-level as multiplication has at bit-level | 8].

These architectures follow good VLSI practice, and result in
area-efficient realisations of vector computers. However they exploit
neither symmetries and redundancies in computation, nor prek-
nowledge of coefficients, as do distributed arithmetic architectures.
Although a combination of techniques might yield interesting
results, we eschew the systolic architectures, in deference to the bit-
serial ‘building-block’ approach [9, 10].




3. Two’s complement serial/parallel multiplication

We begin our development of matrix-vector architectures by
discussing the S/P multiplier. We will demonstrate that a slightly-
modified version of this well-known structure may serve as an archi-
tectural basis for vector and matrix computations.

S/P multipliers in their simplest form represent a ‘collapsed’
mapping of the basic CSAS parallel rectangular array multiplier [11]
into a linear CSAS array (one spatial dimension becoming tem-
poral). Coefficient bits are distributed spatially (in parallel fashion),
and data bits temporally (in L$B-first serial fashion). Hardware
consists mostly of a linear array of m gated CSAS cells (each with a
resident coefficient bit), which forms the product by shifting accu-
mulation of PPs. Assuming the m-bit coefficient is available in
parallel form (this is easily arranged should the coefficient be in
serial form and known m clock cycles in advance [12]), multiplica-
tion of n-bit serial data can be executed in n clock cycles. The LS n
bits of the n + m — 1 bit product are output from the right-hand
side of the array in serial form.

Unfortunately, after the final computational step the top
m — 1 bits of the product remain as residual sums and carries along
the array (as in the paralle! case), and must somehow be recombined
to form the true product. One way round this is to pack m — 1
sign-repetitions on the input data [12] - the full n + m — 1 bits of
the product then appear in serial form and the parallel residues may
be discarded. The harmful effects of incorrect 2C data-MSB
interpretation do not propagate to the serial output. Although the
m — 1 sign-repetitions represent a high overhead in terms of either
throughput (words per second) or dynamic range (useful bits per
word), in situations where such an overhead may be tolerated, this
approach is commendable - the resultant hardware (dubbed the S/P
‘flush’ multiplier [13]) is compact and fast.

The ‘fractional’ S/P multiplier [14] (where the data input and
product output formats are identical) requires extra hardware for 2C
data-MSB treatment, and for recombination of the product from
residual carry-save form into a single 2C word. While the tech-
niques presented in this paper are applicable to any multiplication
architecture (serial or parallel), we choose the S/P flush multiplier as
demonstration vehicle. Fig. 1 shows the 2C coded S/P flush multi-
plier.

3.1. Internal details

As sum and carry outputs are latched on each clock cycle,
shifting is accomplished by simple cell abutment. While PPS signals
are transferred to the neighbouring cell, ‘saved’ carry signals recircu-
late locally - weight is consistent with the increased weight of the fol-
lowing PP-bit. Use of the carry-save technique avoids carry propa-
gation delays, resulting in high potential throughput. The AND-
gating on the CSAS cell top-input is for PP-formation, and on others
for clearing the accumulator (sum and carry) on commencement of
a product calculation. A control signal (low to mark data LSB, else
high) performs the latter function.

Depending on the broadcast data bit, each PP is either the
coefficient word, or zero (PPS weighting results from the shifting
operation of the accumulator). Note that PP-formation may be
pipelined to improve performance. To comply with 2C bit-
weighting in the coefficient, the MS-cell subtracts the local PP-bit.
Being the leading boundary processor of the array, it has a free
input which may absorb a second data operand to support multiply-
addition. Logical modularity may be improved (at the expense of
this free input) by installing an adder with fed-back sum in the lead-
ing stage [14] - this structure acts as a 2C negator. The multipliers
illustrated (Figs. 1 & 3) use the latter negation strategy.

3.2. External issues

We are concerned mainly with internal details of these archi-
tectures, but make the following observations on operational
environments. S/P structures find application in both parallel-data
and serial-data architectures.

Parallel-data operation

In the former, datapath environment (Fig. 2(a)), one of the
input operands enters a PISO to be broadcast to the array. When
computation is completed, the carry-save product residue loads a
parallel adder to be merged into a single word (this may be over-
lapped with the next product calculation). Fere computation is
‘fractional’ - the m sign-extensions are not present. However the
final (MS) PP must be subtracted to account for 2C MSB-weighting
in the data - a control signal and some extra circuitry must somehow
be provided for this purpose.

Serial-data operation

In the latter case (Fig. 2(b)), the coefficient must enter a SIPO
in advance of data (computation cannot commence until coefficient
bits are resident in their respective locations). On completion, the
parallel sum and carry residues may be discarded, as the full-
precision product appears in serial form at the end of the array. For
fractional operation (i.e. no data sign-extensions), the sum and carry
residues must load a double PISO, to be merged in a bit-serial adder
to form high-order product bits. Once again, extra hardware and a
control signal are required to effect subtraction of the MS-PP.

For the sake of simplicity, but with no loss of generality, we
proceed on the assumption that environment is serial-data, data con-
tain m sign-extensions, and coefficients reside in parallel registers.
Thus the CSAS computer is hardware-minimal, at the cost in
throughput of processing the m sign-extensions.

3.3. Free inputs

Along with the free serial input mentioned earlier, a favourable
property of S/P multipliers is the free input-pair exhibited by each
adder cell in the CSAS array. Normally the PPS and carry inputs
are cleared on commencement of computation - however a pair of
low-precision bit-parallel words may be inserted instead and accumu-
lated ‘on the fly’. This opens the possibility of ‘free accumulation’
and multi-precision operation [15], as intermediate results may be
passed between modules in carry save form.

4. The symmetric-coded serial/parallel multiplier

Orthodox S/P multipliers, as just described, use 2C coding
throughout. As we know of no better data-coding for the addition
(accumulation) operation, this results in minimal hardware and max-
imal throughput. To assist in the development of matrix-vector
architectures, we choose to code the data word in symmetric, offset-
binary (OB) form, where logical O is interpreted as —1 [16]. This
alters the role of data bits in the computation - logical 0 now effects
the subtraction of the coefficient from the PPS, instead of the addi-
tion of zero.

Data conversion to OB is easily accomplished by MSB inver-
sion. 2C data word A consisting of bits a; converts to OB coded
word A’ as shown:

a-1
A= —ay+ a2, a; €{0,1} ,
i=1
n-1
A =S g27, a € {-1,1}

i=0




Error compensation by parallel load of the coefficient

It can be seen that

A=A + 2 1
i.e. a small representational error results from the change of code to
OB.

Consider the product P of 2C-coded data word A with coeffi-
cient C, and product P’ of OB-coded data word A’ with coefficient
C. .

P = AC, P = AC

AC +27C
P +27C

We see that the change of code from 2C to OB results in a represen-
tational error of 2 C, which may be removed by subtracting the
coefficient word at LSB-time (on commencement of product compu-
tation). As the CSAS computer is incapable of explicit subtraction,
this may be accomplished by adding the 2’s complemented coeffi-
cient, i.e. by bit-inversion and incrementing (implicit subtraction).
To this end, the inverted bits of the coefficient are used to load the
free carry-loops in the main array at LSB-time (cf. clearing in the
2C version). The PPS input to the stage occupied by the coefficient
LSB (i.e. the last stage) must be set at LSB-time to perform the
necessary increment (all others are cleared).

As data is OB-coded, the coefficient ' word is either added to or
subtracted from the PPS, depending on the broadcast data bit.
Again, coefficient subtraction is performed implicitly (the increment-
ing bit is simply delayed, inverted data). Thus the OB -S/P multi-
plier contains an XNOR-gate for bit-product formation (instead of
the AND gates of the 2C version), and an extra CSAS cell at the
end of the array for incrementing. Fig. 2 shows the OB S/P multi-
plier.

Note that the weight of data-bits is different between 2C and
OB (the former is twice the latter). Care should be taken in align-
ing the addend input, and interpreting the weight of the coefficient
and the output product. )

Error compensation by left-shift and decrement

The above scheme necessitates loading of the coefficient into
the carry loops at LSB-time. This causes a considerable increase of
logical complexity in the basic computational cell, with correspond-
ing area and performance costs. A second method of coding-error
compensation cancels the data error directly, by pre-processing data
bits before broadcast. Manipulation of eqn. 1 produces the expres-
sion:

A

A =2

24 = 24" =271

i.e. =
Thus preprocessing takes the form of a left-shift and decrement

operation. Output data must be right-shifted for subsequent correct
interpretation of the product.

This technique increases the latency of the OB multiplier,
requires a guard-bit on input data thereby reducing dynamic range,
and affects modularity in adverse manner. These points make it a
less likely candidate for implementation. Pipelining of bit-product
formation in the former scheme can be used to reduce cell complex-
ity, leading to a more compact, modular architecture.

5. The serial/parallel inner-product computer

So far we have described a modification to the 2C S/P multi-
plier, allowing it to handle OB-coded data inputs. The price paid
for this is the extra low-precision adder on the output of the main
array, and increased cell complexity. However the S/P multiplier is
now in the form where, with a little further modification [17), it can
compute inner products directly, using DA.

DA [4] replaces the multiplications involved in an IP computa-
tion with a series of memory look-ups. A set of ‘partial inner pro-
ducts’ (PIPs) made by convolving the coefficient vector with all pos--
sible bit-patterns from the data vector is precomputed and stored in
memory. The PIPs are accessed (addressed) by the actual bit-
pattern across each bit-plane of the data vector, and accumulated
(with the correct binary weight) to form the IP.

If data are coded in OB, the full PIP-set exhibits negative sym-
metry [16]. To exploit this property, we designate an arbitrary coef-
ficient word as ‘master’, also referring to the data word associated
with this coefficient in the IP computation as master. The master
data-bit may then be removed from the address word and the
memory-size halved. This bit instead serves as an ‘add/subtract’
instruction to the accumulator. Viewed in this light, the OB S/P
multiplier contains a single-word ‘memory’, accessed by a ‘zero-bit
address word’, i.e. look-up is trivial.

We now describe the conversion of the OB S/P multiplier into
a 2-point IP computer. Instead of storing one coefficient word C,
we introduce a second coefficient word D, and store the 2 PIPs X
and XK', where

The factor of 2 prevents word-growth in PIPs, and compensates for
the factor of 2 weight difference between OB and 2C data codes.
We take 2 serial data words A and B as input, choosing (say) A as
master. A is then broadcast as data to the CSAS array, and (A
XNOR B) is used to select either K or K'. If the bits of A and B
are equal in any bit-plane, the ‘sum-PIP’ X “is selected - if unequal,
the ‘difference-PIP’ X ' is selected. If the ‘master’ bit is 1, the PIP is
added, if not it is subtracted. Thus the modified S/P multiplier is
capable of computing the inner-product step AB + CD + E (where
E is the optional serial addend), at little extra hardware cost.

Through a simple, recursive procedure, this principle can be
extended to compute longer IPs:
For each additional data-coefficient pair:
Replace each register with a multiplexer and register-pair,

Load the register-pair with the old PIP £ the new coeffi-
cient,

Select multiplexer output by XNOR of master data-bit and
new data-bit.
Error compensation

Consider the IP 3P, of 2C-coded data vector A, with coeffi-
cient vector C,, and product 3P’, of OB-coded data vector A,
with C,.




2Po= FAC, 2P = 2ALC

= E(Axcx + 2_"Cx)

=3P, + 27 SC,

Thus the ‘sum-PIP* 3'C,/2 loads the carry-loop on commence-
ment to compensate for OB data-coding.

Fig. 3 summarises the evolution of this class of DA architec-
tures via the recursive composition procedure, starting from the S/P
multiplier. Some abstraction is necessary to contain detail - for
instance we are not concerned with loading/unloading operations,
carry-setting and cascadability (these are the same in all cases). We
restrict ourselves to 3 architectural elements: registers, multiplexers
and CSAS computers. The architectures are viewed ‘end or’, i.e.
data flow is out of the page. Master bits are shown beside comput-
ers, while selection functions point at selecters.

Fig. 3(a) is the abstracted version of the S/P multiplier of Fig.
2, with a single register to hold coefficient word C and a single
CSAS computer to form the product from data word A.

Fig. 3(b) shows the modification of the S/P multiplier to form a
2-point IP A,A, + A,C,. We replace the coefficient register with a
multiplexer and register-pair. Here A is master, and the function A,
XNOR B, drives the multiplexer, which selects one of the PIPs
(these are represented as C, + C, and C, — C,, although PIPs are
actually stored as half these values).

Fig. 3(c) shows the extension of this technique to form the 3-
point IP A1A; + A,C, + A;C;. Here A, is master and A, and A,
are used for data selection, by XNOR with A ;.

It should be noted however, that while savings in CSAS ele-
ments are linear, PIP storage costs grow exponentially. Depending
on the technological implications of adding storage, a point will soon
be reached where the DA approach is less attractive than the con-
ventional [18]. For this reason, we propose a mixture of DA and
conventional techniques for longer IP computations - this is effected
by factoring the vector length index as described earlier.

6. Architectural case studies

Armed with the knowledge of how to construct IP computers,
we may now review some of the matrix and vector architectures
which can be synthesised with these techniques. Here we treat coef-
ficients as known matrices operating on vectors of incoming data,

exploiting where possible the properties of symmetry exhibited by
these matrices.

Matrix-vector multiplication

The 2-point IP computation described above may be expressed
in matrix notation as shown.
Al
e o] [3]

While general matrix-vector computation of the form:

Gl_ [c Dl la
H E Fl|B
may be executed on a pair of unrelated 2-point IP computers, the
centrosymmetric matrix computation:
Dl lA
Cl|B

F]= [

E

may be performed on a simple variation of the architecture of Fig,
3(b) (the addition of a second CSAS computer). Fig. 4(a) depicts
this architecture. Due to centrosymmetry, PIP-selection is mutually
inclusive, i.e. the selected PIP is used in both computers. Note that
B is master in the second computer, as B is associated with the mas-
ter coefficient in the implicit IP computation which produces output
F. While this structure finds limited application in DSP (hyperbolic
rotation is one example of its use [19]), a further slight modification
transforms it into a form of matrix-vector computer which is very
common indeed.

Complex multiplication

The operation of complex multiplication (plane rotate and/or
scale) occurs frequently in digital signal processing, for example in
Fourier transformation [2], orthogonal filtering [20], and waveform
generation [21]. Dedicated complex multipliers are relatively rare,
and usually evaluate the complex product using four real multipliers,
minimising communication and sharing storage of operands in paral-
lel [22] or serial [23,24] 2C architectures. Just as the FFT uses the
commonality of coefficients to make computational savings over the
DFT by combining before rotating, so it is possible to perform
addition before multiplication to reduce the number of real multi-
plies in the complex multiplier. The 3-multiplier solutions of Golub
and Buneman [25,26] reduce computation - however these
approaches increase storage costs and adversely affect dynamic range
in bit-serial realisations [10].

The four carry-propagate adders required by the conventional
bit-parallel approach may be reduced to two using ‘merged’ arith-
metic [27]). Alternatively, a reduced form of binomial expansion
may approximate the trigonometric functions [28], reducing the
number of required shifts and adds to effect the transformation.
However none of these approaches make full use of the cross-
symmetry of operands to simplify calculation of the complex pro-
duct.

CORDIC processors [29, 25] have been suggested as an alterna-
tive to complex multipliers as a vector rotation medium - however
(like 2’s complement dividers) they contain ‘conditional’ operations
which hamper performance. Limited success has been achieved in
pipelining CORDIC processors [30] - nevertheless CORDIC offers
the flexibility to tackle computational areas such as advanced func-
tion generation and transformation [19].

In the more down-to-earth problem of vector plane-rotation,
the most common solution is the complex multiplier with unity-
modulus coefficient. White [31] suggested an area-efficient
symmetric-coded distributed arithmetic solution to the complex mul-
tiplication problem, and embedded it in an FFT processor. This
architecture has since reappeared in bit-parallel [32] and serial-
pipeline [33] form. We may derive White’s model from the previous
centrosymmetric matrix-vector computer.

If we designate data word-pair A,B and coefficient word-pair
C,D as real and imaginary components of a complex numbers A and
C respectively, a further slight modification to the architecture of
Fig. 4(a) may perform complex multiplication. The complex pro-
duct E = CA, where E = E + jF may be evaluated by the matrix

computation:
E]l _ [c ~-Dl[A
F D Cl|B

Although the centrosymmetric property no longer holds, the coeffi-
cient matrix now displays the equally useful property of mutually
exclusive PIP-selection [34]. Here the sum-PIP in the implied ima-
ginary IP computation equals the difference-PIP in the implied real
computation (and vice-versa). Instead of selecting one PIP via a
multiplexer for use in both computers, we steer both PIPs through a
commutator (2-from-2 data selecter).
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Complex inner-product

We may express the previous computation in complex notation:
E = CA

and extend the above concept to the complex inner-product compu-

| c ol

In similar fashion to the real arithmetic case, we form an IP com-
puter by removing the register of a multiplier, and replacing it with
a register-pair and multiplexer. Here registers are complex, i.e. they
contain pairs of numbers. Thus a ‘register-pair’ in this case
comprises 4 real registers, while a ‘multiplexer’ is a 1-from-4 data
selecter.

E

Extending the selection methods of the complex multiplier, the
PIP-set may be split into a ‘sum-set’ and a ‘difference-set’, with
mutually exclusive selection. However selection functions within
these sets are complicated by the fact that selection within sets
depends on the target computer. This follows from the asymmetry
of the scalar coefficient matrix:

a

el _ |61 —d, C2 —dy | |by
d, L] d, €2 | |82

b,

By judicious arrangement of PIP storage, we may at least
ensure that selection functions are shared between PIP-sets. These
functions are ‘quasi-exclusive’, so-called because, like the exclusive-
OR and -NOR functions, they form diagonals in the Karnaugh map
(Fig. 5). While exclusive functions form alternate diagonals, quasi-
exclusive functions divide the map into two diagonal regions. Fig. 6
shows the 2-point complex IP computer, with selection functions
appropriate to the PIP arrangement.

A 3-point complex computer may be formed by replacing each
register with a 4-register-3-multiplexer combination, and so on.
However register count and multiplexing depth begin to dominate
beyond the 2-point complex IP, as does the fan-in (hence area cost)
of selection functions.

7. Architectural synthesis

We have seen how 3 simple elements may be combined in dif-
ferent ways to form various architectures for matrix and vector com-
putation. Building on a single CSAS array, the construction rules
for IP computers are procedural and recursive. Matrix computation
follows easily, by addition of further CSAS computers and associa-
tion of master data and coefficient in each implicit IP computation.

Procedural construction lends itself readily to computer auto-
mation in a silicon compilation environment [10]. With construction
rules encapsulated in composition procedures, we envisage assembly
of DA architectures in response to a single-line call in high-level
language, rather than explicit calls to component modules.

8. Comparison with conventional approaches

To illustrate the area savings afforded by the DA approach, we
compare the example architectures with the standard approach (SA),
where storage is shared whenever possible (Table 1). S/P hardware
costs are O(m), where m is coefficient/PIP wordlength. We neglect
0O(1) costs.

Table 1: Comparison of standard approach and DA
function register mux CSAS
SA | DA | SA | DA | SA | DA

2-point IP 2 2 - 1 2 1
3-point IP 3 4 - 3 3 1
2~pt. matrix-vector 2 2 - 1 4 2
complex multiply 2 2 - 1 4 2
2-pt. complex IP 4 8 - 7 8 2

The DA solution uses multiplexers and sometimes extra
storage, but always less CSAS computers. The hardware costs of
these elements vary with technology, nonetheless we suggest that the
reduction in CSAS hardware afforded by the DA approach
outweighs the increase in storage/selection costs over conventional
approaches.

Although area-efficient, DA appears to be ‘storage heavy’.
However if bit-serial throughput enhancement techniques [15] are
employed, then the ratio of active logic to storage increases, accen-
tuating the area savings of the DA approach.

DA requires the generation of some logic functions of input
data bit-planes, and extra wires for their broadcast. Word-growth
may occur in PIPs, necessitating perhaps one or two extra stages to
maintain the accuracy of conventional realisations. Also it should
be noted that the DA approach requires ‘precomputed’ PIPs to be
available. If coefficients can only be provided in standard form,
then a network of bit-serial adders and subtracters must be provided
for PIP calculation, with attendant time and area penalties.

9. Distributed arithmetic in context

DA was proposed as a method for avoiding the use of
standard-part multipliers in FIR/IR filtering [4,35]. From the
outset the two approaches were classed as diametrically opposite -
they bave been directly compared on several occasions, e.g.
[36,37]. This has led to a general perception of DA as a ‘ROM-
accumulator’ technique, involving memory technology in VLSI reali-
sations with the area overhead of control and addressing logic.

We have demonstrated that ‘memory addressing’ (at least for
small problem sizes) in VLSI is merely a data-steering operation,
governed by simple logical functions on the incoming data bit-
planes. Computation is performed on CSAS arrays, exactly as done
in multipliers. Thus DA is more a modification than a replacement
of multiplier technology.

Complexity of DSP algorithms is often expressed in terms of
‘multiplier count’. We suggest that hardware partitioning into regis-
ters and CSAS computers (rather than multipliers) coupled with the
use of DA in synthesis might result in improved complexity analysis
techniques.

10. Cascading

The concept of DA has been introduced, and its usefulness in
the computation of short vector and matrix products demonstrated.
In many cases, these structures will be used in long cascades, e.g. in
the computation of vector inner products [1]. Cascading issues
relate closely to those of the conventional approach, as we propose
to sum globally over the index of vector length. The only difference
is that we have factored this index and nested one of those factors
inside the bit-index - the other is outermost as usual.

Recall that these structures have one free input in the serial
(temporal) dimension, and two potentially free inputs in the parallel
(spatial) dimension, all of which can find use in cascading. The
carry-loop could be freed up in all but the initial DA processor of




the cascade, by lumping all the sum-PIPs local to each DA calcula-
tion into one global sum-PIP which represents the entire IP calcula-
tion. However there is only one free serial input, and as the addend
word invariably extends up into the ‘fractional’ part of the addend,
there is no obvious way to exploit the free carry-input. Thus local
sum-PIPs will be loaded as before.

When cascading the flush IP computer, no free inputs may be
exploited as the format of the output product is different from the
input addend. That is not to say that the flush IP computer cannot
be cascaded for computation of inner-products - on the contrary, it
is best suited to such computation, if target data rates permit the
computational inefficiencies resulting from the guard-bit require-
ment. Accumulation must be carried out on dedicated adders in
this case.

Word growth can occur in long IP calculations - this may be
accommodated in higher-order bit-serial accumulators [10]. Several
architectural possibilities exist for inner-product calculations [38,39],
which have direct relevance to serial-data realisations. Often the
choice is decided by the allowable transform latency - two FIR filter-
ing case studies using the FIRST silicon compiler [10] (matched
filtering and adaptive filtering) yielded markedly different multi-
plexed architectural solutions. The former architecture was a pipe-
lined, forward flowing cascade, whilst the latter, minimal-latency
architecture fanned-in sums through a binary addition tree [10].

Formal mechanisms for specifying cascaded inner-product
architectures are presented in [10]. Systems designers must take
many factors into account when making these specifications - these
include tolerable transform latency, signal statistics, signal bandwidth
(hence multiplexing scheme), accuracy requirements, etc. However
a formal mechanism is also required for implementing cascaded
inner-product architectures. We present two such mechanisms, one
which exploits the free input and one which does not.

Free accumulation

We envisage a cascade of IP computers, with the double-
precision product output from each connecting to the addend input
of the subsequent. The low-order m bits of this word are accommo-
dated in bit-parallel form, and the remaining gn — m bits in multi-
precision serial form. One extra SIPO is required to convert the
Jow-order bits into parallel form for loading at the free parallel
input. The operation of this SIPO is identical to the SIPO used for
coefficient loading, except that in this case no holding register is
required. Word-growth beyond the range of double-precision may
be accommodated in higher-order serial-data adders.

Adder-based accumulation

Here we make no use of the free input - double-precision out-
puts are fed directly to a multi-precision accumulator. The action of
this accumulator beyond the double-precision range is identical to its
action in the free-accumulation structure. The flush IP computer
finds application in this cascading environment.

11. Conclusions

A distributed arithmetic architecture for computation of small
‘matrix-vector products has been described, and a general architec-
tural methodology for matrix-vector computers outlined. The evolu-
tion of the architecture from a basis serial/parailel multiplier through
real inner-product computers and the complex multiplier to complex
inner-product computers has been charted, and a substantial reduc-
tion in computational hardware over conventional multiply/add solu-
tions demonstrated. These modules are easily cascadable for longer
calculations, and form ideal function library components for silicon
compilation.
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*** ERRATUM ***
Figs. 3 - 7 are wrongly named in main text as Figs. 2 - 6.

Figure 5: matrix-vector computer evolution
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