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Abstract

We present an on-line algorithm for radix-4 floating
point division. The divisor is first transformed in to
a range such that the quotient digits are computed
as a function of the scaled partial remainder only.

-

1 Introduction

The on-line division algorithms that have been pub-
lished are of two types: Type 1 is based on the non-
restoring division recurrence and it is exemplified by
the original Trivedi-Ercegovac on-line division[10].
It takes a conventional non-restoring division with
redundant quotient and imposes the on-line restric-
tions on it. Irwin[7] and Trivedi and Rusnak[11] are
other examples of on-line algorithms of this type.
Type 2 algorithms are based on the continued prod-
uct representation of the reciprocal of the divisor.
For these algorithms the critical part is multiplica-
tive (additive) normalization. Grnarov and Ercego-
vac describe an on-line multiplicative normalization
algorithm with an on-line delay of 1[5] and a refined
version in [6]. Owens describes several on-line al-
gorithms based on the continued product/sum rep-
resentations in [9] and discusses a specific on-line
division algorithm in [8].

What we describe here is another type of on-line
division: it consists of (1) divisor preshifting into
the range [1,2); (2) the divisor scaling transforma-
tion (3 steps), and (3) on-line (non-restoring) divi-
sion recurrence. In (2] and [3] division algorithrns
with divisor range transformation to obtain simple
quotient selection independent of the divisor were
discussed. The particular scaling of the divisor dis-
cussed here is based on the transformation given in
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[3]. The quotient selection is performed by rounding
of the remainder estimate[1,2]. The scaling transfor-
matiorni does not use a variable shift operator (i.e.,
factor r=7), which is costly in the redundant (carry-
save) implementation, but rather a shift register. In
this respect it differs from a continued product type
algorithm. In the recurrence part, it differs from
Type 1 on-line algorithms in the quotient-selection
function. In our case, the selection is independent
of the divisor. The operands and the result are in
the signed-digit form. To simplify the implemen-
tation we use 2’s complement representation inter-
nally. The conversion between the redundant and
2’s complement forms is done using an on-the-fly
conversion algorithm[4).

It is assumed that the exponent calculation is per-
formed in conventional arithmetic, and only man-
tissa computation is discussed in this paper. Also,
each operand and quotient mantissa has n radix-4
digits, and for j > n, the input digits are assumed
to be zero.

2 On-Line Division Algorithm

In this division algorithm the dividend, the divisor,
and the quotient are on-line. The dividend, the divi-
sor, and the quotient are quasi-normalized floating-
point numbers in signed-digit representation with
radix 4 and |z;| <2 [13]. The dividend and the
divisor are assumed to be greater than zero, and
the divisor larger in absolute value than the divi-
dend. In a signed-digit number representation sys-
tem, each digit may be either positive, zero, or neg-
ative. It is hence possible for a number with no
leading zeros in signed-digit representation to have
leading zeros when the number is converted to non-
redundant number representation. A number is said




to be quasi-normalized if for its mantissa X
ri<|Xl <1

Consequently, there can be at most one leading zero.

In order to have efficient carry-save type imple-
mentation for the recurrence Jormula evaluation, the
internal computation uses 2’s complement repre-
sentation. The conversion of input operands from
signed-digit form to 2’s complement form is per-
formed on-the-fly, as described in [4]. For each num-
ber X to be converted, we have

and

Xj=Xjo1+ajrd
where Xj is in 2’s complement form, and z; in radix-
4 signed-digit form.

The algorithm consists of three major phases. In
the first phase, the first 3 to 5 digits of the divi-
sor are accumulated, and shifting is performed on
the dividend and divisor until the divisor falls in
the range [1,2). In the second phase the divisor is
transformed into the range [1--a, 1+ a] by the range
transformation algorithm, where « is given its value
of 3}2— as discussed later. Then, in the third phase,
the quotient digits are genersted in on-line fashion
as a function of the partial remainder.

The shifting algorithm is defined as follows, where
din and n;, denote the incoming divisor and divi-
dend digits, Dy and Ny are the divisor and dividend
alter preshifting is performed.

Algorithm PRESHIFT

stepl. [Initialization]
DO - 2?21 d“4_i;
No 300 mid™

fe1

step 2. [Shift]
Do — Dy +diy, - 473,
NO — No + Nin * 4.—3;

if Do < 1
Do - Do . 4;
goto step 2;

]Vo — 1"’0 . 4;

ifDyg<1
Dy — Dy - 24
No — Ny - 2;

end PRESHIFT.

Step 2 of the algorithm will be executed once or
twice. After preshifting, Dy has 3 to 5 input digits
accumulated in it, and it has 6 or 7 bits of preci-
sion, including 1 integer bit. In each step, one more
incoming digit of the divisor arrives, which may be
positive or negative. Since Dy € [1,2), after the first
phase, we have D; € (1 —27%,2) for all j.

2.1 Divisor Transformation

Here we derive a radix-4 on-line range transforma-
tion algorithm for the divisor. After preshifting, the
divisor is in the range

Dy e(1-275,2) (1)

We want to find a number S such that D- S = X,
where X € [1—aq, 1+a], and « is some small positive
number to be determined later. Since D is available
in on-line fashion, so is the calculation of 5. More
specifically, at step j of the range transformation,
we want to have

Dj - S; = X; (2)

where

X;e(1-2-479,142.47%) (3)
and D; and S; are the cumulative values of D and
S at step j. We first derive the basic recurrence
formula, and then discuss relevant parameters of the
algorithm and the digit selection process of S;. For
the algorithm to converge, the error condition, the
containment condition, and the continuity condition
must be satisfied.

2.1.1 él/le on-line transformation recurrence

First we derive the recurrence formula for the trans-
formation. Define

By =4(X; - 1) ()
then from (2),
Bj = 4Bj_i+s;Dj+dj4s5]_147°  (5)

where s; is a digit selected in each step by a digit
selection process selects, 6§ € {3,4,5} is the number
of digits accumulated in Dy, and

D; = Dj—l + dj+6f4_j—3
d; € {-2,-1,0,1,2}
S; = S f=5_y+s;f477

S = f (6)
5j € {-3, -2,-1,0,1,2,3}
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We select s; as a function of Bj_; and the incoming
digit dj4s. Define

Aj-1 = Bj—s;D; (7

= 4Bj_1 +dj455]_147° (8)

Then the basic recurrence for the range transforma-
tion algorithm is

5; selects(A;_y) (9)
A; = 441+ s;D; + dj+(5+15;4—4) (10)

where Zj_l is the truncated version of A4;_;, and
the initial condition is

Ao =4. (DU - 1) (11)

2.1.2 Error condition

From (3) we obtain the error condition
IX; ~1]<2-477 (12)

Let 0 < & < 2 be the bound of |Bj|. We then
require that
|Bj| < er (13)

for all values of j for the range transformation pro-
cess.

2.1.3 Continuity condition

For each possible value of s;, we define a region
[K., K] such that when the value of A; falls into
this region, s; = ¢ may be selected. I{, and K.
denote the lower and upper bound of the region, re-
spectively. We have

!_{i = —g —cD;

K. = e —cD; (14)

Let A be the overlap between [K.,I.] and
[I{c-i-l,-[(c—f-l s then

A=Ky — K = 2, — D; (15)

For the algorithm to converge we must have A > 0,
and therefore

D;

Ep 2 —= (16)

2
When A is greater than zero, in the range LK_C, Kc+1]
either ¢ or ¢+ 1 is a valid choice for sj. This feature
is utilized to simplify the digit selection function.

A

2.1.4 Containment condition

From (14) we have

K_a_ = €r+3Dj
Ks = —é¢ —3D;

Substituting (13) in (8), and noting that ST < 2,
d; € {-2,-1,0,1,2}, we have

|4;] < 4e, + 472 (17)

The containment condition requires that A4; €

(K3, K _3], hence

de, + 472 < e, +3D; (18)
or 1
e <Dj—3- 42 (19)

Combining (16) and (19) we have
D; 1 _
TJSQSDJ-—E-AN (20)

2.1.5 The digit selection process

We now discuss how to determine the comparison
points for the digit selection. From (14) we have,

! D

Ki = —(i+3)Dj—(er— 5
o o1 D

I(H-l = —(l + g)D] + (.E,- - '—2‘1-)

For each i € {-3,-2,~1,0,1,2}, a comparison
point Cj is chosen from a region

)

~(i+ )D; + (er = 2]

- .1 D;
Ky Kiva] = [-(+5)D;~(er = -

The center point of each region for C; and ¢ have
opposite signs, and the 6 regions are symmetric to
zero. To simplify the digit selection process, we first
take the absolute value of the argument A;_1, so
that we need to compare |A;_;| with only 3 com-
parison points to get the absolute value of s;, then
the sign of s; can be obtained directly from the sign
of A;_,. The 3 comparison points are in the regions

Ci € [+ 5)D5 = (er = )

(i+ é)Dj + (e, — I—Zi 1 ie{o,1,2}(21)
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Let
Er = Dj - g (22)

where 1
-4 < <—jr 23
3 9= D) ( )

we then have
A=2~Dj=D; -2
Substitute (22) into (21) we get
[K; Kix1] = [iDj + ¢,iD; + Dj —g]  (24)

Subtract g from |A;_1|, and the corresponding re-
gions become

(K, Kiy1} = [iD;,iD; + D; —2g]  (25)

In the recurrence calculation, 4;_; is represented in
carry-save form. If truncation is used to obtain an
approximation A* of |Aj_1| — g, the following holds

|4j-1] — g €[4%, A" +1] (26)

where v is a positive quantity whose value depends
on the truncation error. To obtain maximum redun-
dancy, we use the lower bond of the region as the
comparison point,
Ci=iD; i€{0,1,2} (27)
In obtaining A*, assume that A;_, is assimilated
to the kth fractional bit. This causes an error of
less than 27*. Then, assume that after calculating
|4j—1] - g, the result is truncated after the mth bit
to obtain A*, causing an error of less than 2-™.
Hence we must have

A>2m 4ok (28)

In order to maximize A, we must minimize g. We
assume m = 1,k = 3,¢g = 273, and noting the lower
bound of D; is 1 — 273, we have

A=1-2""-272>2"1427%  (29)

50 (28) and (23) are satisfied. The input for the digit
selection function will have 5 bits from A* and 3 bits
from D;.

To make the calculation of A* = |4, ;] — 23
efficient, we calculate 4;_; + 272 and A4;_; —2~3
concurrently with the evaluation of the recurrence
expression, and then chose one of the two as the
input for the digit selection function depending on

I
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Figure 1: Divisor Range Transformation

the sign of A;. Since |d;4541]| < 2, S; <2, for the
last term in (10) we have

4. dj+5+1 . S; .44 < 4?2

and Aj_; + 273 and Aj_; — 273 can be calculated
concurrently with A;. The selection function can be
implemented by combinational logic, using A* and
D; as input, and it has about 11 product terms of
at most 5 literals.

The following is the algorithm for the divisor
range transformation.

Algorithm TRANSFORM
[Divisor range transformation]
Ag —4(Dg - 1)

forj=1,---,3
1. s; « selects(Aj_1)
Dj — Dj_l +dj+,5f4_j_3
Nj—Nj_1+nj45f47373

2. Aj — 4AJ'_1 -+ dj+§5;_14_2 + 4D_,-sj
S; — ;_1 + s;f477
end TRANSFORM

Figure 1 is .a sketch of the implementation of the
divisor range transformation algorithm. The carry-
save adder reduces five operands to two, while the
digit selection part forms A* with 7 assimilated bits
and produces s;. The boxes labeled S and Dj con-
vert the inputs into 2’s complement numbers and
store the cumulative values of the variables.




The z - Y type of operation, where z is a single
radix-4 digit and Y a 2’s complement number, can
be implemented by a multiplexer which, depending
on the value of z, selects Y and/or 2-Y as input
to the adder, or if z is negative, uses —Y instead of
Y. Note that since d; € {-2, -1, 0, 1, 2}, only one
input to the adder is generated by the term diys -S},
while s; - D; generates two inputs to the adder since
sj can be %3,

2.2 Quotient Generation

The quotient generation of the division algorithm
consists of evaluating the recurrence formula and
generating the quotient digits by the digit selection
function selectq. We first derive the basic recur-
rence, and then discuss parameters of the algorithm.
Let NV denote the dividend, D the divisor, and Q
the quotient. Denote the transformed divisor as
(\
X; = D;S* ' (30)

where S* = S is obtained in the divisor range trans-
formation process, and the partial remainder as

(31)

By substituting (30) into (31) and expanding N, Q,
and D, we have

Y}' = NJ’S* - Qj)fj_l

Y; = N;j$" —QjDj18" (32)
Yjo1+njys, ST 47970 —
dj4sg-12Z5-1477 700+ —

9 Xj~1477
where
Xj-1 Xj_o+djps,-1 54704t
Z] = S*Q] =4j1 -+ qJ'S*‘.].—J

and 64 is the division on-line delay, which is the
number of input digits accumulated in the operands
before the quotient generation begins. Define R; as
the scaled partial remainder

R = 4, (33)

We then have the basic recurrence for quotient gen-
eration

g = seIectq(472j_1) (34)
Rj = 4;_ 1 + nj+6d5*4_'54 —
dits,-12j-147°H — ¢; X5 (35)
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Initially,

R0:Y0=NQS* (36)

and the digit selection function is

1
selectg(W) = sign(W) - ||W|+ 5_[ (37)
where W = @j_l.
Now we discuss the conditions and restrictions un-
der which (35) and (34) will generate the correct
quotient. From (32), we have

_ N

.Dj_l

Y;
DJ-_IS*

Qj (38)

and hence Q; — N;/D;_; as ¥; — 0. We define the
error condition as

IY;| < 47/ (39)
we then have
4—"
Qn — intle (40)
l)n+6¢—1 l—a
Since 63 > 1 we have Dpys,-1 = D, Npts, = N,
we have ( )
N 14+a)-47"
SR P 41

Substituting (39) into (33), we have
|Rj| <1

Let 0 < g, < 1 be the bound of |R;|. To satisfy the
error condition (39), we require
12| < e,

(42)

Assume R; is in carry-save form and let 4/1?, denote
4R; with k assimilation bits. Then

0 < 4R; — 4R; < 27F (43)

From (37) and (43) we have

liR;—1 —q] < 05
[4R;_1 —¢;] < 054-27%

Since X; € [1 -, 1+ ], we have, in the worst case,

[4R;_1 — ¢; X;] < |4R;_y — g5 + lg;q

< 05+4+27% 4 |gja]  (44)




substituting (44) into (35) and noting that |$*| <

2, Inj+6a| <2 ldj+64| <2 |€ij| <2 le-—ll <1
[Z;-1] < 2, we have

IRj| <05427% 4 2.0+ 5.47%+1 (45)

On the other hand, we require that |g;| < 2, which
in turn requires that

|4R;] +0.5 < 3

or
2.5
|R;| < T 0.625 (46)

From (45) and (46) we get

05427F 420 +5.47%F < 0625

5 4—bat2 4 o-k-1 1

at g4 +2 < (4D
@, 64 and k are chosen such that (47) is satisfied.
Since the value of o affects the number of steps
needed for the divisor range transformation, and the
quotient generation process begins after the range
transformation is finished, too small a value for «
will increase the on-line delay of the quotient gen-
eration. Hence the value of a should be as large as
possible. From (47), a minimum of 3 steps is needed
for the range transformation, yielding

1
o= — 48
39 (48)
Then for §3 > 5, which is satisfied since quotient
generation starts after the divisor range transforma-
tion terminates, and k = 5, we have

o+ é . 4—64-{»2 + 2-—-k—l —

1+ 1+ 1
8 64 4 16

and (47) is satisfied.

The implementation scheme of the quotient cal-
culation is similar to that of the divisor range trans-
formation, and is shown in Figure 2. The C-S adder
needs 8 bits of assimilation, which includes one sign
bit, 2 bits of integer part, and 5 bits of the fractional
part. The R; box simply stores the intermediate
output of the adder to be used in the next step, and
S* is a constant value in the quotient generation
phase, and is calculated in the divisor range trans-
formation phase. The X and the —Z boxes have
the same structure. To avoid the time delay caused

|

C-S ADDER

SEL

|q1X| ——dZ n;S*
1 1
—Z] LS

d; n;

Jucaly

Figure 2: Quotient Generation

by multiplying two numbers, these two terms are
generated incrementally,

Xo = Dy-So= Dy
X; = D;-S;
= Xj_l+dj+35;4—j_3+Sij_14_j

j:l’...,3

X; = D;-S3=Xj_1+dj43S"47773 (49)
j>4

Zy = 0

Zj-s = S"-Qj_3=Zj_4+gj—3S5"47I+3(50)
124

Since S has a fixed precision of 7 bits, (49) and (50)
can be implemented by a combination of a set of
shift registers and carry propagate adders. 7 bits of
carry propagate is needed. A detailed description of
this scheme is given in [12]. The other parts of the
diagram are similar to those in Figure 1.

The following is a summary of the radix-4 on-line
division algorithm.

Algorithm OLDIV
step 1. [Initialization and shifting]
execute Algorithm PRESHIFT

step 2. [divisor range transformation]
execute Algorithm TRANSFORM

step 3. [quotient generation]
S* — 53
R3 — N3 - S
X3~ D3- 53
Zo +— 0




forj=4,.--,n+6+3do
3.1 gj_3 — selectq(4R; )

3.2 X; — Xj—1+¢ j+,§S"4—j"6
Rj — 4Rj_1 -+ nj+55*4_2
—djy6-12j-4472 — ¢;_3X;
Zj-3— Zj_a+ qj_35*477+3

end OLDIV.

The critical path of the algorithm consist of q; —
g; * X1 — 5-2 ADDER — SFL — ¢j+1- The total
number of steps needed is n + § + 3, where n is the
number of digits of the quotient.

3 Summary

We have presented a radix-4 on-line division algo-
rithm with the following properties. The operands
of the algorithm are in radix-4 signed-digit form.
The divisor is first transformed into a range such
that the quotient digits are selected by rounding the
scaled partial remainder. The recurrence formulas
(10) and (35) are similar to the recurrence formula
for on-line multiplication algorithm[10], and hence
may be implemented using similar building blocks.
'The on-line division algorithm we presented has
an on-line delay of 64 = 6 + 3, which is from 6 to
8, which is quite large comparing to other on-line
division algorithms. On the other hand, compar-
ing to other published on-line division algorithms,
this algorithm has a shorter digit-step time. In ap-
plications where a large number of arithmetic op-
erations are to be performed in sequence, since in
on-line arithmetic all operations are synchronized, a
long digit-step time will slow down the whole opera-
tion. Since division generally appears less frequently
than other operations such as addition and multipli-
cation, an algorithm with a shorter digit-step time
may be a better solution than one with a longer
digit-step time, even if it has longer on-line delay.
Further study is under way to reduce this delay.
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