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Abstract

We present an optimum bit-parallel/word-sequential
systolic convolver. Our design is the best one
among the previous many convolvers in the sense
that its optimality in time and space performances
is simultaneously attained without augmenting any
global control, broadcasting, preloading, and/or
multi sequential or parallel I1/0 ports, which were
allowed in most of the previous designs. As an
application of our convolver we give a systolic
polynomial divider which can compute the
polynomial division in exactly n + 0(l) steps on
[min (n-m, m)/2] + 0(l) systolic cells, for the
division of any degree n polynomial by any degree m
polynomial(n > m).

1. Introduction

Convolution 1is probably one of the most
important problems in the fields of signal and
image processing. A large number of convolution
algorithms have been proposed, since this type of
computation is commonly used for many problems,

such as pattern matching, digital filtering,
discrete Fourier transforms, polynomial
multiplication and division, and so on. Recently

much attention has been paid to the study of
systolic convolution algorithms[4-5}, [7], [9-12],
(141, [18-19], [21-24], [27-29], [33-36] and
several practical constructions and implementations
on VLSI are made[12}, [18], [27], [35].

In this paper we will present a time-optimum
and register-number-minimum systolic convolver.
Our algorithm is based on Atrubin's binary parallel
multiplier{2], Knuth's its revised version[20] and
Cole's real-time iterative palindrome
recognizer[8], which have been known as tricky
cellular algorithms.

The systolic array that we assume is the most
basic model which consists of a locally-connected
semi-infinite array of identical systolic cells
with a single I/0 port being positioned at one end
of the array. The data broadcasting, preloading,
and/or multi sequential or parallel I/0 ports are
not allowed in our model.

(1) The author stays as an Alexander-von-Humboldt
researcher at Institut fiir Theoret. Informatik,
Techn. Universitdt Braunschweig, Gaussstrasse 11,
D-3300, Braunschweig, West Germany.
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It is shown that there exists a systolic array
M which can compute the convolution c¢.(i = 0, 1,
2, «+..., n + m - 1) of any two finigé seguences
a, (j=0,1, 2, ., n ~ 1) and bg(l =0, 1, 2, ..,
o - 1) in optimum real-time, exactly in n + m +
0(l) steps, using [min(m,n)/2] + 0(l) systolic
cells. The mnumber of data registers in each
systolic cell is minimum. A new data routing
scheme developed for our convolver helps us to
understand the correctness of the tricky algorithms
above. As an application of our convolver, we give
a systolic real-time pattern matcher and show that
not only data preloading but also broadcasting are
not necessarily essential operations in the design
of systolic optimum-time pattern matcher. In
addition we give a fastest systolic polynomial
divider which can compute the polynomial division
in exactly n + 0(l) steps on [min{(n-m, m)/2] + O(1l)
systolic cells, for the division of any degree n
polynomial by any degree m polynomial(n > m). The
divider is time-optimum and
register-number-minimum. Our design is superior to
the previous ones {21], [33], [36] in both the time
and space(register—-number) complexities.

The organization of this paper is as follows:
In section 2 an op timum real-time and
register-number-minimum systolic convolver is

presented. - Its validity is also given. In section
3 several wvariations and applications of our
convolver are presented. Lastly we give a
conclusion in section 4.

2. Time-optimum and register—-number-minimum
systolic convolver

2.1 Basic definitions
We first consider the convolution of two

infinite sequences defined as follows:
Convolution: Given two infinite sequences A and B

such that

A=< Aoy Ay eeeeneneen N TR > ... (1)
= <b., b,y teverieeasy Doy > e

B < bO’ bl’ ....... , bJ, (2)

Compute an infinite sequence C,

C =< CO’ cl, ..... ceeeey Cf

defined by e, = z i a b,




A systolic convolver M that we design consists
of a buffer and a semi-infinite array of identical
processors, called systolic cells, C,, i = 1, 2,

.., that operate synchronously at discrete time
steps drived by a common clock. See Fig. 1. The
input (a,, b,), 1 =0, 1, 2, ...., is fed serially
to the :ieffﬁost cell via the buffer, and from
which the serial output ¢,, j = 0, 1, 2, ..., is
also obtained. The buffed receives a pair of (a,,
b,), i =0, 1, 2, ...., at time t = i from the
host computer at the rate of one pair / one step.
The buffer also outputs c, to the host computer at
time t = j + k at the rate of one symbol/ one step,
where k is some fixed integer, for any nonnegative
integer j. We establish the following main theorem.
The design of the convolver and its correctness
will be given below(Propositions 1 to 4).

Input Buffer Cell 1 Cell 2 14

e 3 & o

Output

B

Buffer

Fig.l An illustration of real-time systolic
convolver.

[Theorem 1] The systolic convolver M presented

below can compute the convolution c,{(i = 0, 1, 2,
..+.) of two infinite sequences a,, b,(j = 0, 1, 2,
..... ) in real-time, that is, fot any i, i = 0, 1,
2,...., M outputs c, at time t = i + k, where k is
some fixed integer. The number of data registers
in each systolic cell is minimum. Further M

outputs the convolution ci(i =0,1, 2, ...., 2n -
1) of a,, b.(j =0, 1, 2, v..y n - 1) in exactly 2n
+ 0(1) Jsteﬂs, using [n/2] + 0(1l) systolic cells.

2.2 Design

First we design a systolic convolver with each
cell having four pairs of data registers, since it
helps us to understand the correctness of our
convolver. Afterward we will show that three-pair
is the necessary and sufficient data-register
number for the real-time convolution computation.

Basic cell definition:

Each systolic cell has four pairs of data
registers R,(l < j < 4) and R . Each R, consists
of two subrégisférs-z, and B,, storing (a;, b, ) for
some k. The buffer has tdhree registers dcting
similarly as R, R4 and R of the systolic cell.
See Fig. 1. Eaé% register fs used for the following
purposes:

Rl’ R,: Data holding register.

R%: A pipeline register which transmits data

In the
sgmbolic
R, (1)

to the right neighbour cell at unit speed.
Stores data temporary.

Stores the partial sum of convolution and
transmits it to the left neighbour RC at
unit speed.

description below we use the following
conventions.

Denotes the content of R, in C, at step t.

Similar notations are used for otfer registers.

R = ¢,
register

R # ¢, R « ¢: Each denotes that the
R is empty, 1is not empty, and 1is set

empty, respectively.

W Parallel Data Routing Scheme:

®Initialization: At time t = 0 we assume that:

Buffer:

€, 2 i R

(1
R)(butfer) = (ay, by),  Ro(buffer) = ¢

0

J(1) T T S AN (5)

oAt time tft > 1):

. -1
Buffer: R;(buffer) B (at, bt)’ Rz(buffer) - R; (buffer) ....... (6)
ci(i 2
if ( R;_l(i-l) =4 ) then { c, does nothing }
else 1f (RN = 9)  then {RI(D « RITN@-D ) L)
- e
alee 1f (RSTNO = 9> ghen { R0 « BT'-D ) (@) m
else 1£ (RN = ¢) chen { R§(D) « B} (-1 ) L..(O
else  {R5(W) ~ B0, LHEPINTE LT SO R BN )
Cell 1-1 Cell 1
= Time:t-1
———-—/\
(A) - :
Cell 1-1 Cell i
Time:t-1
(B) t
Cell i-1 Cell 1
‘-—' Time:t-1
\\\___,/f’-——\\ﬁ
© .
Cell i-1 Cell 1
. 2 Time:t-1
\
(D) ¢

Fig.2 Data routing scheme for real-time systolic
convolver.

Basic operations:




The operation of the systolic cell consists of
data routing which involves R, (1 < j < 4) and
convolution computation on R .3 Both of them are

R c . .
performed simultaneously, howéver, we will explain

them separately for ease of description and
understanding. -1

t In the equation(7) we regard R (i-1) as
3 ( buffer) in the case i = 1. C, doe$ nothing at
time t while R3 (i-1) 1is empty. Let t be the
time that R, {(i=1) has its first data. Then,
within the next three steps, that is, t + 1, t + 2,
and t + 3, C, performs the operation (A), (B), and

(C) in this order.
every step.
the pipeline register R, in the right direction at
unit speed until it wila find an empty R and/or
When they are found, R, has a priority for
s%oring the data. The next pair will be loaded in
R2 in the same cell. Once a pair is stored in R, or
R,, 1t will stay within that c¢ell forever. “The
content of R, is also copied by R in the same cell
at the next step and is ;tored temporary in it.
Fig. 2 shows our data routing scheme given above.

After that Ci follows (D) at
Each data-pair is transmitted through

M Computation rule for convolution:

0
®Initialization: Rg(buffer) = Rc(i) = ¢, for any 1 > 1.

®Ar time t(t > 1):
-1

Buffer: RO(buffer) « RU (1) e 9
Ci(i 2 1): Each cell C1 obeys the rule given below according to the numb
of pairs of data loaded in its R (1 < j < 4) at time t - I.
will refer them as rule 1, 2, 3, and &4, respectively.
sNo-pair: C, does nonhing fox its R at time t.
wone-patr:  RL(1) « AL () 3]TMa) Rule 1
@Two-pair: R 1) + A L B; Ty + A 1 B o) Rule 2

i w 5w + Al o))
1 -

Al B

-

R Rc Yaen) + A7 Yo Y Ly

@Three-pair: R 1) « A
Rule 3 2 ..(10)

wFour-pair:

1(1) B Ly + A ey 32'1(1)

Ly s‘ e Rule 4
Fig. 3 shows our computation rule for
convolution. Exactly the following equations hold
for R in the buffer and C,(i > 1). Consult Fig. 4

for the help of understanding of these equations.

The mark @ 1in Rc denotes that its content is
partial.
¢ (t < 3)
Rz(buffer) =0 ()
ez (t 2 3)
¢ (t < 2)
t
R =¢ (12)
Cop (t > 2)
o (t<3-1,1202)
Rz(i) = (13)
@ -
23 -1, 122

2.3 Validity

er
We

We will show informally the correctness of our

convolver. Let Ci be the term such that:
¢y = ay b0 + a 1b1 Ceree e + albi—l + aObi
defined in (4). The index i can be represented as
i = 4k -+ &, where k is any nonnegative integer and
X is any integer in {0, 1, 2, 3}. Then,
S T Chag T vy + v, + .t L + Vgl el (14),
Cell i
-
Time:t-1
[ ]
Rule 1 N
t
®
o= Time:t-1
a o
Rule 2~ <____
»
@ t
vio0 L ]
Time:t-1
ajfo{lvy
Rule 3 )
o -
A_//G:I1x+1
al]e wala e
11 ® Time:t-1
Z
Rule 4 ¢ ”
" t

Fig.3 Computation rules for convolution.

where

Woy onsey W are defined as follows:

Vi ¥
"5 T f1-(235-2) P25-2 F 24-(2y-1) bager

1-( 323-2 Pi-(24-2)
+ aZj—l bi—(Zj—l)’ 123 £ k and

ai!kb2k ,when £ = 0

b1 ¥ 22i+1P2 L=l
Vit T

2 02ks2 ¥ 2212l T 22k =2

ayoes ¥ Sk T B2k T fakbaenr 273

The computation of the value c¢
follows: The systolic cell firstly computes
Vil using rule 1, 2, 3, or 4 %epending on whether
2°="0, 1, 2, or 3, respectively. At the next step
this partial sum 1is transmitted to the left
neighbour cell C, and W + w is computed on it,
using rule 4. An % at the nex% step, applying rule

4k 2 is made on M as

4, C computes Wi + w, +w , and so on. And
k sg%ps later, 4 w K+ ..gf% w o+ w is
obtained on Cl' On thé next step gﬁls vgiue is




the buffer. See Fig. 4. Exactly the
g%pposi:iom holds. We omit its proof.

[Proposition 1] For any nonnegative integer x in

{fo, 1, 2, ....., &},
3k+2+24x _
Rc (k+l-x) = i+l + Wt + Vet ]”

By letting x = k in [Proposition 1], we get the
following equation:

R4k+2+2

[ (1) = wk

+ + ...
+1 \ +w

k 17 Yakeg:

Thus, for any i, i = 0, 1, 2, ...., c, is
obtained at the buffer at time t = i + 7% in
real-time. The computation of ¢ K8 is started on
Ck+ and uses Ck, Ck—l’ veess C cells). So the
sys%olic real-time convolver M uses [n/2] + 0(1)
systolic cells for the computation of convolution
Ci(i =0,1,2, ...., 2n - 1) of a_, bj(j =0, 1,

J
2y ...y m = 1).
Buffer Coll 1 Coll 2 Cell 3
A, A A A, Ad A A, A, A, A, A A A A
Tine S|4 5 1| 42 N i Aa] As| A, IR
) c < R4
8| B, 5| B[ 85, 8, | 8,] 8, 5, 8, (8, ], ]
*o
=0
L
ol .
. o
b v b,
2l M *olty
t =2 cq
b2f Yo} 1
1 a, a, A, e,
1 o |2 | %2
ted o €1
b3 b2 b |1 |2
T ] S0 |t | %] %2 [
t=d l‘ll Cz
by by by {b; | by] vy b,
a, a LY a. a, &,
- 5] 24 o] *1{ %4 =3 %2 2 7
ves 2 ¢3 e
bs] by Po| b1 Byf By 5 1%
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4
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Fig.4 Snapshots of our real-time systolic
convolver of two infinite sequences(t=0 to
9).

2.4 Optimality
In this section it is shown that our systolic

convolver M is optimum not only in the parallel
time complexity but also in the number of registers

of each systolic cell., From the definition of 1/0
rates the time optimality in [Theorem 1] is easily
seen. Next we show that three pairs of data
registers in each cell 1, excluding R , are minimum
for the real-time systolic computation of
convolution.

[Proposition 2] The three pairs of data registers
Ry, R,, and R, in each cell are necessary and
sufficient for any real-time systolic convolver.

(Proof) Let ¢y = aib + a,_ b, + i, +
alb._1 + aob,. We re?er the 'set of cells ¢, C,,
.% C, o M as region I. See Fig. 5. Tﬁe

following observations are obtained.

€ Cpernnnn Cig s« = - - .
¢ -0 r—"—l—l—l—l—l—l- SRR
(lo,bo)\ )
(ll,bl) W_J'
Region I :
‘
1
Time !
L}
t
1
)
1
1
t o= 1/2 !
4,28 /20 .
~
~ 1
.
N '
* 1
~
. 1
-
t = 31/4 3 LMaximuw distance that
.
o | (‘1/2'b1/2) can reach.
, [
. ]
L4 1
.
’ 1
’ 1
(‘i'bi) K'
t = § t
t
)
t

Fig.5 A region of systolic cells which involve the
zogputation of ¢; = aibO + ai—lbl + ...+
071"

(1) It is the subterm ai/2 b./ that can be
computed firstly on M within 1~ + subterms which
constitute c¢,, since it is the first subterm that
both of the input data are ready for the
computation. Moreover the multiplication of a.{2

>

b, 2 must be made on some cell in the region1

siéce the pair is fed at time t = 1i/2 and the
result must be output at time t = i in real-time.
From the same reason (a,, b,), 1 = 0, 1, 2, ..,

1/2-1 must stay at somewhere in the region I.

(2) The i/4 pairs of data fed from time t = 3i/4
to 1 cannot go out of the region I, even if they
march in the right direction at its maximum speed.

Therefore M must hold 3i/4(= i/2 + i/4) pairs
of input data on the region I consisting of i/4




systolic cells. So three pairs of data registers
are necessary for our computation.

By a slight observation we show that the
register R, of each systolic cell can be removed
from M. The R, is used only for the rule 4. When
we apply the rul% , the following register R is
used instead of R (i)

t-

£

2

(i+1), when R
(i+l), when R

(1+1) = ¢,
(1+1) # ¢ and R (i+1) = ¢,

t
%
2
tl
3

(i+1), otherwise.

IE fs easily seen from (7) that the content of
(i) is the same as that of R above. B

3. Other convolvers and their applications

We will develop several variations and
applications of our systolic real-time convolver
designed in the preceding section. A slight
modification enables us to use M for the
computation of the convolution of one finite and
one infinite sequences, which is an important
problem in the fields of digital filtering.

[Theorem 2] The systolic convolver M can compute

the convolution ¢, (i = 0, 1, 2, ....) of an
infinite sequence a.(j = 0, 1, 2, ...) and a
finite sequence b (& =0, 1, 2, .., k - 1) in

real-time, using only [k/2] + 0(l) systolic cells.

(Proof sketch) We use #* as an end mark of the
finite sequence b, £ = 0, i, 2, .., k - 1. The
input to M is (a,, *) for any j > k. The number of
systolic cells hecessary for the computation is
[k/2] + 0(l), since the product of * and a, is
zero. B 3

If multiplication and addition operations are
interpreted as character-comparison and boolean
AND, respectively, then the convolution considered

above becomes the pattern matching problem{13],
[15], [22]. In [22] and [29], were presented
systolic pattern matching algorithms with global

data broadcasting and/or preloading. In the next
theorem it is shown that the both broadcasting and
preloading are not necessarily essential
operations in the design of real-time systolic
pattern matcher.

For any infinite long ''pattern" and
any '"text'" of length k, the systolic convolver M
can detect and output the positions of all
occurrences of the text in the pattern in
real-time, using [k/2] + 0(l) systolic cells.

[Theorem 3]

The following theorem for open convolutions of
two finite sequences is easily obtained from
Theorems 1 and 2.

[Theorem 4] The systolic convolver M can compute
the convolution ci(i =0, 1, 2, ., n+m- 1) of
any two finite séquences a.(j = 0, 1, 2, ..., n -

1) and b,(& =0, 1, 2, ..% m - 1) in exactly n +
m + O0(l) steps, using [min(m,n)/2] + 0(l) systolic
cells.

Lastly we apply our convolver to the design of
systolic real-time polynomial divider. Our design
is superior to the previous ones[21], [33], and
[36] in both the time and space complexities. In
Table 1 we give a summary of the designs. Let's
begin with the definitions. ©Let A(x) and B(x) be
any polynomials of degree n and m(n > m),
respectively, such that:

n n-1
..... + ,
A(x) agx + a x + +a .x a (15)
-1

m m
box + blx + ... F bm—lx + bm ce..(16).

B(x)

Then there exist unique polynomials C(x) and D{(x)
that satisfy the following division property:

A(x) = B(x) C(x) + D(x), where el (17)

Number of Time
Design Systolic Cells Complexity 1/0 Rates 1/0 Architecture
(cycles)
Kung[21] m 2n +m 1-data/2-step Sequential 1/0 ».—.—.—"".:
(1982) at opposite ends
Wada, Mizuno
and Kawaguchi n+1 2n 4+ 2 l-data/l-step Sequential 1/0 »m ems ..»
{33)(1985) at opposite ends
Zak and t t f
Hwang[36] n-m+ 1 2n -m+ 2 I-data/l-step Parallel 1/0 m"‘ =
(1985) t ' [} t
>
this paper n 1-data/l-step Sequential 1/0 @H_. il ".“
[min(n - m, m)/2] (optimum) at one end

Table 1 Performance comparison of systolic polynomial divider in the case

where degree n polynomial is divided by degree m polynomial.




e T cn“m—lx
veessa(18)
cens + d x+d
2 mlagy.
Let z, (1 = 0, 1, 2, ..., n+l) be the
convolution  of (bo, bl’ ey bm) and (co, y»
eena , cn—m)' Then the following equation holds.
z; 0<i<n-m
ai = R ¢10)]
z, + di cn+m-1 n-m+1<41i<n
Therefore coefficients of C(x) and D(x) are

determined by the following equations:

ey = { a; - (bic0 + bi_lc1 R + blciml) }
/by, 0<ign-m oo (21)
d, = TRy

i Zito-mil T %§=0 Pitn-o+l-3%5°

0<i<m-~-1. e (22)

R. R R: R R,
A A A LA LS

B.|B8.|B.|B.|B.|R

Fig.6 Systolic cell Cl for the polynomial divider.

We want to design a real-time systolic
polynomial divider A which outputs both c, (0 Lix
n-m and d, (0 £ 3 £m-1) in exactly n + 0(1)
steps, when Coefficients of A(x) and B(x) are given
as inputs of A. The operation of A is based on M
which computes the open convolution of (b,., bl’
ey bm) and (Cp, €.y cvsneuy C —m) in [f%eorem
4}. Therefore the number of systollc cells needed
for the division is [min(n - m + I, m + 1)/2] +
0(1) = [min(a - m, m/2] + 0O(l). All of the
systolic cells of A, except C,, are the same as

these of M. So in the below, wé will only give the
description of C,.
The cell consists of several registers

The R, and S registers are added
design. The R is the data
0
and b

shown in Fig. 6.
to the previous
register storing a, (0 < 1 < n - 1), 0’
respectively. The S register assumes either "q" or
"r" state, which notifies C. that the current
computation is for the quotiént or the remainder,
respectively. From time t = 0 ton - m + 1, §
assumes "q" and after that, from t = n - m + 2 to
the end, S assumes "r", The change of the state in
S is caused by the signal fed by the host computer
at time t = n - m + 1, C, performs the operation
given in Table 2 depending on whether S is "q" or
"r", respectively.

In Fig. 7 we show an example of the systolic

polynomial division on A in the case where n = 7
and m = 3,
proof.

We give the following theorem without

[Theorem 5] For the division of any degree n
polynomial by any degree m polynomial(n > m), there
exists a systolic array A which can compute the
polynomial division in exactly n + 0(l) steps on
[min(n-m, m)/2] + 0(l) systolic cells. The divider
A is time-optimum and register-number-minimum.

4. Conclusion

In this work we have presented a best systolic
convolver which can compute the convolution c.(i =

0, 1, 2, ...., n + m - 1) of any two finite
sequences a_ (j = 0, 1, 2, ..., n - 1) and b, (2 = 0,
1, 2, .., m"- 1) in optimum real-time, exactly in n

+ m + 0(1)
systolic cells.
each systolic cell is minimum.

steps, wusing [min(m,n)/2] + 0(1)
The number of data registers in
Several variations

and applications of our convolver, such as
real-time pattern matcher and time—~optimum
polynomial divider, are also developed. Our

convolver design is the best one as far as the
design is within the systolic architectures.
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Fig. 7 Snapshots of the real-time systolic polynomial

divider( t = 0 to 10 ).




