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ABSTRACT

A new error correction scheme for bit-sliced
AlUs is presented. The method adopted for fault
location is an extension of a concurrent error
detection scheme called RESO (Recomputing with
Shifted Operands). The term bit-slice is used
in the generic sense and the length of the slice
may be one or more bits. The proposed scheme re—
quires two consecutive computation steps for normal
operations and the possible locations of faults,
if any, can be located provided that the failures
are confined to a certain number of adjacent bit—
slices. The fault-free bit-slices of the ALU are
thus figured out. The final and effective computa—
tion is then carried out through those identified
fault-free bit-slices. A circular structure is
proposed to realize this concept.

I. INTRODUCTION

Today, computers have been used around every
corners of the world. Some applications are so
critical that a minor errors caused by the computer
may induce a disaster. Therefore, some fault
tolerance features must be included to detect
and/or correct errors whenever they occurfl,2].
Some error detecting codes [3-7], for instance,
were developed for checking arithmetic operations.
In the mean time, utilizing a fully duplicated
logic unit such as Triple Modular Redundancy (TMR)
has been widely accepted as an effective method
for checking logical operations. Recently, Patel
et al. proposed a time-redundant technique, called
Recomputing with Shifted Operands (RESO) [8],
which can detect all functional errors resulting
from failures confined to a small area of the
chip, and is thus quite appropriate for the VLSI
technology. RESO, however, does not generally
provide error correction in arithmetic operations.
Correcting errors in arithmetic operations can
be achieved by other time-redundant techniques
introduced in the 1literature such as [9]. The
shifting-operand approach has further extended
to rotation for error detection and correction
by several researches [10,11]. In Butner's TTR
(Triple Time Redundancy) approach [10], no communi—
cation can exist among the identical bit-slices
used. This rules out the use of TTR for adder
and other arithmetic unit with carry signals.
Only with a substantial increase in hardware inside
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the bit lices and outside, TTR can be used for
some ar: hmetic units. While the structure proposed
by Chensy :t al. [11] does not provide error correc-
tion cap::bility.

In :this paper we propose an error-correction
scheme, which is based on a new fault location
method |2] to locates the faulty bit-slices and
bypasses Lhese bit-slices for recomputation. Here,
the term bit-slice is used in the generic sense
and the length of the slice may contain one or
more bits. The proposed error-correction scheme
indeed uses redundancy in time and can correct
errors resulting from the failures confined to
a small area of the chip. A circular structure
of ALU is introduced to cope with the recomputation
requirer«nt. We first describe the fault location
method in the next section. An overview of the
proposed scheme is given in Section 3, which is
followed by the scctions addressing the error
correcticn capabilities and the computation steps
carried « ut by this scheme.

II. FAULT LOCATION BY USING RESO

In this section, we give a brief review of
the fault location method [12] by which the "sus-
picious" faulty bit-slices can be located.

We assume that during the first computation
step the operands input directly to the ALU and
after the desired operation has been carried out,
S0 = ( SEAI, ey s?, sg ) is  resulted. During
the seccnd computation step, the operands are
first shifted left by k bit-slices, and then input
to the ALU to conduct the desired operation.
Finally, the result is shifted right by k bit-
k k k- H
n-1' < Sp» Sg ). Here,
the width of each bit-slice is r bits, rzl. There-

ore, for an n-bit long operand, there requires
m = In/r1 to cover the entire operand, where the
least significant bit-slice is denoted as bit-
slice 0 and the most significant bit-slice is

slices to yield Sk =(s

denoted as bit-slice m—1. Then we define FD (SO,Sk)
as follows, o

Definition: Let SO and Sk be compared bit-slice
by bit-slice, from the least significant bit-slice
to the most significant bit-slice. Further, 1let
i(0=i<ml)be the first mismatched bit-slice

found by this comparison, then we have FD (SO,Sk) =
m




i. Tf 80 equals S*, then FD_(,55) = m

With this mismatch function FD, we can end
up with the fcllowing theorems which indeed
describe the principle for fault location. The
theorems are given directly without proofs. The
readers may refer to [12] for the detail of proofs
of these theorems.

THEOREM 1: 1If the failures in a logic unit are

confined to two adjacent bit-slices, and S0 and
S2 are outputs of this logic unit resulting from
two computation steps. Then FDm(SO,SZ)=i<m implies
that the faulty bhit-slices must locate from bit—
slice max[ 0, i-1 ] to bit-slice (i+3).

THEOREM 2: 1If the failures in a bit-sliced ripple-
carry adder or a bit-sliced carry-lookahead adder
are confined to a single bit-slice, and S0 and
S2 are outputs of this particular adder resulting
from two computations. Then FDm(SO,i12)=i<m implies
that the faulty bit-slice must locate between
(including) bit-slice max[ 0, i-1 ] and bit-slice
(i42).

Recall that the bit-slice in a carry-lookahead
adder which we mention here is scmewhat different
from the way we mean for the bit-slice in a ripple-
carry adder and is defined by [8].

Theorems 1 and 2 can furtlcr extend to a
more general situation which is described by the
next two theorems.

THEOREM 3: 1If the failures in a iit-sliced logic
unit are confined to k adjacent bit-slices, and
SO and Sk are corresponding to the computational
results of the first step and the second step,
respectively. Then FDm(SO,Sk)=i<m implies that the
faulty bit-slices must be locate: from bit-slice
max[0,i-k+1] to bit-slice (i+2k-1).

THEOREM 4: If the failures in a b!:-sliced ripple-
carry adder or a bit-sliced carry-lookahead adder
age confined to (k-1) adjacent »it-slices, and
S

resulting from two

and Sk are outputs of this particular adder

computatici:  steps. Then

FDm(SO,Sk)=i<m implies that the fuulty bit-slices

be located from bit-slice max[C.i-k+1] to bit-
slice (i+2k-2).

Based on the thcorems given above we may
came up with a very interesting -~emark. That is,
if the failures are confined to x adjacent bit-
slices of a logic unit, then tlrough conducting
two consecutive operations as ‘lescribed above

and by evaluating FD (SO,Sk), a total of no more
than’ (3k-1) "suspiclous" faulty bit-slices can
be located. Similarly, if the failures are confined
to (k-1) adjacent hit-slices in a “it-sliced ripple
carry adder or a bit-sliced carry-lookahead adder,

a total of (3k~2) "suspicious" faulty bit-slices
can be located by conducting the computations
addressing above.

TTIT. ERROR CORRECTION IN BIT-SLICED ALUs

In order to bypass the faulty bit-slices
we propose an error correction scheme which is
achieved by recomputing with k-bit-slice rotated
operands during the second computation step.
Specifically, the input operands are first fed
into the ALU and the desired computation is con-
ducted. The output result is stored in a register.
The sccond computation step follows by rotating
operands left by k bit-slices, performing compu-
tation and finally rotating the result back.
Comparison of the results from these two steps
are then carried out. A mismatch implies errors
have been detected and a recomputation is re-
quired. Further rotation is needed to bypass
the faulty bit-slices and to assure that the
recomputation is carried out through fault-free
bit-slices.

Clearly, in the fault-free case, the results
achieved by step 1 and step 2 should be identical.
However, this is true only for bit-wise logical
operations when a conventional ALU is used. As
for the arithmetic operations, since bit-slices
in the arithmetic unit is no longer as isolated
as that of the logic unit, a conventional ALU
may not guarantee a match all the time under
the fault-free situations. The carry signals
in an adder, for instance, may be blocked when
the fault-free bit-slices are physically separated
by a group of consecutive defective bit-slices
betwecn them. Such case is amendable if the adder
is designed in a circular fashion so that the
carry signal generated by the most significant
bit in the adder feeds back to the least signifi-
cant bit as its carry input. Implementations
of a circular ripple-carry adder and a circular
carry-lookahead adder are illustrated in Fig.l
and Fig.2, respectively. Based on this circular
structure, the carry signals can never be blocked
even if the fault—free bit-slices are not con-
nected in a consecutive fashion.

When a circular adder is used, two other
problems should be concerned and handled properly,
they are: (1) carry signals may be erroneously
generated by the faulty bit-slices; and (2) the
position at which to insert the carry-in signal.
To dcal with these two problems we need to
classify data bit-slices as a combination of
information bit-slices and redundant bit-slices.
Here, information bit-slices are corresponding
to those bit-slices of operands, and the number
of tliese bit-slices is assumed to be m as we
used in the previous section. The redundant bit-
slices are all set to O's and the number of which
is yot to determine. The data words from two
source 1inputs are fed into the corresponding
bit-slices of the ALU for computation. Consider
an example as shown in Fig.3, if bit-slices O
to i and bit-slices (j+h-1) to (g¢h-1) are all
fault-free bit-slices, then the information bit-
slices are all computed through fault-free bit—
slices, That is bit-slices 0 to (i-1) and bit-
slices (i+h) to (mth-1). Further, since bit-slice




(i+h-1) is fault-free and has been asvigned to
be a redundant bit-slice, it is clear that the
carry signal erroneously generated by :lhe lower
order faulty bit-slices (ranging from | it-slice

i+l to bit-slice i+h-2) can never propagat: through

this bit-slice. The computation result is -herefore
correct. Next, if a carry-in signal is involved
in our computation, we shall determine where to
inject this carry-in signal. This is co:non when

cascading a number of ALUs to allow lcuger data
computation. Again, we use the same rotion as
before, except that this time we inser 1's to
both input ports of the bit-slice (i+i-1) when
carry-in is "1" and O's to both input ports of
the bit-slice (i+h-1) when carry-in is "0". Such
arrangement will again make the erroncrus carry
signal transparent to the final (mtl) “it-slice

result. Notice that the (m+l)-bit-slir: result
is taken from the output of bit-slice {ith) to
bit-slice (m+th-1) and bit-slice 0 to “it-slice
i. The highest order bit of this c¢- .putation
result, here being the output of bit-slice i,
is a carry-out when ADD operation is ¢ nducted.

In summary, we need 3k redundant bit-c ices for
ADD operation, among which (3k-2) bit-s'ices are
used to cover the suspicious faulty bi:-slices,
one bit-slice for carry-in and one bit-slice for
carry-out.

IV. ERROR CORRECTION CAPABILITIES

In this section, we discuss error correction
capabilities of the proposed scheme. 7ie fault
model we assume here is a functional fauit model.
The failures affect a complete bit-slice ¢r several
adjacent bit-slices. Since the basic premise of
our scheme is to carry out computation through
fault—free bit-slices during the third cosmputation

step, one requires to know how many ’useable"
bit-slices are available in order to rerform a
correct computation.

By theorem 3 and theorem 4 it ic easy to

end up with the following conclusions.

THEOREM 5: The proposed error correcticn scheme
can correct all errors in all bit-wis: logical

operations carried out by a circular 1.;ic unit
when the failures are confined to k adjr-cnt bit-
slices.

Proof: By theorem 3 it is easy to figure out
that the number of suspicious faulty btit-slices
is (i+2k-1)-(i-k-+1)=3k-1 when the failures are
confined to k adjacent bit-slices. Since the word
length of the logic unit is m+3k bit-slices, the
number of fault-free bit-slices is equal to m+l.
Furthermore, these fault-free bit-slices ure adja—
cent logically due to the circular structure.
Therefore, a bit-wise logical operation can be
correctly carried out in the recomputation step.
Q.E.D.
THEOREM 6: The proposed error correcticn scheme
can correct all errors in arithmetic operations
in a circular bit-sliced ripple-carry adder or

a circular bit-sliced carry-lookahead a:lder when
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the failures are confined to (k-1) adjacent bit-
slices for k>1.

Proof:  Applying theorem 4 we can again figure
out that the number of suspicious faulty bit—slices
is 3k-2 when the failures are confined to (k-1)
adjacent bit-slices. Thus the fault-free bit-slices
in a cirecular bLit-sliced ripple-carry adder or
a circular bit sliced carry-loockahead adder are
adjacent frcam the circular point of view and the
number is mi2, w.iich is just long enough to carry
out an effective recomputation for an m-bit-slice
long ADD operation.

Q.E.D.

V. COMPUTATION ALGORITHM

Before presenting the computation step, we
shall first figure out how many bit-slices should
rotate for thie recomputation.

Based on the structure we described earlier
together with the theorems outlined in the 1last
section, we come up with the following remarks:

(1) For all logical operations in a circular ALU,
if the failures are c?pf'ned to k adjacent
bit-slices, and FD 1(S S )=i <m. Then bit-
slice i plus (2k~f$¥ bit-slices on its left-
hand sice and (k-1) bit-slices on its right
hand side might be faulty.

A circular bit-sliced ripple-carry adder or
a circular bit-sliced carry-lookahead adder
is chosen in an ALU for arithmetic operations.
Furthermore, if the failures are confined

to (k-1) adjacent bit-slices. Then FDm+1(SO,Sk)

=i<m+l implies that bit-slice i plus (2k-2)
bit-slices on its left-hand side and (k-1)
bit-sliccs on its right-hand side might be
faulty.
Here, the terms "left-hand side" and "right-hand
side" are both treated in a circular sense. With
These two remarks, the following investigation
is straightforward. First, let us consider the
case for logical operations. If a mismatch occurs

(2)

and FDm+1(SO,Sk)=i<m is detected, then referring

to remark (1) can locate the suspicious faulty
bit-slices. It is clear that all these suspicious
faulty bit-slices should be bypassed at the time
that the final recomputation is carried out. In
this case, one requires to move the least signi-
ficant information bit into bit-slice (i+2k).

For the case of arithmetic operations, if
a circular bit-sliced ripple-carry adder or a
circular bit-sliced carry-lookahead adder is
used. Moreover, if a mismatch is detected and

FDm+l(SO,Sk)=i<m+l is resulted. It is clear thet

(from remark (2)) bit-slices (i—k+1) to (i+2k-
2) are likely faulty and should be skipped during
the final computation in order to achieve an
accurate result. - Also notice that a fault-free
bit-slice, in this case, bit-slice (i+2k-1), should
be reserved to generate a correct carry-in signal,
as such correct arithmetic operation can be re-

sulted. Consequently, left rotation by (i+2k)
bit-slices is required to conduct recomputation.

The required computation algorithm is given
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below:

Step 1: The input operands are fed into the ALU
to conduct the desired logical/arithmetic
operation.

Step 2: Rotate the input operands left by k bit-—
slices and then feed into the ALU. After
the desired logical/arithmetic operation
is carried out, rotate the result right
by k bit-slices. If identical outputs
are resulted, the result is correct;
otherwise, a further recomputation (step3
)is required.

Step 3: If FDm+1(SO,Sk)=i is detected, rotate

the input operands left by (di+2k) bit-
slices, conduct the desired computation,
and then rotate the result back by (i+2k)
bit-slices. Now, the output is a correct
result.
Notice that the input operands contains both infor-
mation bit-slices (which is the effective messege
part for actual computation, and rcdundant bit~
slices. Initially, except bit-slice n+3k-1, all
the contents of the redundant bit-slices are set
to 0's. While the bit contents of bit-slice
n+3k-1 are set to the value of carry-in.

VI. CONCLUSIONS

This paper presents a time-reduadant technique
for concurrent error correction in arithmetic
and logic units. The proposed error correction
scheme can detect errors and simult:aneously locate
(suspicious) faulty bit-slics during the first
two computation steps. If rrors are detected,
recomputation is required =0 achieve accurate
result. The basic premise is to bypass these
"uncertain" bit-slices and carry out recomputation
through those fault-free bit-slices. A circular
bit-sliced ALU is proposed to realize this concept.
Note that the term bit-slice we use here is not
limited by its 1length. Indund, a bit-slice may
be one or more bits. Howe.:r, ='nce two extra
redundant bit-slices are req:ired in adders (and
also other arithmetic unit-) for carry-in and
carry-out, which in terms can he res-lved perfectly
by two single bits, it is nct econ~. ical to choose
a long bit-slice in our propc ~d systoem.

The fault model we used is th:: the physical
failures are confined tc a sm:ill arca of the chip.
Further, the precise naturc of ¢ faults does

not have to be well understcod, which is in con-
trast to many techniques that the traditional
stuck-at fault is presumed. As assumming an exact
fault model, such as stuck-a- faulr, is no longer
appropriate for VLSI situati 1 [12 14], our model

is doubtlessly more suitable or tuc VLSI environ-
ment.

Implementation of thi: tecirique requires
substantial hardware to sur rt fa- shift opera-
tions which may require mer: sili- - area compare
to other scheme such as ™ But t.e application
of this concept is nct lir ted © simple units
which are very common in i13e 1 : ripple-carry

adder and carry-lookaliead adder. Indecd, this
error correction scheme can @pply ‘o more complex
arithmetic processors jprovided that the system
can be partitioned into tit-slices physically
or logically. Under such ¢® ~umstinces, the area

occupied by the shifters is no longer a dominant
factor of the entire circuit. As such our proposed
technique may be more attractive than others
because it can provide higher availability and
reliability for the system.
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Figure 1. The physical and logical view of a
bit-sliced circular ripp!e-carry
adder with r=1.
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Figure 2. The logical view of a circular carry-
lookahead adder with r=1
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Figure 3. Bit-slices of a circular adder and
the contents of the associated
data word.
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