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Abstract

Virtually all numerical techniques for elementary
function generation share the common property of
avoiding multiplication by iteratively performing shift
operations. However, with the advent of VLSI,
multiplier economics are considerably less formidible
than before. We propose combining multipliers with
these multiplication free algorithms to construct fast
methods of elementary function generation. We
demonstrate our idea by combining multipliers with
the CORDIC algorithm to achieve fast vector rotation.

I. Introduction

Methods for generating elementary functions were
developed several decades ago when special
computational elements such as multipliers as well as
table storage were both prohibitively expensive. In
order to avoid multiplication, these techniques paid
the speed penalty associated with iterative shift
operations. For example, the CORDIC algorithm [1] is
designed for two dimensional vector rotation. Four
multiplications can yield a rotation when the required
trigonometric quantities are stored to adequate
precision. In order to avoid the costs of both storage
and multiplication, CORDIC performs a rotation as a
sequence of incremental rotations through
predetermined angles. The latter are chosen to have
tangents that are powers of the machine radix so that
multiplications are replaced by shifts and only
minimal storage is required. Execution speed is the

price paid for these simplifications since a single
rotation is replaced by a sequence of incremental
rotations. Furthermore, the fina' result must be
renormalized, a spurious side effect of CORDIC [1].
Similar tradeoffs appear in other methods of
elementary function generation [2]-[4].

1 This work was supported in part by the National Science Foundation
under contract MIP-8705734
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Recently, there has been considerable interest in rapid
function generation within the signal processing
community, since elementary functions appear to be
fundamental to signal processing algorithms [5].
Furthermore, DSP processors are often used in
graphics applications which require division and
square root operations. Unfortunately, the iterative
nature of existing function generation methods render
them unattractive in the throughput sensitive signal
processing and graphics environments. Consequently,
parallel and pipelined versions of these algorithms
have been actively researched. For example, Naseem
et al. [6] have developed a parallel CORDIC by noting
that the CORDIC iterations can be decoupled if the
incremental rotations are known in advance.
Therefore, they concentrate on developing a
representation of the angle of rotation in terms of the
incremental CORDIC angles. Unfortunately, their
decoupling does not apply to the vectoring mode, so
that many of the CORDIC functions are unattainable
through their methods. Ahmed and Fu [7] circumvent
this problem with an array CORDIC architecture that
parallels array multiplier and divider structures.
While they show that their structure offers improved
throughput per unit area over multiplier approaches, a
VLSI implementation of their method consumes
considerable real estate (roughly five times the size of
an array multiplier).

In this paper, we offer an alternative approach to
elementary function generation that is real estate
efficient and exhibits a speed in between the original
iterative algorithms and truly parallel structures like
[71.  We basically argue that both multiplication
hardware and storage are relatively inexpensive (upto
a point) given current VLSI technology and therefore,
the original efforts to avoid them are no longer
justified. By combining these elements with the
multiplier-free function generation algorithms, cost
effective, high throughput function generation can be
achieved. Although this basic principle is general, we
restrict our attention to the CORDIC algorithm.



IL. Just Enough about CORDIC

We assume reader familarity with CORDIC, however
we will briefly describe the algorithm for completeness
and review some of its convergence properties that are
pertinent to this paper.

CORDIC is a numerical method for the rotation of two
dimensional vectors that uses a shift and add kernel as

. . T
its fundamental operation. Let X ¢=[*¢7,] be the

vector at the kit iteration of the algorithm. Then each
iteration of CORDIC is given by:
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Therefore, the CORDIC algorithm is defined by three
scalar equations which we shall refer to as the xg, yi

and z; iterations. These equations amount to a
rotation of X through an angle p,, in the

coordinate system defined by 'm'. There is also a
spurious magnitude change in the vector by a factor:

/ 2

K,=,1+mé,
Clearly, z; accumulates the total rotation. The
sequence {&,} and hence, {6,} is fixed and
determined a priori in such a way that each element of

{d.} is an integer power of the machine radix.
Therefore, each rotation is simply computed with a
shift-and-add kernel.

The convergence properties of CORDIC are essential to
the ideas that we present here. Let @;denote the
angular error from the desired rotation remaining at
iteration i. Then, some key results due to Walther [1]
are summarized:

Lemma 1.

Within the domain of convergence:

n—1
|o] < an_1+2a}. Viz0
j=i
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Since the sequence {¢;} is a declining sequence [1],

the angular error becomes progressively smaller. By
substituting i=0, we obtain the domain of convergence
and by substituting i=n, we obtain the final angular
resolution. These are stated in the following two
corollaries also due to Walther [1].

Corollary 1: (Domain of Convergence)

n—1
id>0| <a,  + Z a;
j=0

Corollary 2: (Angular Resolution)

An angular granularity of «,.; is achieved after n
iterations.

Further to corollary 2, it is worth noting that the
maximum number or iterations is limited by the

choice of {J,} and the wordlength. For some of the
most popular choices of {5,} the maximum number
of iterations is approximately equal to the wordlength.

Figure 1 shows the CORDIC function set. The
interested reader is referred to [1] for further details of
CORDIC and the rich set of functions that it generates.

III. Multiplier based CORDIC Computation

CORDIC may be viewed as linearly convergent, in that
it generates one bit equivalent of precision per
iteration. Hence, the computing speed is strongly
dependent on the operand wordlength and the exact
precision depends on the choice of the incremental
rotation angles, {a;}. Consider momentarily, the
circular rotation case (m=1). The most popular set
{03} achieves an angular resolution of 2-n+! radians in
n iterations [1]. Alternatively, a
multiplier/accumulator coupled with tables of sines
and cosines can compute the rotation in four
operations. However, the table must store the
trigonometric quantities to 2-7+2 radians resolution.
At even modest wordlengths, the table can get very
large. Apart from the cost of the memory (e.g. its VLSI
area), the speed advantage of the multiplier method is
eroded by the slower access time of the large memory.
Assuming that one quadrant of sines only is stored to
the requisite precision, 27-3x ‘n’ bit words are
required. By way of example, 32 bit operands would
require a 54 Gbit memory! Therefore, while



multipliers and memory are relatively inexpensive
given current VLSI technology, such large amounts of
memory remain impractical from both a speed and
cost viewpoint.

Cost effective function generation can be achieved by
combining the CORDIC algorithm with a multiplier.
We will present two basic approaches. The first
approach is flexible in that it allows one to tradeoff
computation speed and storage. The second approach
does not offer this flexibility, however it sports the
advantage of not requiring any additional memory
beyond the iterative CORDIC. We refer to the former
approach as an interpolation scheme and the latter as a
Taylor Series based approach. Both methods will be
named hybrid CORDIC.

III.1 CORDIC Functions by Interpolation

Hybrid CORDIC by interpolation is best illustrated by
example. Consider the circular rotation CORDIC
algorithm (m=1). The incremental rotation angles,
-F

n—-1
{&} b are chosen such that mnoa;,=§, =2
i=

-1

n-1 an
Furthermore, for m=1, {Fi}A o={l}. o results in
i=

i=
an angular resolution of 2-7+1 radians in n iterations.
In order to avoid large memory requirements, let the
unit circle be quantized into 2°k parts, k<n, yielding
an angular resolution of R=2712k/2=2-k+1.65 Since
this falls short of the 2-7+1 radian resolution required

of n-bit operands, we will perform the rotation in two
steps:

1. Employ table lookup and a multiplier for
rotating the original vector with resolution
R.

2. Utilize the CORDIC algorithm to refine the

resolution to 271 by starting the CORDIC
iterations at i=i, and proceeding to i=n-1.

This approach uses the multiplier to perform a coarse
rotation and then uses the CORDIC iterations to refine
the result. Only n-i, rather than ‘n’ CORDIC
iterations are neccessary, thereby improving speed
over a pure CORDIC approach. Furthermore, the
coarser quantization of the unit circle leads to
significantly lower storage requirements than the pure
multiplier approach (and that in itself improves speed
due to faster memory access).

The choice of i,is the only outstanding issue and it
can be resolved with the aid of Lemma 1 and its
corollaries. Note that by ending the CORDIC
interpolation with i=n-1, we achieve the same
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angular reolution as if we had simply used the basic
CORDIC algorithm. The choice of i, hinges on
ensuring that the interpolation step leads to
convergence. Since step 1 leads to an angular
resolution of R, we must select i, such that the
domain of convergence of step 2 exceeds R. With the
aid of lemma 1, this implies:

n=1

(1) an_1+' .aiZR
i1=1

6. = 24, so (1) becomes:

i

For sufficiently large i, o, =

which implies:

2) i,<1- Iog2 R

For the case above where R=2-%+1.65, the CORDIC
iteration should be started at i, =k or i, = k-1 and
n-k iterations are neccessary. There is clearly a
tradeoff between the size of the table of sines and
cosines and the speed of the hybrid CORDIC, since
increasing the resolution of the table reduces n-k. We
remark that this hybrid CORDIC technique has a full
region of convergence (unlike the original CORDIC)
because of the prerotation of step 1.

In order to appreciate the benefits of our hybrid
approach, begin with the following definitions:

Tn  is the time required for a multiplication. 7,
includes the memory access time required to
retrieve trigonometric quantities and
therefore depends weakly on k.

T is the time required to complete a single

CORDIC iteration. Typically, 7.<7, since
the CORDIC iteration requires only a shift
and add operation. Occasionally, it will be
convenient to compute the shift using the
multiplier rather than build separate

CORDIC hardware. In this case 7.~1,,.

is the rotation computation time using the
multiplier and stored table approach

is the rotation computation time using the
iterative CORDIC approach



Ty  is the rotation computation time using the
hybrid multiplier/CORDIC method outlined

above

S., S, and Sy are the storage requirements in bits
for the three approaches

In what follows, we develop the relative execution
speed and storage for the three approaches as a
function of n and k. Unfortunately, this comparison
depends on the assumptions that are made and we are
unaware of any set of assumptions that are universely
acceptable. The difficulty with comparing the three
approaches lies in determining how many
multiplications are neccessary to compute a rotation in
the pure multiplier case. Of course we know that this

is four (counting a multiply-accumulate as a
multiplication), however, CORDIC doesn't strictly
speaking, compute a pure rotation, due to the spurious
scaling that occurs. The end result of a CORDIC

rotation (m=1) through 6 is really the
transformation:

1 tan 6
@) szl{_me ; ]Xk

This obviously requires four multiplications as well
but only tangent tables rather than tables of both sines
and cosines need be stored. We will assume that the
multiplier is used to compute a pure rotation requiring
tables of both sines and cosines. Hybrid CORDIC can
also achieve a pure rotation with two multiplications
for the initial rotation (i.e. equation (3) without the
K), followed by the CORDIC iterations, followed by
two more multiplications to remove the spurious scale
factor?, i.e. four multiplications are required. We
will compute our comparisons assuming four
multiplications for hybrid CORDIC, realizing full well
that the final two multipications are not always
required. For example, if one wishes to compute cos 6

and sin 6, then the initial vector is set to

T
X,= [:K_I K_l] . Since K is known in advance, 1/K
requires no explicit calculation. Hence, in this case,
hybrid CORDIC does not require the final two
multiplications and is faster than our comparisons will
indicate.

Under our assumptions, it is straightforward to show
that3:

There are other ways of removing the scale factor, see (9] and (10] for
example, however these are inferior to simple multiplication when a
multiplier is available.

Note that the each memory is nr/4R bits.
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T.=nt. and S,=n®bis ( pure CORDIC )

47, and S,=2""? nmbits ( pure multiplier )

T

T,=4%,+(n—k7, ad S, =2""" nbits (hybrid )

We have assumed that only one quadrant of sine and
cosine values are stored to the required precision
(some preprocessing can reduce the table size by a
factor of two at the expense of computation speed).
Furthermore, as before, the unit circle is quantized into

2k parts in the hybrid approach.

The relative merits of the hybrid approach can now be
assessed:

Ty k%
T, 4 Tn
N e
L L k#0
< Sh
T,
T n—k+4Tm
T—CZ n k#0

These relationships are depicted in Figure 2. The key
observation is that while the execution time ratios
depend only linearly on n-k, the storage
requirements vary exponentially. Therefore, the
hybrid approach offers the potential for drastically
reducing the storage requirements of the pure
multiplier method while incurring only a moderate
speed penalty. The tradeoff of storage and speed can be
controlled by the designer's choice of n-k!
Furthermore, the hybrid method is faster than the
iterative CORDIC. As we noted earlier, reader’s
disagreeing with our assumptions in forming this
comparison may redo the calculations with their own
assumptions. Although they will derive different
ratios from ours, the key behaviour of exponentially
reducing storage requirements while only linearly
reducing speed will still be observed! This is a
fundamental property of hybrid CORDIC.

An example serves to help appreciate the benefits of
the hybrid approach. Consider the case of 24 and 32 bit
operands and assume k=n/2, i.e. approximately half
the bits will be generated by the multiplier and half by
the CORDIC. Assume further that 7,,/7,=2. Table 1
shows the relative storage and speeds of the three
approaches. Notice that the large storage reduction
occurs at a comparatively modest speed penalty.




It should be noted that this hybrid CORDIC method is
applicable to both custom VLSI architectures as well as
to programmed implementation on microprocessors
such as DSP processors. In the latter case, it will
usually beneficial to use the processor's hardware

multiplier as the shifter so 7,,/7.=1.

Note that although we have illustrated our hybrid
CORDIC for the circular coordinate system only,
extension to the hyperbolic system is straightforward.
Finally, we remark that hybrid elementary function
generation by interpolation is a general idea and not
restricted to the CORDIC illustration that we have
provided. Similar techniques can be applied to other
elementary function generation methods, for example
the convergence computation method of Chen [2].

II1.2 A Memoryless Mixed CORDIC Architecture

The previous section presented a mixed approach to
CORDIC that allowed us to tradeoff execution speed
and storage. In this section, we present another hybrid
CORDIC that completely avoids storage of
trigonometric tables. Once again, we will illustrate the
technique for the circular coordinate system and
remark that the extension to the hyperbolic case is
straightforward.

While hybrid CORDIC by interpolation first performed
a coarse rotation and then used CORDIC iterations to
refine the result, in this section, we will do exactly the
opposite. CORDIC iterations will be used to first
perform a coarse rotation leaving a residual angle, 6,

following which, a rotation through 6; will be
accomplished using the multiplier. The residual angle
is chosen such that a first order Taylor Series
approximation of sin 6; and cos 6; may be employed.
Therefore, rotation by the residual will be
accomplished in two multiplications using the
multiplier4.

Proceeding formally, we wish to rotate the vector X,

through an angle z. We begin by executing k
CORDIC iterations, where k<n. Recall that the
remaining angle of rotation is contained in the
auxilliary variable, z; of the CORDIC algorithm [1].

Therefore, zy=6; and the partially rotated vector will
be denoted Xj. Assume that with the aid of lemma 1,
k is chosen sufficiently large to admit a first order

Taylor Series approximation of sin 6 and cos 8, i.e.:

4 It is interesting to note that the idea of transforming a function

argument, in this case 8, into a range where series approximations
may be used, is prevalent in other elementary function generation
algorithms as well, most notably in the sequential table lookup (STL)
technique [3]-[4]. However, employing other elementary function
generation methods toachieve this transformation, as we have done
here with CORDIC has not been previously attempted.
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sinGk = 0,
cos Gk =]

Then the final required rotation through 6j can be
approximated as:

-
Xn:[ o, 1 %«

This final step can be thought of as either a pure
rotation through 6, or a CORDIC transformation as in
(3). The two are completely equivalent when 6;is

small since sin G =tan 0, and the scale factor K
approaches unity.

Once again, a two step hybrid approach has been
developed that employs the CORDIC iterations first
and terminates with two multiplication steps. No
storage tables are needed to complete the final step.
The performance of this scheme can be readily seen to
be:

“h_ k%
T, 47, "1
(7
k+ 42
Th_ T
T - n

(Note, we have assumed that the hybrid method
requires four multiplications, two of which are needed
to normalize the scale factor of the first k CORDIC
iterations).

The final remaining issue is what is k? As we have
noted, it should be sufficiently large to admit the series
approximation. Assume that all values are stored to
n bit precision with the least significant bit having
weight 277+1,
Proposition 1:

k > [%] + 1
where [x] denotes the smallest integer exceeding x.

Proof:

Please refer to the appendix.

Proposition 1 indicates that approximately one half of



the resolution of the result is obtained from the final
step, while the remainder is due to the CORDIC
iterations. Table 2 shows the performance of this
method for 24 and 32 bit operands and k=13 and 17
respectively. Comparing with the results of the
previous section, we see that this approach offers
similar throughput and remarkably better cost because
the sine and cosine tables are completely avoided. The
VLSI implementation of this latter method is
therefore much more compact. We note however,
that the method ‘of the previous section offered a wider
range of tradeoffs and could be made faster by
increasing the storage. No such tradeoff is possible in
the Taylor series method.

We have demonstrated the Taylor series based hybrid
CORDIC for circular rotation only. The same ideas
apply for hyperbolic rotation as well. However,
slightly more CORDIC iterations are now required
because of the repetition of some of the incremental
rotation angles (see [1] for details). For operands less
than 120 bits in length, at most three additional
CORDIC cycles are neccessary.

We note once again that the Taylor series approach
offers remarkably better cost than table based methods
because the sine and cosine tables are completely
avoided. However, the table methods of the previous
section offer a wide range of speed/cost tradeoffs that
are not possible in the Taylor series method.

IV. Conclusions

By noting that VLSI technology has reduced the cost of
both memory and computational elements, we have
developed a hybrid approach to elementary function
generation that combines memory, a multiplier and
the CORDIC algorithm to perform vector rotation.
Both approaches presented offer improved speed over
the traditional iterative CORDIC. The stored table
method allows designer flexibility in trading storage
for speed. The Taylor series method does not offer
such flexibility but completely avoids the cost of
storage. For equivalent values of k and n, the two

methods offer similar throughputs.

Hybrid schemes can also be constructed for methods of
elementary function generation other than CORDIC.
For example, hybrid convergence computation using
Chen's method {2] is also possible. Our hybrid schemes
are preferable to methods that employ only series
approximations, e.g. [8]. Although slower than
completely parallel approaches [7], the hybrid schemes
are more compact.
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Appendix

Proof of Proposition 1:

Consider the final step of the hybrid algorithm to be a
pure rotation given by:

cos Ok — sin Bk
X,=| . X
sin@, cos 0, k

Let cos é\k denote the approximation of cos 6y and

let sin@ , be the approximation of sin 6. In this case:

A _—
cos 9k— 1
A
s1n9k= Gk




A X A
_ cos 8, - cos 0, —(smﬂk—smek)

. . A A
sin 8, — sin 6, cos 6, — cos e,

We wish to select k such that le,| <21 and ley | <

27+1. Consider &, and assume Xy, €l-1,1),

which can be achieved through appropriate scaling.
Then:

A A
| &] =1xk( cos 6, — cos 6, ) —- Y (sin6, —sin6, )‘
A . 3
S|xk|‘cos 6, - cos Gk' +|yk|‘ sin 6, — sin é\k‘
| i +sino, - sin))
<|cos 8, — cos 6|+ |sin 8, — sin 6,
A similar set of arguments establishes the same bound
on Iey |. Therefore, in order to achieve legl <2+,
it is sufficient to guarantee
| b2
cos 0, — cos 6,| < 2

(A1)
1 ‘sin 6, — sin é\kl <2"

Since this will also assure that leyl < 271+1 we will

only deal with I&,! in the sequel. Consider the first
part of (A1)

2n
k

(2ny

= (-n"¢
)y

n=1

A
cos 8, — cos Okl =

Therefore, applying constraint (A1) requires solving
the inequality:

2

b,
2
1-6,

<2

which has an approximate solution of 16! < 2'["/2],
where [x] denotes the smallest integer exceeding x.
We need not repeat the above calculations for the
second part of (A1) because, in the region of interest,
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A A
_ > 1 . o ‘
cos 0, ~ cos le 2| sin Bk sin 6,

Finally, applying lemma 1, yields & > [%] +1.

Remarks:

(1) Although we have only considered the circular
case, a similar bound can be derived for the hyperbolic
functions.

(2) The reader may be concerned about the tightness of
this bound given all the approximations we have
made in the proof, i.e., can the actual value of k
required be much smaller than the bound? In fact the

bound is quite tight. This can be seen by trying to select
k such that 6;is small enough that the truncated
terms of the Taylor series are individually smaller
than can be accomodated within the n bit operand

representation. Therefore, k must be chosen such
that: ,

6,<1 aud % <27
ie: )

16,/ < S(-7)

From lemma 1, this requires:

k>[";2]+1

(3]

This is as well as we could hope to do because
guaranteeing that the truncated series terms are all
individually smaller than 2-"*! does not guarantee
that the Taylor remainder will also be smaller than
this bound.

Table 2
Wordlength T_h Ty
(bits) T, T,
24 2.63 875
32 3.13 .781
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