REDUNDANT LOGARITHMIC NUMBER SYSTEMS

M.G. Arnold T.A. Bailey

J.R. Cowles J.J. Cupal

University of Wyoming
Laramie, Wyoming

Abstract

A new number system is described which offers
advantages over conventional floating point and
sign/logarithm number systems. Redundant log-
arithmic arithmetic, like conventional logarithmic
arithmetic, relies on table lookups to make the arith-
metic unit simpler than an equivalent floating point
unit. The cost of 32 bit subtraction in a redundant
logarithmic number system is lower than previously
published logarithmic subtraction methods. Another
advantage of a redundant logarithmic number system
is that a single arithmetic unit can use the same hard-
ware to add, subtract, or multiply in similar times.

1 INTRODUCTION

Several computers and circuits have been built using
logarithmic number systems, which offer fast, accu-
rate, and inexpensive multiplication and division re-
gardless of word size. Earlier studies have shown that
interpolation makes it economical to implement loga-
rithmic addition with precision and range equivalent
to 32 bit IEEE 754 floating point.

This paper discusses a problem which has previ-
ously been unrecognized: fast and accurate logarith-
mic subtraction for wordsizes near 32 bits. In order
to overcome the speed and accuracy problems of log-
arithmic subtraction, we propose a new number sys-
tem, referred to as redundant logarithmsc, which usu-
ally avoids the difficulties of logarithmic subtraction.

Outline

Section 2 provides a review of pertinent literature
on number systems, and gives the conventional al-
gorithms for logarithmic arithmetic. Section 3 intro-
duces a new model for the acceptable error in loga-
rithmic subtraction which shows that even under the
most optimistic assumptions, there is a subtraction

problem for wordsizes that approach 32 bits. Section
4 describes the new dual redundant logarithmic num-
ber system and its arithmetic algorithms, which solve
this subtraction problem. Section 5 shows some sim-
ple examples that raise questions about the accuracy
of redundant logarithmic multiplication. Section 6
presents conclusions.

2 REVIEW OF RELATED
WORK

The term redundant number system indicates that if
w is the number of bits in the redundant word, then
2¥ is greater than the number of unique values that
can be represented in the system. An example is the
signed digit number system [3]. There are two non-
redundant number systems for representing reals de-
scribed in the literature that can be referred to as
“logarithmic”:

1. Sign Logarithm Number System. Although
there are several minor variations [19,13,22,17 4,
25] on this system (such as FOCUS and CRD),
most implementations use X (composed of Xg
and X)) to represent the real value z given by

—bXr if Xg=1
z={ b*r ifXs=0 (1)
0 i.fXL=—OO

where —oo is a special value for representing zero
(outside the fixed point range used to represent
logarithms of non-zero numbers), b # 1 is pos-
itive, and Xs is the sign of the number being
represented. If |z| < 1, X is negative, regard-
less of the sign of z.

Use of the signed digit number system has been
suggested for representing X [21]. The new
number system described in Section 4 is redun-
dant in a different way.

2. Level Index Number System. The level in-
dex (li) system [9] is a generalized logarithmic
number system that allows gradual loss of pre-
cision as values increase in magnitude. Between
1 and e, the li representation is the same as the
sign logarithm representation.

Sign Logarithm Arithmetic

The algorithms for multiplication and division of sign
logarithm quantities are quite simple. For example,
to multiply two numbers, z and y, represented with
X and Y and obtain the result, r, represented by R:

(2)

where + indicates fixed point addition and @ indi-
cates exclusive OR.

The algorithms for logarithmic addition and sub-
traction are more involved. The first known descrip-
tion of these algorithms was given by Leonelli in 1803
[18]. To add z and y, represented with X and Y:

R, =X +Y,, Rs=Xs®Ys,

Y. if Xy = —o0
RL = XL+81,(YL—XL) isz=Ys
Xy +dp(Yo— X1) if Xs #Ys
(3)
R _ Xs if XL >Y.
s = Ys otherwise
s(2) = logy(1+ %) (4)
dp(z) = log,|1—b%|. ()

The function s, is known as the addition logarithm
or Gaussian logarithm (since Gauss published the
first table of this function and helped popularize the
manual use of s, among European astronomers and
surveyors). The function d; is known as the subtrac-
tion logarithm.

Interpolation of s,

Direct lookup of s, is expensive for w = 32 since
memories having 232 words are not economical. In-
terpolation of s, [7,1,24,2,12] can greatly reduce the
size of tables required for 32 bit accuracy. Assuming
the use of the non-redundant binary number system
in (4), z can be broken into two parts, zg and zr:

z=zg +2L,
2y = izH 'AZH, 2L =izL . AzL,
— ok— — ok—n—y
Azyg =271, Azp = 2kn7,

(6)

where k is the number of bits in the integer portion of
2z, izg is an n bit integer, and izy, is an j bit integer.
The total word size, including the sign bit of the real

145

number being represented, is w = 1+m+n-+j, where
m is the number of additional bits on the left of the
word including the sign bit of zy. These m bits can be
ignored during addition because of the essential zero
method [11] and the fact that sp(z) = sp(—2) + 2.
One method of interpolation approximates

sb(zH + AZH) — sb(zH)
-zL
Azy

sp(2) = sp(zu) + (N
in the range zy < z < zg + Azg. It has been shown
[1] that the number of valid bits in the fractional part
of (7) is 2-(n—k) +5 for b = 2. The number of bits in
the fractional part is by definition n+7—k, and so j <
n, assuming k = 5. Interpolation can approximate sp
with accuracy and range roughly equivalent to IEEE
32 bit floating point addition when b = 2, w = 32,
m =3, n= 14, 7 = 14, and k = 5. This requires a
memory having 2!* words.

3 THE SUBTRACTION
PROBLEM

Slow Subtraction Algorithms

This section presents new results that show that log-
arithmic subtraction is more difficult than logarith-
mic addition for a wordsize of approximately 32 bits.
Logarithmic subtraction is harder because dp cannot
be directly interpolated for all z with as much ac-
curacy as s, can. There are algorithms that allow
accurate computation of dp using multiple sp inter-
polation (using, for example dp(2) = —[s6(2) + su(z -
2') + sp(z - 22) + sp(2 - 2%) + - -]} or binary search
techniques (a modern implementation of the subtrac-
tion technique originally used by Leonelli and Gauss).
However these algorithms either require a significant
amount of iteration or a large number of parallel s;
hardware units. It can be shown that iterative algo-
rithms have the effect of making 32 bit subtraction
between 14 to 54 times slower than addition.

Required Accuracy

There is a fundamental limitation in the accuracy of
subtraction, sometimes refered to as catastrophic can-
cellation [20], that is shared by both floating point
and logarithm number systems. No one previously
has used this limitation to analyze the required accu-
racy for ds.

When two numbers are subtracted that are very
close to the same magnitude, the quantization error
in the original numbers leads to an inherent error
of about the same magnitude in the result. On the

other hand, the value of the result may be several
orders of magnitude smaller than the original num-
bers. This makes the relative error in the result much
larger than the relative error in the original numbers.
Any algorithm for calculating dj should be accurate
enough to avoid introducing errors which are signif-
icantly greater than this limitation. However, under
the above assumptions, there is no need to provide
dp values which are much more accurate than this in-
herent error. The required accuracy for dj, is roughly
equal to the inherent error in the result of the sub-
traction. '

Given z and y having sign logarithm representa-
tions X and Y with X, > Yy, and Xz ~ Yy, then the
result r = z — y with representation R has inherent
error

err(Ry) = err(r)

c———=-—-Inb.err(XL)

since the relative errors in z and r are proportional to
the absolute errors in X; and Ry. Using the maxi-
mum deviation of the distribution of represented val-
ues (z) about their actual values as a measure of the
error,

(9)

(10)

err(r) = 2 - err(z)
err(RL)=2- ; -err(XL).

Assuming the representation X, has an error which
is uniformly distributed with a width equal to the
quantisation,Az;, and again using the maximal de-
viation as a measure of the error,

err(Xy) = % -Azp.

(11)

The factor £ reduces to

z bXe _
= s mm = =4 (2)

R

where d}(2) is the derivative of dy(2) with respect to
z,and z = Yy — X is negative. For small z, we can
use

limz- dy(2) = logy(e) (13)
to approximate dj(—z), so
dy(~2) m @ (14)

Thus, the required accuracy for small z is estimated
as
1
ReqAcc(z,AzL) m err(R) ~ OL",EC—)— -Azp. (15)
The following table compares the required accuracy
with the error from interpolating dy(z) in the region
near z = —0.015 using b = 2, m = 3, k = 5, and
n = j for various n.

n oz | Error ReqAcc(z, Azy)
14 -0.01463 | 3.2-107% 1.2-10°%
15 -0.01513 | 7.5-10"% 2.9-10"¢
16 -0.01538 | 1.8.10~* 7.0-10"7
17 -0.01550 | 4.5-10"% 1.7-10"7
18 -0.01556 | 1.1-10"% 4.3-10"8

In each instance the required accuracy is several or-
ders of magnitude smaller than the error in the in-
terpolated value of dy(z). As a consequence, er-
rors are introduced during subtraction. Straight-
forward linear interpolation fails to produce the re-
quired accuracy. More complicated methods of in-

terpolation could be considered (for example n =

18,7 = 10 would produce the required accuracy near
z = —0.015), however such methods are too expensive
to be practical. (For n = 18, there is a factor of 16
increase in memory requirements and yet the subtrac-
tion error problem is still unsolved for z > —0.015.)
There is no obvious way to keep the economy and sim-
plicity of (7) for dp interpolation and yet maintain the
required accuracy. The next section discusses a new
number system that eliminates the need to approxi-
mate dp.

4 DUAL REDUNDANT
LOGARITHM NUMBER
SYSTEM

Definition

In contrast to the sign logarithm techniques de-
scribed in the literature, the dual redundant loga-
rithm number system (DRLNSZ represents the real
value z as two parts, Xp and X. The wordsize is
w = 2(n+ 7+ m). There is no sign bit for z in
a DRLNS number, although both Xp and Xy are
signed fixed point numbers. The value z represented
by Xis

z = bXP — pXN, (16)
Since this is a redundant system, the representation
Xfora given z is not unique.

DRLNS Algorithms

The following briefly describes the fundamental algo-
rithms for operating on DRLNS numbers.

Converting Sign Logarithm to DRLNS Form

DRLNS can be used in conjunction with the sign log-
arithm number system. In such an application, the
hardware may need to convert from the sign loga-
rithm number system to DRLNS. Since this imple-
ments a one to many mapping, there are several pos-
sible conversion methods.

Method 1. This method requires the DRLNS hard-

ware to recognize the special representation of

—o0:
-0 if X =—oc0

Xp = X, if Xp#—ooand Xs=0
—oo otherwise

(17)

—oo0 if XL = —0

Xy = —oo if Xy # —o00oand X5 =0
Xr otherwise

Method 2. Rather than require the DRLNS hard-
ware to process the special representation of —oo,
use an additional bit in the representation of
both Xp and X N to insure that a value may al-
ways be chosen for every representable real num-
ber which is significantly smaller than the loga-
rithm that represents the real number. In effect
this value acts like —oco

—2mtk if X; = —o00
_ XL if Xy #—o0
Xp = and Xs =0
Xy —(n+7—k) otherwise
(18)
—gm+tk i X; =-o0
. Xo—-(n+7-k)
Xy = if X # —o0
and Xg =0
X otherwise
Method 3. This method uses the fact that z — 2z =
—z.
-0 if X; =—o0
5 X +logy(2) if X # —o0
Xp = and Xg =0
X otherwise
(19)

147

—0o0 if XL = —00
2. = Xt if Xp # —o0
N and X5 =
X +1logy(2) otherwise

As will be shown, this approach is less desirable
because under many circumstances it will intro-
duce extra error in a computation.

Converting DRLNS to Sign Logarithm Form

Converting a redundant representation, X , to non-
redundant sign logarithm form, X, is expensive. It
requires computing the subtraction logarithm, d,,
which costs from 14 to 54 times what computing sp
costs when using one of the techniques described in
section 3.

xs = {

XL =

0 if Xp> Xn
1 ipr<XN
(20)
Xp‘!-db(XN”—f(p)ﬁ
if Xp # Xy

—o0o otherwise

Sign Detection

As illustrated in (20), the s1gn of a DRLNS number
can be detected by comparmg the fixed point Xp
against Xn. When Xp equals X X, X represents zero.
When Xp is greater than X N X represents a positive
number. When Xp is less than XN, X represents a
negative number.

Change of Sign
Interchanging Xp with Xy changes the sign of X.

Addition and Subtraction

DRLNS allows both addition and subtraction without
the need to compute the subtraction logarithm, dj.
Given the representations of z and y in DRLNS form,

X and 1?, the following produces their sum, R:

}'2 _ }A’P if XP = —
P Xp + s,(Yp — Xp) otherwise
(21)
5 YN lf XN = —
Ry = N N o .
Xn +s(Yn — Xn) otherwise

Unlike conventional sign logarithm arithmetic, there
is no need to have two cases depending on the signs
of z and y. Subtraction simply requires a change of
sign of Y followed by the addition algorithm.

LOGARITHMIC ADD

L5 7 FIXED 5
- 2 e POINT / o] |
¥ GATE n .
a 3 3b| A0 LFIXED POINTL . A
POINTL 4| Sy ADD | i'32
- i | sUB |3p 32 :
s _|32°,| Mux GATE [—AFIXeED| i :
N Ta l 2 32 poINT | AL :
7y - [oate L 32
Y N 32/ 1 GATE % ADD
A]
g —+ -) ;
¢ , FIED| | LOGARITHMIC ADD 5
N @2 POINT | y o] |
‘ 2 A
Ye 2 :]GATE 35| ADD :LFIXED 3 poINT| e A
: poxm_ﬁ Sy ADD | 32
1 32 32 i
N 32 Mux y. FIveD| 1 sus |
N T2 %2 POINT | 4L .
3 ADD |32
Xp] GATE
PL =’ Tr

Figure 1: DRLNS Arithmetic Unit

Multiplication

Multiplication of DRLNS numbers is quite analogous
to multiplication of complex numbers since

r T -y

bXe _p%n) . (4 _ pin
()- (¢ - %)

(b)‘(pﬂ"p + b}?n+ffn)

(22)

_ (b’zpﬁ‘f’u + bxnﬁ-?r)
~ bRr _pRN,

In DRLNS, —1 is treated the way one treats \/—1
in the complex number system. Given two DRLNS
numbers, X and ¥, the following produces their prod-
uct, R

Av+P if Xp+¥p=-oo

ﬁp - Xp + Yp+
sb(XN + Yy — Xp — Yp)
otherwise
(23)
Xp-{-f’)v KXN+?p = —o00
By = XN+ Yp+
3;,(Xp + ?N - XN - yp)
otherwise

This computation requires only two additional fixed
point adders beyond that required for addition and

148

subtraction. Figure 1 shows how the same hardware
that is used for multiplication can be used to imple-
ment addition and subtraction. The following shows
what operation the control inputs, A and B, select:

A B | Operation

0 1 | Addition

1 0 | Subtraction

1 1 | Multiplication

When multiplication is selected, the AND gates force
the adders to pass Xp, ¥Yp, Xy, and ¥y respectively.
The multiplexers choose Yp for addition and multipli-
cation, and Xy and ¥u for subtraction. Depending
on the timing requirements in the implementation of
Figure 1, it might be possible for the two s; approx-
imation units to share a common table and/or fixed
point multiplier. Also, if there is space remaining,
the same memory that holds the s, table could store
commonly used constants.

Mixed Multiplication

In some applications, it may be desirable to keep con-
stants or frequently used data of unchanging sign in
sign logarithm form. By doing this, the storage re-
quirements are cut in half and the accuracy and cost
of the computation may be improved. To make op-
timal use of such numbers, rather than converting
them to DRLNS form, it is better to operate directly

on the number in sign logarithm form in a mixed com-

putation. For example, the following multiplies a sign
logarithm number X by a DRLNS number Y

—00 if X;, = —oc0
Rp = Y+ XL if X, #—oco0and Xs=0
Yn + X1 otherwise
(29)
—00 if Xy = —o0
Ry = Yn+X. if X, #-o0and Xg=0
Yr + XL otherwise

Note that this can be accomplished with only two
fixed point adders and two multiplexers that operate
in parallel to each other. If DRLNS is used to imple-
ment the FFT, the butterfly operation can be rewrit-
ten to use (24) because the 2"V ~1* terms are con-
stant, and can be stored in sign logarithm form.

Square Root, Reciprocal, and Division

In the sign logarithm number system, division, recip-
rocal, and square root operations are trivial. These
operations are difficult to implement in DRLNS. It is
possible to convert the DRLNS number to sign log-
arithm form, take the reciprocal or square root, and
convert it back to DRLNS form. (In the case of divi-
sion, the sign logarithm representation of the recip-
rocal could be multiplied directly using (24) to form
the DRLNS quotient).

For algorithms that require large amounts of divi-
sion, DRLNS does not offer the advantages that it
does for algorithms involving only addition, subtrac-
tion and multiplication. If it is possible to factor di-
vision into an outer loop (eg. Gaussian elimination),

DRLNS may be economical.

5 ERROR ANALYSIS

Several studies have shown that sign logarithm arith-
metic is as or more accurate than floating point
arithmetic [20,14,5,15,6,16,21]. If an algorithm is re-
stricted to DRLNS addition, subtraction, and mixed
multiplication these earlier studies will be applica-
ble to DRLNS error analysis. For example, the er-
ror analysis of the FFT [23] is similar because (24)
can implement the FFT. The accuracy of unrestricted
DRLNS arithmetic requires careful study beyond the
scope of this paper. However, some simple obser-
vations on DRLNS accuracy will illustrate why care
must be taken during input conversion and DRLNS
by DRLNS multiplication.

149

Significant Bits

Consider a positive DRLNS number, X. (The roles of
Xx and Xp are reversed for a negative value). The
number of bits that are significant is

sig(X) =~ b b _bx") (25)

n+J-_k+log2(ir

= n+7—k+log,(b) - ds(Xn — Xp).

Therefore, the difference of Xp and X determines
the accuracy of the answer. For —1 < z < 0, dp(2) =
[log, |z| — (log, log, €)], and so

sig(X) =~ n+j—k— [log,(b) - (log,log,e)]
+[logz [Xn — Xp|] (26)
which can be computed easily by counting the num-

ber of leading ones in the binary representation of
X~ — Xp. Let

ag = bXP XN,

(27)

Since X represents a positive value, a; > 1. The
number of significant bits in X can be expressed in
terms of a,:

sig()?) s~ n+ g —k+logy(b) - do(—logy(az)). (28)

The following table shows this relationship for a few
values of a, when b =2, n =14, 7 =14, and k = 5.

as sig(X) || az sig(X)
1.00001 6.39 || 2.50000 22.26
1.00010 9.71 || 3.00000 22.42
1.00100 13.03 || 4.00000 22.58
1.01000 16.34 || 5.00000 22.68
1.10000 19.54 || 6.00000 22.74
1.50000 21.42 || 7.00000 22.78
1.75000 21.78 || 8.00000 22.81
2.00000 22.00 || 9.00000 22.83

We use a; as a convienent measure of how well con-
ditioned the representation X is. Regardless of the
choice of b, n, 7, and k, when a; > 2, X can be
considered well conditioned because the difference be-
tween the theoretical maximum precision (n + j — k)
and sig(f() is less than one. When 1< a, <2, X is

ill conditioned since sig{X) is considerably less than
n+j—k

Accuracy of DRLINS Multiplication

Although sign logarithm multiplication is exact,
DRLNS multiplication can produce errors. Assume

that two positive numbers z (represented by X) and
y (represented by Y) are to be multiplied. Analo-
gously to (27) let

ay = b¥r—Tn, (29)
The product of z and y is
p = zy
= (agb*™ — bXN)(ayb¥V — b¥¥) (30)

(azay + l)b’z" ¥y — (az + ay)bx” b

From (30), the representation of p, P, is given by

P logy(azay +1) + Xnv + ¥v (31)
Py = logy(as +ay)+Xn+ Py
Analogously to (27) and (29), define
ap = bPP—Fw (32)
which simplifies to
1
ap =22t (33)
a; + ay

Consider an iterated computation (of the form p :=
z * y; z := p) where y remains in the form in which
it was initially converted. The following shows the
value of a, and sig(P) during the first ten iterations:

iter. | ap sig(P) || ap sig(P)
1| 4.19430-10° 23.00 [1.25000 20.68
2 | 2.79620-10° 23.00 | 1.07692 19.19
3 | 2.09715-10° 23.00 | 1.02500 17.64
41 1.67772-10° 23.00 | 1.00826 16.07
5 | 1.30810-10° 23.00 | 1.00275 14.49
6! 1.19837-10° 23.00 || 1.00091 12.90
7 | 1.04857 -10° 23.00 || 1.00030 11.32
8 | 9.32067 -10° 23.00 || 1.00010 9.74
9 | 8.38860-10° 23.00 | 1.00003 8.15
10 | 7.62600 - 10° 23.00 || 1.00001 6.57

The table on the left shows what happens with the
second method of input conversion (a; = ay = 223),
The table on the right shows what happens with the
third method (a; = ay = 2). The third method
loses more than one bit per iteration, but the second
method maintains nearly constant relative precision.

Beyond avoiding the third method of input con-
version, there is a possible solution to the accuracy
problem: When the number of significant bits (as es-
timated by (26)) falls below an application specific
criteria, conversion from redundant to sign logarithm
form could be triggered. This might stabilize the ac-
curacy, but would require additional time for the con-
version.

150

The problem described here is related to the prob-
lems of other redundant (non-logarithmic) number
systems, such as maximally redundant signed digit
arithmetic [8]. To obtain a given precision in such
a system requires an unbounded number of digits.
Given a fixed number of bits, such redundant systems,
including DRLNS, cannot guarantee a given precision
without some (perhaps costly) stabilizing procedure
(such as converting DRLNS to sign logarithm form).

6 CONCLUSIONS

A new logarithmic number system (named dual re-
dundant logarithm number system or DRLNS) was
described as a solution to the difficulties of logarith-
mic subtraction. DRLNS has the advantage of using
the same hardware and cycle time for addition, sub-
traction and multiplication.

The disadvantages of DRLNS arithmetic are that
division and square root are difficult. Like all re-
dundant number systems, DRLNS requires extra bits.
Unlike the sign logarithm number system, multiplica-
tion (other than DRLNS by sign logarithm) is not ex-
act, and so the final precision may be reduced if care is
not taken during the computations. Two techniques
given here to improve accuracy are keeping frequently
used data in sign logarithm form (converting to this
form when needed) and proper input conversion.

DRLNS holds promise for algorithms that meet
these critera:

1. The algorithm should have an inner loop that
uses primarily addition, subtraction, and sign loga-
rithm by DRLNS multiplication.

2. Division and square root should occur infre-
quently.

Many important algorithms, such as matrix mul-
tiply {by a constant matrix), Gaussian elimination,
FIR and IIR filters, and the FFT satisfy these re-
quirements.

The authors wish to thank A. Bechtolsheim, R.
Jacquot, M. Magee, J. Richardson,R. Robertson, J.
Rowland, P. Schlump, T. Stouraitis, D. Winkel, M.
Winkel, and the referee who pointed out the impor-
tance of the relationship of (28) to well conditioned
values.

References

[1] M.G. Arnold, “Extending the Precision of the
Sign Logarithm Number System,” M. S. Thesis,
University of Wyoming, Laramie, 1982.

[2]

(3]

(4]

[5

6

[7

(8]

[o

[10]

[11]

[12]

[13]

(14]

M.G. Arnold, T.A. Bailey, and J.R. Cowles, “Im-
proved Accuracy for Logarithmic Addition in
DSP Applications,” Proc. IEEE Int. Conf. on
Acoust., Speech, Signal Proc., p. 1714, 1988.

A. Avisienis, “Signed-Digit Representations for
Fast Parallel Arithmetic,” IRE Trans. Electr.
Comput., vol. EC-10, p. 389, 1961.

E.H. Bareiss and A.A. Grau, “Basics of the CRD
Computer,” Northwestern University ERDA Re-
port COO-2280-25, August 1977.

J.L. Barlow, “Probabalistic Error Analysis of
Floating Point and CRD Arithmetic,” PhD Dis-
sertation, Northwestern University, Evanston,
1981.

J.L. Barlow and E.H. Bareiss, “On Roundoff
Distribuition in Floating Point and Logarithmic
Arithmetic,” Computing, vol. 34, p. 325, 1985,

A. Bechtolsheim and T. Gross, “The Implemen-
tation of Addition in Logarithmic Arithmetic,”
Unpublished Manuscript, Computer Systems
Laboratory, Stanford University, draft of March
1, 1980.

T. Chen, “Maximal Redundancy Signed Digit
Systems,” Proceedings of the 7th Symposium on
Computer Arithmetic, p. 296-300, 1985.

C.W. Clenshaw and F.W.J. Olver, “Beyond
Floating Point,” J. ACM, vol. 31, p. 319, April,
1984.

A.D. Edgar and S.C. Lee, “FOCUS Microcom-
puter Number System,” Commun. ACM, vol. 22,
p. 166, 1979.

M.L. Frey and F.J. Taylor, “A Table Reduction
Technique for Logarithmically Architected Dig-
ital Filters,” IEEE Trans. on Acoust., Speech,
and Signal Proc., vol. ASSP-33, p. 718, 1985.

H. Henkel, “Improved Accuracy for the Logarith-
mic Number System,” IEEE Trans. on Acoust.,
Speech, and Signal Proc., vol. ASSP-37, p. 301,
1989.

N.G. Kingsbury and P.J.W. Rayner, “Digital
Filtering Using Logarithmic Arithmetic,” Elec-
tron. Lett., vol. 7, p. 56, 1971.

T. Kurokawa, J.A. Payne, and S.C. Lee, “Er-
ror Analysis of Recursive Digital Filters Im-
plemented with Logarithmic Number Systems,”
IEEE Trans. Acoust., Speech, Signal Proc., vol.
ASSP-28, p. 706, 1980.

151

(15]

(16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

(24]

[25]

R.O. LaMaire and J.H. Lang, “Performance of
Digital Linear Regulators Which Use Logarith-
mic Arithmetic,” IEEE Trans. Automat. Contr.,
vol. AC-31, p. 394, 1986.

J.H. Lang, C.A. Zukowski, R.O. LaMaire, and
C.H. An, “Integrated Circuit Logarithmic Arith-
metic Units,” IEEE Trans. Comput., vol. C-34,
p. 475, 1985.

S.C. Lee and A.D. Edgar, “The FOCUS Number
System,” IEEE Trans. Comput., vol. C-26, p.
1167, 1977.

Z. Leonelli, Supplémente Logarithmique, a
reprint of Leonelli’s 1803 manuscript with a biog-
raphy by J. Hotel, Gauthier-Villars, Paris, 1875.

J.D. Marasa, “Accumulated Arithmetic Error
in Floating-Point and Alternative Logarithmic
Number Systems,” M. S. Thesis, Sever Institute
of Technology, Washington University, St. Louis,
1970.

J.D. Marasa and D.W. Matula, “A Simulative
Study of Correlated Error in Various Finite-
Precision Arithmetics,” IEEE Trans. Comput.,
vol. C-22, p. 587, 1973.

T. Stouraitis, “Logarithmic Number System
Theory, Analysis, and Design,” Ph. D. Disser-
tation, University of Florida, Gainesville, 1986.

E.E. Swartzlander and A.G. Alexopoulos, “The
Sign/Logarithm Number System,” IEEE Trans.
Comput., vol. C-24, p. 1238, 1975.

E.E. Swartzlander, D. Chandra, T. Nagle, and
S.A. Starks, “Sign/Logarithm Arithmetic for
FFT Implementation,” IEEE Trans. Comput.,
vol. C-32, p. 526, 1983.

F.J. Taylor, “An Extended Precision Logarith-
mic Number System,” IEEE Trans. Acoust.,
Speech, Signal Proc., vol. ASSP-31, p. 231. 1983.

F.J. Taylor, R. Gill, J. Joseph, and J. Radke, “A
20 Bit Logarithmic Number System Processor,”
IEEE Trans. on Computers, vol. C-37, p. 190,
1988.

