Design of an On-Line Multiply-Add Module for Recursive Digital Filters

R. H. Brackert Jr., M. D. Ercegovac+, and A. N. Willson Jr.

Electrical Engineering Department
+ Computer Science Department

School of Engineering and Applied Science
University of California, Los Angeles
Los Angeles, CA 90024

Abstract

This paper describes an on-line multiply-add module that en-
ables high filter sampling rates when used to implement the
direct form II second-order filter structure [1], [2]. Important
characteristics of on-line arithmetic [3] are that it produces
results most significant digit first, and that its digit cycle time is
independent of the data wordlength. These features not only
enable high-speed filtering, but also allow the elimination of all
nonlinear oscillations in the filter without affecting the sampling
rate, and effectively eliminate scaling of the filter’s input data.
Presented is the derivation of the on-line multiply-add algo-
rithm, and its hardware design using a 1.50 CMOS standard
cell library. Also described is a method for eliminating non-
linear oscillations by increasing the filter’s working precision.

1 Introduction

Design of fast modules for fixed-point recursive digital
filtering is strongly affected by two factors. First, the latency
between successive recurrence evaluations limits the sampling
rate [4). Various techniques have been suggested to reduce this
latency by exploiting various forms of pmllelisni and pipelin-
ing in the context of conventional arithmetic algorithms [5],
[6], (7], [8]. We believe these methods have either slower
sampling rates than our method, or can be used to supplement
our method to provide even higher sampling rates. It should be
noted that these schemes may have disadvantages (some quite
severe) that generally have not been fully analyzed or, in some
cases, not even addressed.

The second fundamental problem in the implementation of
recursive filters is the handling of nonlinear oscillations without
affecting the maximum sampling rate of the filter [9]. We
choose to implement the direct form II second-order filter struc-
ture {10] since its sampling period can be as small as the time
required for one evaluation of the multiply-add (MA) function
AX + Y. It seems evident, therefore, that the sampling period
of this direct form II structure is smaller than that of any other
general purpose IR filter structure. Comparisons with other
IR structures can be found in {9). However, the performance

* This work was supported in part by the National Science
Foundation under Grants MIP8603639 and MIP8813340.

34

of a filter implemented with this structure can be severely
affected by nonlinear oscillations. Conventional methods for
reducing or eliminating nonlinear oscillations [11], [12], are not
easily converted, or even impossible to convert, to an on-line
implementation. These conventional methods require additional
hardware to be placed in the recursive loops of the filter, there-
fore, reducing the sampling rate. We propose to increase the
internal wordlength of the filter such that the effects of the non-
linear oscillations are removed from the output of the filter.
Since on-line arithmetic enables our design to have a sampling
rate independent of the data wordlengths, our method for han-
dling nonlinear oscillations will not affect the sampling rate.
The penalty incurred by using our method is a substantial in-
crease in hardware. However, the additional hardware is essen-
tially a replication of the on-line MA module. Another advan-
tage of this method is that the output of the filter is within a
quantization error of the ideal output (using the same limited
precision coefficients). Thus, appropriate scaling does not
reduce the signal-to-noise ratio.

In this paper we present an integrated design approach
based on on-line arithmetic which offers a solution to both the
recurrence latency and the nonlinear oscillations problems,
while maintaining a high signal-to-noise ratio. In Section 2 a
brief discussion of the on-line approach and the choice of key
parameters are given. The radix-4 on-line algorithm for the
multiply-add operation is described in Section 3. In Section 4
we discuss its VLSI design based on standard cells and we
comment on the performance of the implementation. In Sec-
tion 5 we discuss the problem of nonlinear oscillations and the
proposed solution. We conclude with a summary of features of
the proposed design and review the results of our standard cell
1.5 CMOS design. Using the on-line MA modules to imple-
ment the filter is fully described in [1] and [2].

2 The Basis for the Algorithm

The following derivation leads to an algorithm that per-
forms the multiply-add function AX+Y using on-line arithmetic
with internal pipelining. The inputs X and Y are received by
the on-line module digitwise (most significant digit first) and
the coefficient A is completely specified in advance. The digits
of X and Y are in signed digit format [13]. The derivation of
the algorithm follows [3], [14], and [15].

Let the full precision scaled result be
$* = r¥AX+Y) ¢))

where r is the radix and 8 is the on-line delay to be determined
later. We denote

d+5-1 X
X=3 xr? x;€ Dy=1{-p,....pP}
j=0
d+8-1
Y=3 yr? yeDp={(-p -...pP}
=0
d+8-1 R
S=3 srd sie Dy=(-p,....pP})
=

and

XUl=X[-1+xr7, X[-11=0
Y1=YU-1]1+ y;r‘f , Y[-11=0

S[j1=S[-11+s;r7, S[-1]=0 3
where x; = y; =0 for j 2d and Jr <p <r. Thus, S°, the
full precision scaled result, differs from S, the first d+3-1 di-
gits of the scaled sum, by some error. This error is defined by
the equation

§* =8 + Esr @D, C))

The precise value of Es will be discussed later.

To define a recurrence relation we express s; in terms of
S{j-11, X[j], and Y[j]. At the j-th iteration, noting (1), the
scaled true sum is r3(AX [j]+Y[j]) and the partial scaled sum
found thus far is S [j~1]. We define the scaled residual

Wil= [Paxperuy-su-uld o ©

where W[j] differs from s; by some remainder. We define a
selection function

sj=Sel(W[iD ©®
such that Sel() maps W[j] to an integer in the set
Do={-p, ... ,p}, and such that

Whil-s1<s§ Q)
where %S§< 1. Thus, §{ is a measure of the maximum

remainder caused by the chosen selection function. For exam-
ple, = % corresponds to a rounding selection function.

We get the residual recurrence equation by substituting (3)
into (5)
Wil =r(Wlji-1l-s;1) + Ax+y)r . @®
Recall that § is the scaled result. Hence, the desired result
Q = AX+Y has digits g; that are related to s; by ¢;5 = 5;.
Fig. 1 shows a block diagram of the recurrence step.

Fig. 1. A simple block dia, of the
g on-ling o lﬁ::m recurrence step of the

The On-Line Delay

The most significant digit (MSD) of the output of the on-
line MA appears after 8+1 inputs, where 3 is the on-line delay.
Since [W{j]~s;| < § and W[j]| < p + § (from (7)), and noting
that ;| < p and ;] S p, from (8)

p+82rL+ plAmutl)r™)

where A na = max(|A[). Since 8 is an integer, solving) for &

yields
P(Amurt])]
1 ——
s %8 [p+o-rg

log(r) 4o

Recalling that § =% corresponds to a rounding selection func-
tion we finally obtain

[20(A act1)]

log
2p+1-
52 _._~_..p+_'__

log(r) an
Fig. 2 illustrates 8y, (the minimum value of & in (11)) versus
A pax for several given r and p values, when a rounding selec-
tion function §=% is used. (In [1], we show that (11) yields
the same result as (10) for any valid .)

The Specifications for the On-Line MA

To design the on-line MA, we must choose the radix r,
the digit set D, and Ap,, the maximum value of JA]. Choos-
ing A pu=2 is necessary when designing a general purpose digi-
tal filter implemented using the direct form I second-order
structure. The best values for 7 and D, are not as obvious.
Since a carry-save adder will be used inside the MA, the radix
should be of the form 2%, where k is an integer, thus simplify-
ing multiplication of a two’s complement number by r (which
is required by the algorithm). Furthermore, since A must be
multiplied by the digit x; during every clock cycle, it would be
an advantage to limit the digit set to be a subset of

S rin =2
4 1
3
2
1
1 02 3 a4 Ao
1 8 min r=4
3t -
2
1+
+—t -
1 2 3 4 Amx
1 8 min =4
2 o=3
} t }—>
A

max

Fig.2. Examples of 8 VErsus A for various r and p values,
using a rounding selection function.

{=2,-1,0,1,2}, thus making Ax; trivial to compute. This res-
tricts 7 to be either 2 or 4. Choosing r=4 is advantageous
since a given number requires twice as many digits for its radix
2 representation versus radix 4. Thus, we have chosen r=4 and
p=2 for the implementation. From (11), for r=4, p=2, and
A gax=2

§22. (12)

Thus, we choose 8 = 2.
3 Radix-4 On-Line Multiply-Add Algorithm

The step time of the algorithm depends on the evaluation
of the residual W[j], the selection function, and their mutual
dependency. A redundant addition coupled with a limited-
precision selection function is used to make the recurrence step
independent of the working precision. Further speed enhance-
ment comes from internal pipelining of the recurrence evalua-
tion and the selection function [16]. We now discuss these as-
pects in more detail.

The residual W[j] is produced by a carry-save adder
(CSA) because of the inherent simplicity of the CSA design.
Therefore, W{j]=WPS[j]+ WSC[j]. where WPS[j] and
WSC[j] are the pseudosum and stored carry of the carry-save
adder, respectively. The selection function is defined such that
Sel : W — D, where the domain

W={WhlWhlel =[-p-§.pH 1) 13)

is the finite set of values of W[j], defined by the recursion for-
mula (8), and the range D, is the redundant digit set —p to p.
Also, 3 <L < 1. Welet

36

Lh=[hk,ul, keD, (14)

be a subinterval of I, with lower and upper endpoints /; and
u;, respectively, such that if W[jlel, then s; = Sel(W[j}) =k
is a valid digit choice. The overlap between adjacent subinter-
vals is a constant and we define it as

A=A =u; -l forall ieD,—{p}) (15)

and it must satisfy A > —r™™ for the domain W to be continu-
ous, assuming m fractional bits for the representation of W[;].
In [1], we use (8) to show that

_2p+1l-r — 20(A et 1)r®

16

A r-1 as
I,:k—-;-—%A Qa7

u =k +%+-‘5A. (18)

Thus, for the chosen specifications, A:%. To provide a

selection function that is independent of the precision of
WPS[j] and WSC[j], we let a limited number of the most
significant bits of WPS[j] and WSC[j], denoted by WPS(j}
and WSC{j), respectively, be used to determine s; such that
0< W[j]-W[jl<& (which is a one-sided error) where
WLj) = WPS(j} + WSC|j], and the precision of W[j] is such
that it has P fractional bits. We select € and P such that if
Sel(W[j]) = k, then W{jlel, and, hence, the recursion equa-
tion will still be valid. Fig. 3 depicts a typical subinterval
overlap for A= %, and the potential values of W[j] when

B=5.

"‘\, "
] !] | il

I f I T]
k-0522% k0527 k0.5 k05427 k-0.5+2:27°

Fig. 3. An example of a subinterval overlap.

To achieve a selection function independent of the wordlength
of W[j], we let ¢ = 3-2°° and the selection function

k ifk-L1-25sW[jl<k+1-2%keD,

1
2

Sel(W[ilh=4 2 if2~%—2"sW[j] (19)

2 ifW[j]<—2+’7—2‘5.

In Fig. 3, notice that when W[jl=k -1 - 2:27%, the selection
function (19) sets 5; = k& — 1, and the maximum value for W[j]
is bounded by W{jl+e=k --%+2‘s which is within the in-
terval I;_;. Thus, p=5, €= 3-275, and the selection function
(19) are valid for our chosen specifications. This value of € re-
quires WPS[j] and WSC[j] to have 5 and 4 fractional bits,
respectively (or vice versa). Thus, W{j]is effectively the sum-

mation of two numbers with 4 fractional bits, and, hence, in-
dependent of the wordlength of W[j].

We now modify the selection function of (19) to provide:
(a) integer valued selection comparison constants, and. (b) a re-
currence equation that does not need the value of s;_;. The
result of (a) is that the comparisons of the selection function
are low precision. Providing (b) allows the evaluation of the
recurrence equation and' the selection function to be pipelined.

We let W[j]1 » W[j]~a, where a =1 + 2%, Thus, we

provide integer valued selection comparison constants by
changing the boundaries of the selection function (19). To pro-
vide pipelining, we essentially remove the recursive effects of
sj-1 from the residual recurrence equation (8) and implement it
as part of the selection function. This results in a selection
function depending on s;; (or some part of it), and a
redefinition of the output of the carry-save adder (VPS{j] and
VsC .

The On-Line MA Algorithm

In [1], we show that the radix-4 on-line MA algorithm for
the specifications we have chosen (i.e., p=2, Ap=2) becomes
(see Fig. 4)

Step 1 (Initialization)

VPS[-1]=a= -;-75. VSC[-11=0, IC,=0 20)
Step 2 (Recurrence)

Forj=0,...,d+l

21 PU]= (Axppy - 3 = GLMy M2 - 2 @1)
22 (VPS[j],VSCj])=CSA(4frac(VPS[j~1]),

4-fracVSCLj-1D), P[j1) @)
23 gja2=5;

= in(VPS[j1) + in(VSC[j1) + IC; — 4IC;.y (23)
where
IC; = int(frac (VPS[j1.4) + frac(VSC[j1.4)) (24)

and
frac(X) are the fractiopal bits of the operand X
int(X) are the non-fractional bits of the operand X
frac(X,Y) are the Y most significant fractional
bits of the operand X .

Error Analysis

We now determine max(|Es{). From (4) and (1)
Es =(5° = S)r¥%! = ¢ 3AX+Y) - S)yrd*®! . (25)
Using (8) and (25), with j = d+9, it can be to shown that

I‘j j

Find P[jJ<—A

VSCIil VPSG] 0 «

frac(-,8-1)

5

Fig. 4. A block diagram of the on-line MA.

|Es| = W [d+3-1}-sai5al £ & . (26)
We define Eg = max(|Es[) = § . Thus,
Ey = max(W[j] - ;1) = max(u—k , k=l;) = % + %A .@n

Therefore, the radix-4 on-line MA that we have just derived
produces a result that is within Egr“’ = 1—2:4'4 of the actual

result, where d is the number of input/output digits.

4 VLSI Implementation

The algorithm that we have just defined is in a form that is
easily translated to a hardware realization. To accomplish this
translation, we first designed hardware that is a complete, logi-
cally correct implementation of the pipelinable on-line MA.
This initial design may not be the fastest or smallest possible
solution, but it serves as a well defined starting point for any
custom design. Then we use a 1.54 CMOS standard cell li-
brary to obtain worst-case design estimates of the on-line MA.

Notes on Figures

These notes apply to all of the remaining figures, unless
otherwise stated. All iteration numbers (j, j+1, etc.) are left
off. Any line (bus) without an indicated width is one bit wide.
Any bit vector has individual bits subscripted such that a bit in-
dexed by i has twice the weight of a bit indexed by i+1, unless
otherwise specified. For example, the coefficient A is defined

A=-2a,+ Ya2".
i=1
We define the mapping of y; (and hence x;) to its digit vector
by using two's complement (TC) representation. (Recall that
yj € Da={-2,- -+ ,2}.) We denote the three bits used for the
on-line digits

x; = (xép x} x; Y=-4x0 + 2! +x}?
Y=y ¥ r=— 4 +) + 57

Notice that the superscripts here denote individual bits, not
powers.

Hardware Implementation

We pipeline the structure into three stages, where each
stage is defined by one of the equations (21), (22), and (23).
Thus, the MSD of the output of the on-line MA appears after
5+3 =5 clock cycles. The implementation of P{j] (21) is
rather trivial and need not be discussed in detail. The constant
% of (21) is introduced when we let W[j] — W{j] — a. This
constant can be easily incorporated into the hardware that im-
plements (21) and does not require an actual subtraction. Fig.
S depicts a block diagram of the recurrence equation that in-
cludes the multiplexing of the initial values of VPS and VSC.

L me6 wo,nﬂ]hbx vs
10P - '““H—_m
"
mad msbé 5 = ’ Temits > VP
msb| 1sb A w6 ; s
m+b ‘b R M)’lﬂ)c
mux2 s s mux2
CSA 10 11 10 11
» b s m+s m+s m+6 %ﬂ*‘
L] L
vsc VPS msb. 1sb 0
| Reg| | Reg LETRT I
” 01010
mib mab

Fig. 5. The carry-save adder stage.

Notice that the outputs of this stage (VP and VS) occur after
the muldplexers, and, hence, do not fully agree with the general
block diagram of Fig. 4. This position allows a register that
has clear/preset capabilities to emulate the combination of the
depicted register and multiplexer, which was used in our stan-
dard cell VLSI design. The result of doing this is that the MA
will be busy for d+8+1 cycles rather than d+3 as defined by
the algorithm. Fig. 6 depicts an architecture for the selection
function (23). In the figure, the add block is a 2-bit adder with
carry-in CI and carry-out CO as labeled. The carry block pro-
duces the carry-out C of the sum of two 4-bit operands A+B.
To be able to detect when the MSDs arrive at the input of the
on-line MA, we require a single line MD such that MD =1
when the input is the MSD, and MD = 0, otherwise. In the
figures, MDC and MDS are the pipelined MD signals for the
CSA stage and selection function stages, respectively.

A bit-slice realization of the on-line MA provides simple
expansion of the MA, and, hence, the precision of the multipli-
cand A. The processing of the least significant m—1 bits of the
multiplicand is characterized by the i-th bit-slice (2<i <m)
of Fig. 7. Therefore, to provide a modular design, we first
design the hardware to process the most-significant-bits of the
multiplicand (the integer bits and one fractional bit), then, for a

38

Reg

10 I1
s mux2

Fig. 6. The selection function.

By By By 8y

I0 I1 I2 13
mux4

X s0

x —3 sl

10 110 16 11

M% s mux2 Mz;’ s mux2
M M
i“"m L’P'm

Fig. 7. The i-th bit-slice.

given m, add m—1 bit-slices to the structure to complete the
on-line MA. This design methodology was used in our stan-
dard cell VLSI design. (In Fig. 7, the signal XL is the logical
OR of the bits x° x!, and x2)

VLSI Simulation Results

The worst-case estimates for the cycle time of each level
of the pipe are

First stage (find P) : 28.0ns
Second stage (CSA) :17.3ns
Third stage (selection) :18.3ns

The cycle times for the second and third stages do not include
the additional time delay resulting when a new computation be-
gins. However, simulations indicate that the cycle times of
these stages are still less than the 28.0ns of the first stage. We
do not include the delays associated with the new computation
cycle since it is anticipated that a clever design should be able
to approach the cycle times given above. Therefore, the clock
cycle Tp of the hardware is determined by the first stage, yield-
ing Ttp =28.0ns. Thus, the MSD of the output appears
5t = 140ns after the MSD of the input. Therefore, the worst-
case sampling rate of a filter implemented with this standard
cell module is 7.14MHz. Recall that m is the number of frac-
tional bits for the coefficient. The number of transistors in the
standard cell on-line MA is

1778 + 200(m-1) . (28)

Thus, there are 200 transistors in a bit-slice. The size of a bit-
slice is 874A by 1044, and the size of the standard cell MA is

874 by (1146 + 104(m—1)A . 29)

The VTI 1.54 CMOS standard cell library states that A = 0.8)L.
(VTI’s 1.54 process yields a minimum channel length of 1.51.)

We compare our standard cell on-line MA with a standard
cell parallel MA generated with the VTI design tools. We
choose to implement an 18-bit parallel MA since this is very
close to our proposed chip design [1]. The cycle time of the
18-bit standard cell parallel MA is 118.5ns, and each MA con-
sumes an area of 4324\ by 4652A (3.4592mm by 3.7216mm).
The cycle time of 118.5ns will be significantly increased when
additional hardware is included to reduce the effects of non-
linear oscillations in the filter’s response. The Booth multiplier
generated by the VTI design tools is fairly compact and fast.
Thus, we expect a custom design of the on-line MA to yield
higher improvements (in percent) of speed and area when com-
pared with a custom parallel implementation.

5 Nonlinear Oscillations

A filter implemented with the direct form II filter structure
can be severely affected by all four kinds of nonlinear oscilla-
tons [9], [11], [12], [17], [18], (zero-input overflow oscilla-
tions, zero-input limit cycles, forced overflow oscillations, and
forced limit cycles). However, where speed is of concern, the
direct form II structure is unsurpassed as a general purpose
filter structure because of its ability to accept input samples at a
rate of one new sample every multiply-add computation time.
Conventional methods for handling nonlinear oscillations re-
quire the inclusion of saturation arithmetic (SA) [11] and

39

controlled-rounding arithmetic (CRA) [12] in the recursive
loops of the direct form II second-order filter structure to elim-
inate zero-input overflow oscillations and zero-input limit cy-
cles. However, since CRA and SA are implemented in the re-
cursive loop, the sampling period of the filter is increased by
the amount of time necessary to evaluate the implemented CRA
or SA. Thus, the filter’s maximum sampling rate is reduced.
(In [1], we define an algorithm that provides SA for the
minimally redundant radix-4 on-line MA without increasing the
sampling period.) Neither CRA nor SA provide the elimination
of forced overflow oscillations or forced limit cycles [12], [19].
Error-feedback circuits have been developed {20] to eliminate
some forced overflow oscillations. However, these circuits re-
quire significantly more hardware and still retain some oscilla-
tions.

The method we employ is to increase the working
wordlength of the filter such that all zero-input and forced non-
linear oscillations are eliminated. (We define the working
wordlength to be the wordlength used for the operands and
results in all operations of the filter.) The basic idea is to in-
crease the working wordlength such that all internal overflows
are eliminated and such that limit cycles do not approach the
least significant bit of the data. We define b, to be the
minimum number of bits required to fully contain the max-
imum limit cycle, and by to be the minimum number of addi-
tional bits required to fully contain the maximum signal value
when the magnitude of the input is bounded by 1 (ie., elim-
inate zero-input and forced overflow oscillations). We have
determined that [1]

b=1+ hﬂ +log, [%H 30)
bo =3+ sz_ﬂl 31)

where m is the number of fractional bits used to represent the
coefficients and E is the maximum quantization error after each
multiplication. Thus, to eliminate all zero-input and forced
nonlinear oscillations by increasing wordlengths, the working
wordlength of the filter by must be defined by

by =bg +bp + b
where bp is the desired number of bits of the output data.

G2

As shown in Fig. 8, a b;-bit input is transformed to by
bits by concatenating b, sign extension bits to the MSB of the
input and then concatenating bp—b,+b; zeros to the LSB of the
input. (Notice, if the input data is bp bits long, then b, zeros
are concatenated to the LSB of the input.) In [1], we show that
adequate scaling of the filter results in a scale factor C at the
output of the section bounded by 2 < C < 1. Since the in-
put is extended to by bits in the manner just described, then
scaling the by -bit output of the filter section by C yields a
bp -bit scaled output that is fully contained in the bo+bp MSBs
of the bwy-bit output. Thus, the scaled output will not be
affected by limit cycles.

3 b
sign |
input —H———+——+4+—+—+—+++++ ———
out put ———————
b b
o L
bp
scaled
output by
Fig. 8. Example of i i dlengths to elimi i oscillations.

In our implementation, we approximate C b)f a shift of bg
bits (as is frequently done)

bs = [—1og2C] .

Thus, 0 < bs < by. Since we increase the working wordlength
such that no internal overflows can occur, and we guarantee
that the output is free of limit cycles, then the output of the
filter is within a quantization error of the ideal output (using the
same limited precision coefficients). The conventional methods
for eliminating nonlinear oscillations do not provide this
benefit.

(33)

We define dy to be the minimum number <:f digits that
-1 -1
can represent all numbers in the range =27, 2"%™), Thus,

forr =4and p=2,
by
dy = [T"]

However, this does not eliminate redundant representations of
the working wordlength that require more than dy digits.
Therefore, we define dp to be the minimum number of digits
that can represent all redundant representations of all numbers
in the range [-2™ ", 2'"""). When p = — 1, the value of dg
becomes dependent on the algorithm, and it may not even exist.
However, whenr =4 andp =2,

by +1
L=
Notice that (34) and (35) differ by 0 and 1 when by is odd and
even, respectively. Thus, for the minimally redundant case
where r =4 and p =2, the number of digits required to
represent all redundant representations of all numbers in the
range [—ZbW_l. 2’”'—1) (35) is at most one digit more than the
minimum number of di§its required to represent all numbers in
the range [_25“,-1. Zb“'-). Therefore, given by bits, we use dz
digits of representation to eliminate all nonlinear oscillations.

(34)

@35)

6 Summary

We have presented an on-line multiply-add module that
enables high filter sampling rates when used to implement the
direct form II second-order filter structure. The on-line
module’s regular design provides a simple method for expand-
ing the data wordlengths without affecting the sampling rate of

40

the filter. Thus, we increase the internal wordlength of the
filter such that the potentially devastating nonlinear oscillations
are eliminated without lowering the sampling rate of the filter.
This is not possible with conventional implementations. Anoth-
er benefit of increasing the wordlength of the filter is that the
output of the filter is within a quantization error of the ideal
output (using the same limited precision coefficients). Thus,
the signal-to-noise ratio is not reduced since no scaling of the
input is required.

We used VTI's 154 CMOS standard cell library and
design tools to design and simulate the minimally redundant
radix4 implementation of the on-line MA. We pipelined the
design into three stages, and, therefore, the delay from the
MSD of the input to the output is 5 clock cycles (recall 8 = 2).
Simulations yield 28.0ns for the worst-case estimate of the
clock cycle. Therefore, the worst-case sampling period of the
filter using this implementation is 140.0ns (i.e., a sampling rate
of 7.14MHz). We compare this with an 18-bit standard cell
parallel MA that has a clock rate of 118.5ns. This sampling
period will be increased when additional hardware is introduced
to handle the nonlinear oscillations. Thus, we demonstrate that
the on-line MA is a useful design approach for high-speed digi-
tal filters.

References

[1] R. H. Brackert.Jr., "Design and Implementation of a
High-Speed Recursive Digital Filter Using On-Line Arith-
metic,” Ph. D. dissertation, UCLA, 1989.

[2]1 R. H. Brackert Jr., et al., "A High-Speed Recursive Digital
Filter Using On-Line Arithmetic,” IEEE ISCAS, 1989.

[3] M. D. Ercegovac, "On-line Arithmetic: An Overview,”

Proc. SPIE Conf. Real-Time Signal Process., San Diego,

1984, pp. 667-680.

M. Renfors and Y. Neuvo, '"The Maximum Sampling Rate

of Digital Filters Under Hardware Speed Constraints,”

IEEE Trans. Circuits Syst., vol. CAS-28, pp.196-202, Mar.

1981.

[S] R. F. Woods, ¢t al., "Systolic IR Filters with Bit Level
Pipelining,” Proc. ICASSP, New York, 1988, pp. 2072-
2075.

[6] K. S. Arun, "Ultra-High-Speed Parallel Implementation of
Low-Order Digital Filters," IEEE ISCAS, 1986, vol. 3, pp.
944-946.

[7] K. Hayashi, et al., "Design of High-Speed Digital Filters

Suitable for Multi-DSP Implementation," IEEE Trans. Cir-

cuits Syst., vol. CT-33, pp. 202-217, Feb. 1986.

K. K. Parhi and M. Hatamian, "A High Sample Rate Re-

cursive Digital Filter Chip," VLSI Signal Processing III,

pp. 3-14, New York: IEEE Press, 1988.

[9] H. Samueli, et al., "A Comparison of Recursive Digital
Filter Structures Suitable for High-Speed Custom VLSI
Implementation,” 1987 Asilomar Conf. Circuits, Syst.,
Comput., 1987.

{10} A. Antoniou, Digital Filters: Analysis and Design. New
York: McGraw-Hill, 1979.

[4]

(8]

[11] P. M. Ebert, et al, "Overflow Oscillations in Digital
Filters," Bell Syst. Tech. J., vol. 48, pp.2999-3020, Nov.
1969.

[12] D. Mitra and V. B. Lawrence, "Controlled Rounding Ar-
ithmetics, for Second-Order Direct-Form Digital Filters,
that Eliminate All Self-Sustained Oscillations," IEEE
Trans. Circuits Syst., vol. CAS-28, pp.894-905, Sept.
1981.

[13] A. Avizienis, "Signed-Digit Number Representations for
Fast Parallel Arithmetic," IRE Trans. Electron. Comput.,
vol. EC-10, pp.389-400, Sept. 1961.

[14] M. D. Ercegovac and T. Lang, CS252 Lecture Notes,
UCLA Comp. Sci. Dept., 1985.

[15] M. D. Ercegovac, "A General Method for Evaluation of
Functions and Computations in a Digital Computer,” Ph.
D. dissertation, Univ. of Illinois, Urbana-Champaign, July
1975.

41

{16] D. M. Tullsen and M. D. Ercegovac, "Design and VLSI
Implementation of an On-Line Algorithm," Proc. SPIE
Conf. Real-Time Signal Process., 1986.

[17] 1. L. Long and T. N. Trick, "Roundoff-Noise Analysis for
Fixed-Point Digital Filters Realized in Cascade or Parallel
Form," IEEE Trans. Audio Electroacoust., vol. AU-18,
pp.107-122, June 1970.

[18] Z. Unver and K. Abdullah, "A Tighter Practical Bound on
Quantization Errors in Second-Order Digital Filters with
Complex Conjugate Poles,” IEEE Trans. Circuits Syst.,
vol. CAS-22, pp.632-633, July 1975.

[19] A. N. Willson, "Some Effects of Quantization and Adder
Overflow on the Forced Response of Digital Filters,” Bell
Syst. Tech. J., vol. 51, pp.863-887, Apr. 1972.

[20] A. N. Willson, "Error-Feedback Circuits for Digital
Filters," Electron. Let., vol. 12, pp.450-452, Sep. 1976.

