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Abstract

The Cascade hardware architecture for high/variable preci-
sion arithmetic is described. It uses a radix-16 redundant
signed-digit number representation and directly supports sin-
gle or multiple precision addition, subtraction, multiplication,
division, extraction of the square root and computation of the
greatest common divisor. It is object-oriented and implements
an abstract class of objects, variable precision integers. It
provides a complete suite of memory management functions
implemented in hardware, including a garbage collector. The
Cascade hardware permits free tradeoffs of space vs time.

1 Introduction

Applications such as solid modeling of geometric objects
[17], solving complex sets of equations using Grobner
bases [11], and encryption/decryption often involve the
use of very high precision arithmetic operations that gen-
erally must be implemented using the relatively low pre-
cision arithmetic units available in today’s computers.
The numbers used in such calculations are of variable
length. For example, in Grobner bases calculations num-
ber lengths vary from a few to several hundred decimal
digits. In Thomas’ algorithm for combining b-spline sur-
faces [17], numbers vary in length from a few to over
one thousand decimal digits. In encryption and decryp-
tion algorithms [3], the use of large primes is desirable.

Some systems use Common Lisp bignums [18]
in algorithms which solve these problems. Software
bignum arithmetic operations are slow due to the digit-
serial nature of high precision arithmetic computations
using conventional processors with limited word-widths
and to significant overhead for memory allocation and
garbage collection. Digit-serial algorithms for addition
and subtraction have O(n) time complexity and those for
multiplication and division have O(n?) complexity [10].

*This research was supported by DARPA through contract num-
ber DAAK11-84-K-0017.
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A way to significantly reduce the time required for
arithmetic operations on high/variable precision numbers
is to provide specialized, scalable arithmetic hardware in
which the width of the memory used to store numbers
and the width of the arithmetic unit can be increased to
match the size of numbers used in solving a problem.
To accelerate solutions to the problems of solid mod-
cling, Grobner bases solutions to systems of equations
and encryption/decryption the hardware must scale from
precisions of a few decimal digits to potentially thou-
sands of digits, permitting constant time complexity for
additions and subtractions and O(n) time complexity for
multiplications and divisions.

Hardware solutions using conventional techniques
such as the two’s complement number representation
and fast carry lookahead are not viable given such con-
straints. Full carry lookahead is impractical at large
word widths since it has an area complexity of O(n?)
and, in CMOS, the circuitry involved actually slows
down linearly with the number of bits in the operand
due to gate fanin and fanout effects. Even with a very
small constant on the O(n) time complexity of full carry
lookahead schemes, the area*time complexity of the full
carry lookahead approach is unacceptable at O(n?). If
block carry lookahead is used, the time complexity is re-
duced from O(n) to O(log n), but the physical design is
still complicated (O(n logn))since a tree of block carry
lookahead units must be used. The block carry lookahead
scheme has an area*time complexity of O(n log2 n) [19]
which is significantly better but still unacceptable. The
ideal area*time complexity for addition and subtraction
is O(n). This can be provided by digit-serial adders (in
any implementation technique) with O(1) space and O(n)
time or by redundant signed-digit methods (of which
carry-save is one) with O(1) time with O(n) space.

Cascade is a hardware architecture being developed
to accelerate high/variable precision arithmetic opera-
tions. As mentioned above, software packages for per-
forming variable precision arithmetic exhibit two time
related problems:



o digit-serial arithmetic based on very limited preci-
sion arithmetic units, and

e significant memory management overhead.

The architecture of Cascade takes both problems into ac-
count. In profiling a complex software system (Alpha_1
[1]) we discovered that memory management for objects
took more time than arithmetic. The cost of memory
management frequently equals or exceeds the cost of
arithmetic computation; the speed of memory manage-
ment operations is at least as important as the speed of
the arithmetic.

Cascade is based on a design for a variable precision
processor proposed by Chow in [9]. The radix-16 digit
slice in Chow’s processor has been designed and imple-
mented using VLSI {5], [8], [15]. As described hereafter,
the digit-slice used in Cascade differs from the one pro-
posed by Chow in some simple yet significant ways to
better support division and extraction of the square root.
Cascade provides linear scalability in space while main-
taining constant addition time, but also directly supports
multiple precision arithmetic operations when the phys-
ical word-width is not adequate. Cascade also provides
specialized memory management hardware.

2 Representing Numbers

Cascade uses only redundant signed-digit numbers {2};
conversions to and from the two’s complement number
representation are performed as infrequently as possible
and only at the request of an external agent. For rea-
sons described in [9], Cascade uses radix 16 digits that
represent numbers between -10 and 10 (21 values).

As noted by Robertson [13], there are two critical
parameters that describe the set of values (digit-set) that
can be represented by a single digit. They are the dimin-
ished cardinality § or the number of distinct arithmetic
values that a digit can represent minus one, and the off-
set w or the distance of the most negative value from
zero. In this paper we denote digit-sets using the no-
tation < éw >. In particular, Cascade uses < 20.10 >
digits which can be represented as 4 < 4.2 > + < 4.2 >,
This makes it possible to model division using two radix-
4 steps rather than one radix-16 step [6]. Each radix-4
digit is implemented as 2 < 1.1 > + < 2.0 >, making
the design of the Cascade arithmetic circuitry possible
using Robertson’s Theory of Decomposition [13], [14]
and its physical counterpart, Structured Arithmetic Tiling
[4], [7). Thus, Cascade uses three views of digits:

< 20.10 >
4<42>+<42>
8<11>+4<20>+2<11>+<20>.
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3 Cascade’s Architecture

The Cascade hardware is essentially an opaque physi-
cal implementation of an abstract class of objects, vari-
able precision integers. (Some minor modifications to
its control chip would permit it to operate on normalized
fractions). It contains its own storage for both num-
bers and memory management information. The sole
interface to the outside world is through a self-timed re-
quest/acknowledge message interface. Cascade normally
returns handles to variable precision integers, although
it can return the value of a variable precision integer in
an extended two’s complement form if necessary.

Cascade is composed of two types of modules as
shown in figure 1. The first is a single control module
with associated management memory. The second is a
set of N arithmetic modules each of which contain a
single arithmetic chip with associated digit memory.

The control chip in the control module contains a
multi-faceted controller that:

o interacts with external agents via the message port,

o performs hardware-resident memory management
and garbage collection,

¢ controls single and multiple precision arithmetic op-
erations (+ , — , *, + ,+/, and gcd) on variable
precision integers, and

e optimizes both memory management and common
arithmetic operations.

It also contains model division hardware for the two-
stage, radix-16 division algorithm described in [6].

The Cascade hardware supports the use of arith-
metic futures. At the option of the sender of a message,
the Cascade hardware can return a handle to the new
variable precision integer result as soon as storage has
been allocated but before the arithmetic operation has
been completed. This permits external modules that use
Cascade to proceed without necessarily having to wait
for the value to be computed.

At the top of each module there is a memory inter-
face. The control module originates all memory control
signals to both management memory and digit memory.
As seen in figure 1, there are six signal loops in the sys-
tem. The top two (sp0 and sp!) are digit-wide shift paths
capable of shifting left or right by whole digits (radix-16)
or half digits (radix-4). They are used during multipli-
cation for shifting the partial product and the multipli-
cand and during division and square root extraction for
normalization and shifting the partial remainder (partial
radicand). The next three are transfer digit paths. The
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Figure 1: The Cascade Architecture

top transfer digit path (db/) is used only during extrac-
tion of the square root. The next one (ml) is used during
multiplication, division and extraction of the square root
and the bottom one (o!) is used during all operations ex-
cept shifting. The bottom loop is labeled “+Ndp”. It has
three uses. First (&), it computes the sign of a signed-
digit number (for which the sign is given by the sign of
the most significant non-zero digit). Second (N), it is
used to report on whether a number is normalized (for
radix-16, radix-4 or radix-2) so that the control module
can decide whether further shifts are necessary. Third
(dp), it is used during square root extraction to signal
where the root digit just produced should be inserted
into the accumulating root.

On the lower left of the control module there is
the message port which consists of request/acknowledge
lines and a twenty-bit data bus through which handles,
values and other information is passed between external
agents and the Cascade system. There is a system clock
which is directly used only by the control chip. There
is a master reset signal so the system can be restored to
a known state. The control module generates a ten-bit
instruction word that is broadcast to the arithmetic mod-
ules where it is decoded and applied to control points
within the arithmetic chips. The strobe signal is gener-
ated by the control chip and sent to all the arithmetic
chips, causing registers to capture data from digit mem-
ory or the arithmetic unit. The sdv signal is an open-drain
bus driven by all the arithmetic chips. It is used by the
control chip to detect when an arithmetic operation re-
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sults in zero or a value that is represented as a single
digit. The control chip can then optimize storage use
and future arithmetic operations that involve very com-
mon values such as 0, 1 and -1. Each arithmetic chip
also has two signals indicating whether or not it contains
the most or least/significant digit.

4 Arithmetic Modules

Each arithmetic module consists of a 16-digit (80 bit)
wide digit memory and a custom arithmetic chip contain-
ing a 16-digit slice of the arithmetic datapath (roughly
equivalent to 64-bits). Figure 2 shows the structure of
the arithmetic chip. The XL and LX boxes encode and
decode each six-signal < 20.10 > digit as a five-bit
< 31.10 > digit for storage in digit memory. Thus the
storage overhead in Cascade over what would be required
in a normal two’s complement system is only 25%. (The
transfer digit at the multiplier level (mlc and mlo) is also
recoded from a 5-bit to a 4-bit representation.)

At the top, there are the two shift paths which permit
right or left shifts by whole (radix-16) or half (radix-4)
digits. Each of these shift paths interfaces directly to
four 16-digit (96-bit) registers.

The addition of two large numbers with opposite
sign results in a number of much smaller magnitude.
The size of this result cannot be predicted before the ad-
dition, so the number of leading zeros must be computed
following each addition or subtraction. This calculation
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Figure 2: Cascade’s Arithmetic Chip
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is done in the sign computer/leading zeros counter by
having each arithmetic chip count the number of leading
zeros on one of the arithmetic unit buses. This will be a
number between 0 and 16. The collection of arithmetic
chips then shifts these counts to the left using a shift path
and the control chip accumulates the number of leading
zeros until a count of less than 16 is encountered.

Each of the four registers can serve as input to either
port of the arithmetic unit and can latch the output of the
arithmetic unit. Under control of the token replicating
root digit position register, any given digit in a register
can store the value of the current root digit during square
root extraction. At each digital position there is flip-flop.
Initially all flip-flops are cleared. When the flip-flop at a
digital position is clear but the flip-flop immediately to
its left is set, the next root digit generated is stored at
that digital position. This permits the unknown root to
be accumulated in position, left to right.

The sign computer uses a self-timed priority en-
coding scheme to find the sign of the most significant
non-zero digit. The sign is propagated from the most
significant non-zero digit to the control module at the
left. If a digital position contains a non-zero value it
reports its own sign, otherwise it reports the sign of the
digital position immediately to its right.

Using the normalization sensor, the most significant
arithmetic chip (upon request by the control chip) detects
radix-16, radix-4 or radix-2 normalization by examining
the three most significant digits of a number.

Below the normalization sensor and the arithmetic
unit is a distribution box in which routing is performed.
It also contains a set of switches to connect the out-
put of the arithmetic unit directly to the memory bus so
the result of an addition or subtraction can be stored to
memory without first being moved to a register.

At the bottom is the arithmetic unit. It is composed
of sixteen identical radix-16 digit slices (described in
section 4.1). The arithmetic unit contains zero detecting
ROMS at all digital positions. It also contains a small
single digit value detecting ROM at the least significant
digital position to enable the detection of results that are
represented as a single digit. This permits the control
module to detect values like 1, 0 and -1 as the result
of an arithmetic operation. When such values can be
detected, storage need not necessarily be used for them
and operations such as multiplication by zero or one can
be dynamically optimized in the hardware.

4.1 The Radix-16 Digit Slice

The heart of the arithmetic chip is the radix-16 digit slice
pictured in figure 3. It has a conditional doubling cir-
cuit (an adder plus a multiplexor) used during extraction
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Figure 3: Cascade’s Digit Slice

of the square root. During square root extraction us-
ing completion of the square; all root digits are doubled
except the most recently generated as indicated by the
root digit position register. This doubling circuit is not
present in the digit-slice proposed by Chow in [9].

A < 20.10 > digit is broadcast to all digital posi-
tions of the arithmetic unit for use during multiplication,
division and square-root extraction. There, an elemen-
tary multiplier performs the radix-16 multiplication of
the multiplier digit by the multiplicand digit. The out-
put of the elementary multiplier is sent to the m0 adder
which transforms the result into a 16 < 12.6 > transfer
digit, a < 8.4 > sum digit that is recombined in the mI
adder with the incoming < 12.6 > transfer digit to form
a < 20.10 > digit, and a 4 < 2.1 > digit that is passed
on to the normal addition circuitry. Just below the ml
adder is a pair of multiplexors. During multiplication,
division and extraction of the square root these multi-
plexors pass on the output of the multiplication circuitry.
During addition and subtraction they do not.

There is a pair of conditional complementing cir-
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Figure 4: Cascade’s Memory Organization

cuits just below these multiplexors to permit subtraction
by addition of the complement, assisting in division by
permitting the recurrence equation pj.1 = rp; — gjs1d to
be computed in a single step. The location of these
conditional complementing circuits has been changed
from Chow’s proposed digit slice. Below the conditional
complementers is the two-level signed-digit addition cir-
cuitry, the a0 adder and the al adder.

5 Control Module

5.1 Memory Management

One of the most significant functions of the control mod-
ule is the management of variable precision integer ob-
jects. Figure 4 shows Cascade’s memory organization.
There is a bifurcated management memory that contains
descriptors and descriptor pointers. Descriptor pointers
are directly referred to by handles and never move. De-
scriptors are referred to by descriptor pointers and may
be moved as part of the memory allocation/garbage col-
lection scheme. Descriptor pointers are allocated from
the bottom up while descriptors, like digit memory loca-
tions, are allocated from the top down. Descriptors are
maintained such that there are no crossing pointers into
digit memory, facilitating garbage collection.

The memory management strategy attempts to avoid
garbage collection if at all possible. If a number has
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been destroyed but has not yet been reclaimed by the
garbage collector and if it has adequate storage for the
next result it will be reused immediately without garbage
collection. Up to one megaword of digit memory and one
megaword of management memory can be addressed. A
setup register in the control chip permits lesser amounts
of real memory to be installed in the system.

5.2 External Message Port

The external message port consists of a request/acknow-
ledge signal pair and a twenty bit data bus. When an
external agent wishes to send a message to the Cas-
cade hardware, it first asserts its data and then raises
the request line. When the Cascade hardware is ready,
it latches the data and interprets it. When done, it raises
the acknowledge line until the external agent lowers the
request line.

There are two types of message cycles in Cascade,
REQUESTs and Results. Each message may consist of
any number of request and result cycles, depending on
what data must be transferred. Most messages that cause
arithmetic operations to be performed have three request
cycles and one result cycle (for the returned handle). The
conversion messages have unbounded message lengths to
permit values and digit sequences of variable precision
integers to be returned to the invoking external agent.
External agents must follow message protocols exactly.



Table 1: Summary of Message Protocols

REQUESTS, Results, [Repeated Message Cycle]

CREATE MS 16-BITS LS 16-BITS | Handle
DESTROY Handle

RESTORE | NTRANSFERS [4 DIGITS] | Handle
SAVE HANDLE Ntransfers {4 Digits]
ASSIM HANDLE NTransfers | [2’s Comp]
NEGO HANDLE Handle

ADDO HANDLE-ADD HANDLE-ADD | Handle-sum
suBe HANDLE-ADD HARDLE-SUB | Handle-diff
MULC HANDLE-MPY HANDLE-MCD | Handle-prod
DIVe HANDLE-NUM | HANDLE-DEN | Handle-quot
SQRTE HANDLE-RAD | Handle-root

REM Handle-rem

COMPARE@ | HANDLE-ADD Handle-sub | Comparison
SIGN HANDLE Sign-ind

DIGITS HANDLE MS ndigits | LS ndigits
SETREG BIT-PATTERN

GETREG Bit-pattern

GC

In table 1 which summarizes the message formats
for Cascade, the arithmetic message codes (indicated by
an @ following the message name) have two flags that
modify the behavior of the Cascade hardware. The first
indicates that a future is to be returned and the second
indicates that the numbers passed as arguments to the
arithmetic operation should be destroyed at the comple-
tion of the operation. Multiple messages cycles are indi-
cated by enclosing the message name in brackets (e.g.,
[multiple cyclel).

5.3 Model Division

The SRT division algorithm used in Cascade is described
in [6]. The model division used a three digit estimate of
the divisor and a two digit estimate of the partial remain-
der. The three digit estimate of the divisor is stored in a
special register since multiples of it must be constantly
computed as part of the model division. The two digit
estimate of the partial remainder can be obtained by the
model in one of three ways:

1. keep the two most significant digits of the divisor
and partial remainder in the control chip, or

2. keep the most significant digit of the divisor and
partial remainder in the control chip and have the
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Table 2: Propagation Delays (est.)

Memory Cycle tm 25 ns
Arithmetic Opers ta 2 ns
Input Pad i 2 ns
Output Pad t, 10 ns
Register t, Sns
Shift-Right te ti+t,+t, =| 17 ns
Shift-Left ts t:+t,+t, =| 17 ns
Operand Fetch ty tn+t;+t, =| 32ns
Result Save t, tn+t, =] 35ns
Add (N digit) t, | 2ty +15¢, +1¢, 127 ns
Sub (N digit) t_ | 2ty +15¢,+t, =|127 ns
Mul (per digit) t. | t>+23t,+t, =| 68ns
Mul (N by 1 digit) | ¢. | 2t;+t,+2t, =|202ns
Div (recursion) ta | te+23t,+t, =| 68ns
Sqrt (recursion) ty | tc +35t, +1¢, 92 ns

most significant arithmetic chip shift the next most
significant digit to the control chip, or

3. keep all of the divisor and partial remainder in the
arithmetic chips and have the most significant arith-
metic chip shift its two most significant digits to the
control chip via the shift paths.

Of these three, the third is clearly the least desirable since
it requires special shift path connections at the second
most significant digital position. The first is fastest and
the most desirable since it requires no off chip communi-
cation for forming the estimates of the partial remainder.
The second is a tradeoff that can be made if there is
inadequate room on the control chip.

6 Performance Estimates

A software model of this architecture has been simulated
to verify correctness of the control algorithms for the
arithmetic operations. Detailed spice simulation of the
individual arithmetic circuit modules (called operators)
that make up the arithmetic unit have been done. Table 2
shows the propagation delays used to estimate the speed
of the arithmetic modules. The arithmetic registers are
edge-triggered rather than clocked using the normal two-
phase MOS clocking scheme. This avoids slowing them
down to the speed of the system clock. Table 2 does not
include time required for memory management functions
preliminary to the arithmetic operations.

The quotient/root digit selection hardware has not
yet been fully designed so the speed of division and
square-root extraction cannot be accurately estimated.



For division and square root, the table contains only the
time necessary for a single-precision recursion step.

A critical issue in addition and subtraction is mem-
ory access time since three or four memory cycles are
required (two to fetch the operands and one or two to
store the result). If fast (25 ns) static RAM is not used
as suggested in table 2 then the times for addition and
subtraction slow down dramatically. In general, memory
cycle time has less effect on single-precision multiplica-
tion and division than it does on addition and subtraction.

7 Conclusion

Cascade is a hardware architecture designed specifically
for performing arithmetic operations on high/variable
precision integers. Relative to Common Lisp bignums
running on a professional workstation, it is possible to
realize speed improvements of several orders of mag-
nitude in arithmetic computations involving bignums of
around 256 digits of precision [4].

The Cascade hardware permits free tradeoffs of time
versus space since it is linearly scalable in space with
no time cost incurred for additional word-width. The
combination of high speed arithmetic function and mem-
ory management capabilities is a unique feature of this
object-oriented processor.
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